Coverage Report

Created: 2025-08-28 07:06

/src/ghostpdl/base/gsfunc0.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Implementation of FunctionType 0 (Sampled) Functions */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsfunc0.h"
22
#include "gsparam.h"
23
#include "gxfarith.h"
24
#include "gxfunc.h"
25
#include "stream.h"
26
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
27
28
#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
29
                                   Remove after the beta testing. */
30
424
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
31
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
32
776
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
33
                                   Remove after the beta testing. */
34
35
185k
#define MAX_FAST_COMPS 8
36
37
typedef struct gs_function_Sd_s {
38
    gs_function_head_t head;
39
    gs_function_Sd_params_t params;
40
} gs_function_Sd_t;
41
42
/* GC descriptor */
43
private_st_function_Sd();
44
static
45
190
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
46
76
{
47
76
    index -= 6;
48
76
    if (index < st_data_source_max_ptrs)
49
19
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
50
76
                          sizeof(pfn->params.DataSource), index);
51
57
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
52
76
}
53
76
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
54
190
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
55
190
ENUM_PTRS_END
56
static
57
19
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
58
19
{
59
19
    RELOC_PREFIX(st_function);
60
19
    RELOC_USING(st_data_source, &pfn->params.DataSource,
61
19
                sizeof(pfn->params.DataSource));
62
19
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
63
19
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
64
19
}
65
19
RELOC_PTRS_END
66
67
/* Define the maximum plausible number of inputs and outputs */
68
/* for a Sampled function. */
69
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS   /* Allow override with XCFLAGS */
70
64.2k
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
71
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
72
#else
73
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
74
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
75
#endif
76
77
/* Get one set of sample values. */
78
#define SETUP_SAMPLES(bps, nbytes)\
79
42.8M
        int n = pfn->params.n;\
80
42.8M
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
81
42.8M
        const byte *p;\
82
42.8M
        int i;\
83
42.8M
\
84
42.8M
        data_source_access(&pfn->params.DataSource, offset >> 3,\
85
42.8M
                           nbytes, buf, &p)
86
87
static int
88
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
89
0
{
90
0
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
91
0
    for (i = 0; i < n; ++i) {
92
0
        samples[i] = (*p >> (~offset & 7)) & 1;
93
0
        if (!(++offset & 7))
94
0
            p++;
95
0
    }
96
0
    return 0;
97
0
}
98
static int
99
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
100
0
{
101
0
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
102
0
    for (i = 0; i < n; ++i) {
103
0
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
104
0
        if (!((offset += 2) & 7))
105
0
            p++;
106
0
    }
107
0
    return 0;
108
0
}
109
static int
110
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
111
0
{
112
0
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
113
0
    for (i = 0; i < n; ++i) {
114
0
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
115
0
    }
116
0
    return 0;
117
0
}
118
static int
119
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
120
42.8M
{
121
42.8M
    SETUP_SAMPLES(8, n);
122
100M
    for (i = 0; i < n; ++i) {
123
57.8M
        samples[i] = *p++;
124
57.8M
    }
125
42.8M
    return 0;
126
42.8M
}
127
static int
128
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
129
0
{
130
0
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
131
0
    for (i = 0; i < n; ++i) {
132
0
        if (offset & 4)
133
0
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
134
0
        else
135
0
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
136
0
        offset ^= 4;
137
0
    }
138
0
    return 0;
139
0
}
140
static int
141
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
142
67.0k
{
143
67.0k
    SETUP_SAMPLES(16, n * 2);
144
134k
    for (i = 0; i < n; ++i) {
145
67.5k
        samples[i] = (*p << 8) + p[1];
146
67.5k
        p += 2;
147
67.5k
    }
148
67.0k
    return 0;
149
67.0k
}
150
static int
151
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
152
0
{
153
0
    SETUP_SAMPLES(24, n * 3);
154
0
    for (i = 0; i < n; ++i) {
155
0
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
156
0
        p += 3;
157
0
    }
158
0
    return 0;
159
0
}
160
static int
161
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
162
0
{
163
0
    SETUP_SAMPLES(32, n * 4);
164
0
    for (i = 0; i < n; ++i) {
165
0
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
166
0
        p += 4;
167
0
    }
168
0
    return 0;
169
0
}
170
171
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
172
                                       ulong offset, uint * samples) =
173
{
174
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
175
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
176
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
177
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
178
        fn_gets_32
179
};
180
181
/*
182
 * Compute a value by cubic interpolation.
183
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
184
 * The formula is derived from those presented in
185
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
186
 * (thanks to Raph Levien for the reference).
187
 */
188
static double
189
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
190
0
{
191
    /*
192
     * The parameter 'a' affects the contribution of the high-frequency
193
     * components.  The abovementioned source suggests a = -0.5.
194
     */
195
0
#define a (-0.5)
196
0
#define SQR(v) ((v) * (v))
197
0
#define CUBE(v) ((v) * (v) * (v))
198
0
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
199
0
    const double c =
200
0
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
201
0
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
202
0
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
203
0
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
204
205
0
    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
206
0
              f0, f1, f2, f3, x, c);
207
0
    return c;
208
0
#undef a
209
0
#undef SQR
210
0
#undef CUBE
211
0
}
212
213
/*
214
 * Compute a value by quadratic interpolation.
215
 * f[] = f(0), f(1), f(2); 0 < x < 1.
216
 *
217
 * We used to use a quadratic formula for this, derived from
218
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
219
 * match what we believe is Acrobat Reader's behavior.
220
 */
221
static inline double
222
interpolate_quadratic(double x, double f0, double f1, double f2)
223
0
{
224
0
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
225
0
}
226
227
/* Calculate a result by multicubic interpolation. */
228
static void
229
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
230
                     const int *iparts, const ulong *factors,
231
                     float *samples, ulong offset, int m)
232
0
{
233
0
    int j;
234
235
0
top:
236
0
    if (m == 0) {
237
0
        uint sdata[max_Sd_n];
238
239
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
240
0
        for (j = pfn->params.n - 1; j >= 0; --j)
241
0
            samples[j] = (float)sdata[j];
242
0
    } else {
243
0
        float fpart = *fparts++;
244
0
        int ipart = *iparts++;
245
0
        ulong delta = *factors++;
246
0
        int size = pfn->params.Size[pfn->params.m - m];
247
0
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
248
249
0
        --m;
250
0
        if (is_fzero(fpart))
251
0
            goto top;
252
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
253
0
                             offset, m);
254
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
255
0
                             offset + delta, m);
256
        /* Ensure we don't try to access out of bounds. */
257
        /*
258
         * If size == 1, the only possible value for ipart and fpart is
259
         * 0, so we've already handled this case.
260
         */
261
0
        if (size == 2) { /* ipart = 0 */
262
            /* Use linear interpolation. */
263
0
            for (j = pfn->params.n - 1; j >= 0; --j)
264
0
                samples[j] += (samples1[j] - samples[j]) * fpart;
265
0
            return;
266
0
        }
267
0
        if (ipart == 0) {
268
            /* Use quadratic interpolation. */
269
0
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
270
0
                                 samples2, offset + delta * 2, m);
271
0
            for (j = pfn->params.n - 1; j >= 0; --j)
272
0
                samples[j] =
273
0
                    interpolate_quadratic(fpart, samples[j],
274
0
                                          samples1[j], samples2[j]);
275
0
            return;
276
0
        }
277
        /* At this point we know ipart > 0, size >= 3. */
278
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
279
0
                             offset - delta, m);
280
0
        if (ipart == size - 2) {
281
            /* Use quadratic interpolation. */
282
0
            for (j = pfn->params.n - 1; j >= 0; --j)
283
0
                samples[j] =
284
0
                    interpolate_quadratic(1 - fpart, samples1[j],
285
0
                                          samples[j], samplesm1[j]);
286
0
            return;
287
0
        }
288
        /* Now we know 0 < ipart < size - 2, size > 3. */
289
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
290
0
                             samples2, offset + delta * 2, m);
291
0
        for (j = pfn->params.n - 1; j >= 0; --j)
292
0
            samples[j] =
293
0
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
294
0
                                  samples1[j], samples2[j]);
295
0
    }
296
0
}
297
298
/* Calculate a result by multilinear interpolation. */
299
static void
300
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
301
                 const ulong *factors, float *samples, ulong offset, int m)
302
6.53M
{
303
6.53M
    int j;
304
305
6.86M
top:
306
6.86M
    if (m == 0) {
307
4.46M
        uint sdata[max_Sd_n];
308
309
4.46M
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
310
13.4M
        for (j = pfn->params.n - 1; j >= 0; --j)
311
8.94M
            samples[j] = (float)sdata[j];
312
4.46M
    } else {
313
2.40M
        float fpart = *fparts++;
314
2.40M
        float samples1[max_Sd_n];
315
316
2.40M
        if (is_fzero(fpart)) {
317
336k
            ++factors;
318
336k
            --m;
319
336k
            goto top;
320
336k
        }
321
2.06M
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
322
2.06M
                              offset, m - 1);
323
2.06M
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
324
2.06M
                              offset + *factors, m - 1);
325
6.21M
        for (j = pfn->params.n - 1; j >= 0; --j)
326
4.15M
            samples[j] += (samples1[j] - samples[j]) * fpart;
327
2.06M
    }
328
6.86M
}
329
330
static inline double
331
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
332
53.7M
{
333
53.7M
    float d0, d1, r0, r1;
334
53.7M
    double value;
335
53.7M
    int bps = pfn->params.BitsPerSample;
336
    /* x86 machines have problems with shifts if bps >= 32 */
337
53.7M
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
338
339
53.7M
    if (pfn->params.Range)
340
53.7M
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
341
0
    else
342
0
        r0 = 0, r1 = (float)max_samp;
343
53.7M
    if (pfn->params.Decode)
344
19.3M
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
345
34.4M
    else
346
34.4M
        d0 = r0, d1 = r1;
347
348
53.7M
    value = sample * (d1 - d0) / max_samp + d0;
349
53.7M
    if (value < r0)
350
0
        value = r0;
351
53.7M
    else if (value > r1)
352
0
        value = r1;
353
53.7M
    return value;
354
53.7M
}
355
356
/* Evaluate a Sampled function. */
357
/* A generic algorithm with a recursion by dimentions. */
358
static int
359
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
360
2.40M
{
361
2.40M
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
362
2.40M
    int bps = pfn->params.BitsPerSample;
363
2.40M
    ulong offset = 0;
364
2.40M
    int i;
365
2.40M
    float encoded[max_Sd_m];
366
2.40M
    int iparts[max_Sd_m]; /* only needed for cubic interpolation */
367
2.40M
    ulong factors[max_Sd_m];
368
2.40M
    float samples[max_Sd_n];
369
370
    /* Encode the input values. */
371
372
4.80M
    for (i = 0; i < pfn->params.m; ++i) {
373
2.40M
        float d0 = pfn->params.Domain[2 * i],
374
2.40M
            d1 = pfn->params.Domain[2 * i + 1];
375
2.40M
        float arg = in[i], enc;
376
377
2.40M
        if (arg < d0)
378
48
            arg = d0;
379
2.40M
        else if (arg > d1)
380
0
            arg = d1;
381
2.40M
        if (pfn->params.Encode) {
382
1.17M
            float e0 = pfn->params.Encode[2 * i];
383
1.17M
            float e1 = pfn->params.Encode[2 * i + 1];
384
385
1.17M
            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
386
1.17M
            if (enc < 0)
387
0
                encoded[i] = 0;
388
1.17M
            else if (enc >= pfn->params.Size[i] - 1)
389
76.3k
                encoded[i] = (float)pfn->params.Size[i] - 1;
390
1.10M
            else
391
1.10M
                encoded[i] = enc;
392
1.22M
        } else {
393
            /* arg is guaranteed to be in bounds, ergo so is enc */
394
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
395
1.22M
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
396
1.22M
        }
397
2.40M
    }
398
399
    /* Look up and interpolate the output values. */
400
401
2.40M
    {
402
2.40M
        ulong factor = (ulong)bps * pfn->params.n;
403
404
4.80M
        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
405
2.40M
            int ipart = (int)encoded[i];
406
407
2.40M
            offset += (factors[i] = factor) * ipart;
408
2.40M
            iparts[i] = ipart;  /* only needed for cubic interpolation */
409
2.40M
            encoded[i] -= ipart;
410
2.40M
        }
411
2.40M
    }
412
2.40M
    if (pfn->params.Order == 3)
413
0
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
414
0
                             offset, pfn->params.m);
415
2.40M
    else
416
2.40M
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
417
2.40M
                              pfn->params.m);
418
419
    /* Encode the output values. */
420
421
7.19M
    for (i = 0; i < pfn->params.n; ++i)
422
4.79M
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
423
424
2.40M
    return 0;
425
2.40M
}
426
427
static const double double_stub = 1e90;
428
429
static inline void
430
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
431
            const int pole_step_minor)
432
12
{   /* The following is poles of the polinomial,
433
       which represents interpolate_cubic in [1,2]. */
434
12
    const double a = -0.5;
435
436
12
    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
437
12
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
438
12
}
439
440
static void
441
fn_make_poles(double *p, const int pole_step, int power, int bias)
442
12
{
443
12
    const int pole_step_minor = pole_step / 3;
444
12
    switch(power) {
445
0
        case 1: /* A linear 3d power curve. */
446
            /* bias must be 0. */
447
0
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
448
0
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
449
0
            break;
450
0
        case 2:
451
            /* bias may be be 0 or 1. */
452
            /* Duplicate the beginning or the ending pole (the old code compatible). */
453
0
            fn_make_cubic_poles(p + pole_step * bias,
454
0
                    p[pole_step * 0], p[pole_step * bias],
455
0
                    p[pole_step * (1 + bias)], p[pole_step * 2],
456
0
                    pole_step_minor);
457
0
            break;
458
12
        case 3:
459
            /* bias must be 1. */
460
12
            fn_make_cubic_poles(p + pole_step * bias,
461
12
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
462
12
                    pole_step_minor);
463
12
            break;
464
0
        default: /* Must not happen. */
465
0
           DO_NOTHING;
466
12
    }
467
12
}
468
469
/* Evaluate a Sampled function.
470
   A cubic interpolation with a pole cache.
471
   Allows a fast check for extreme suspection. */
472
/* This implementation is a particular case of 1 dimension.
473
   maybe we'll use as an optimisation of the generic case,
474
   so keep it for a while. */
475
static int
476
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
477
0
{
478
0
    float d0 = pfn->params.Domain[2 * 0];
479
0
    float d1 = pfn->params.Domain[2 * 0 + 1];
480
0
    const int pole_step_minor = pfn->params.n;
481
0
    const int pole_step = 3 * pole_step_minor;
482
0
    int i0; /* A cell index. */
483
0
    int ib, ie, i, k;
484
0
    double *p, t0, t1, tt;
485
0
486
0
    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
487
0
    i0 = (int)floor(tt);
488
0
    ib = max(i0 - 1, 0);
489
0
    ie = min(pfn->params.Size[0], i0 + 3);
490
0
    for (i = ib; i < ie; i++) {
491
0
        if (pfn->params.pole[i * pole_step] == double_stub) {
492
0
            uint sdata[max_Sd_n];
493
0
            int bps = pfn->params.BitsPerSample;
494
0
495
0
            p = &pfn->params.pole[i * pole_step];
496
0
            fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
497
0
            for (k = 0; k < pfn->params.n; k++, p++)
498
0
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
499
0
        }
500
0
    }
501
0
    p = &pfn->params.pole[i0 * pole_step];
502
0
    t0 = tt - i0;
503
0
    if (t0 == 0) {
504
0
        for (k = 0; k < pfn->params.n; k++, p++)
505
0
            out[k] = *p;
506
0
    } else {
507
0
        if (p[1 * pole_step_minor] == double_stub) {
508
0
            for (k = 0; k < pfn->params.n; k++)
509
0
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
510
0
                        ie - ib - 1, i0 - ib);
511
0
        }
512
0
        t1 = 1 - t0;
513
0
        for (k = 0; k < pfn->params.n; k++, p++) {
514
0
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
515
0
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
516
0
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
517
0
                       p[3 * pole_step_minor] * t0 * t0 * t0;
518
0
            if (y < pfn->params.Range[0])
519
0
                y = pfn->params.Range[0];
520
0
            if (y > pfn->params.Range[1])
521
0
                y = pfn->params.Range[1];
522
0
            out[k] = y;
523
0
        }
524
0
    }
525
0
    return 0;
526
0
}
527
528
static inline void
529
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
530
212
{
531
212
    int i;
532
533
424
    for (i = 0; i < pfn->params.m; i++) {
534
212
        float xi = in[i];
535
212
        float d0 = pfn->params.Domain[2 * i + 0];
536
212
        float d1 = pfn->params.Domain[2 * i + 1];
537
212
        double t;
538
539
212
        if (xi < d0)
540
0
            xi = d0;
541
212
        if (xi > d1)
542
0
            xi = d1;
543
212
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
544
212
        I[i] = (int)floor(t);
545
212
        T[i] = t - I[i];
546
212
    }
547
212
}
548
549
static inline void
550
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
551
212
{
552
212
    *Ii = I[ii];
553
212
    if (T[ii] != 0) {
554
3
        *ib = max(*Ii - 1, 0);
555
3
        *ie = min(pfn->params.Size[ii], *Ii + 3);
556
209
    } else {
557
209
        *ib = *Ii;
558
209
        *ie = *Ii + 1;
559
209
    }
560
212
}
561
562
static inline int
563
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
564
38.4M
{
565
38.4M
    uint sdata[max_Sd_n];
566
38.4M
    int k, code;
567
568
38.4M
    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
569
38.4M
    if (code < 0)
570
0
        return code;
571
87.3M
    for (k = 0; k < pfn->params.n; k++)
572
48.9M
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
573
38.4M
    return 0;
574
38.4M
}
575
576
static inline int
577
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
578
176
{
579
176
    if (*(pfn->params.pole + a_offset) == double_stub) {
580
176
        uint sdata[max_Sd_n];
581
176
        int k, code;
582
583
176
        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
584
176
        if (code < 0)
585
0
            return code;
586
880
        for (k = 0; k < pfn->params.n; k++)
587
704
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
588
176
    }
589
176
    return 0;
590
176
}
591
592
static inline void
593
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
594
3
{
595
3
    int k;
596
597
15
    for (k = 0; k < pfn->params.n; k++)
598
12
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
599
3
}
600
601
static inline void
602
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
603
        int offset, int pole_step, int power, int bias, int ii)
604
3
{
605
3
    if (ii < 0)
606
3
        interpolate_vector(pfn, offset, pole_step, power, bias);
607
0
    else {
608
0
        int s = pfn->params.array_step[ii];
609
0
        int Ii = I[ii];
610
611
0
        if (T[ii] == 0) {
612
0
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
613
0
        } else {
614
0
            int l;
615
616
0
            for (l = 0; l < 4; l++)
617
0
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
618
0
        }
619
0
    }
620
3
}
621
622
static inline bool
623
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
624
212
{
625
    /* Check an inner pole of the cell. */
626
212
    int i, o = 0;
627
628
424
    for (i = ii; i >= 0; i--) {
629
212
        o += I[i] * pfn->params.array_step[i];
630
212
        if (T[i] != 0)
631
3
            o += pfn->params.array_step[i] / 3;
632
212
    }
633
212
    if (*(pfn->params.pole + a_offset + o) != double_stub)
634
45
        return true;
635
167
    return false;
636
212
}
637
638
/* Creates a tensor of Bezier coefficients by node interpolation. */
639
static inline int
640
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
641
                            int a_offset, int s_offset, int ii)
642
388
{
643
    /* Well, this function isn't obvious. Trying to explain what it does.
644
645
       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
646
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
647
       We represent the multicubic function with a tensor of Besier poles,
648
       and the size of the tensor is 4x4x....x4. Note that the corners
649
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.
650
651
       We organize the 'pole' array so that a tensor of a cell
652
       occupies the cell, and tensors for neighbour cells have a common hyperplane.
653
654
       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
655
       It defines 3 cells n0...n1, n1...n2, n2...n3.
656
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
657
       We choose a cubic approximation, in which tangents at nodes n1, n2
658
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
659
       (Well, this doesn't give a the minimal curvity, but likely it is
660
       what Adobe implementations do, see the bug 687352,
661
       and we agree that it's some reasonable).
662
663
       Then we have :
664
665
       q11 = n0
666
       q12 = (n0/2 + 3*n1 - n2/2)/3;
667
       q11 = (n1/2 + 3*n2 - n3/2)/3;
668
       q13 = n2
669
670
       When the source node array have an insufficient nomber of nodes
671
       along a dimension to determine tangents a cell
672
       (this happens near the array boundaries),
673
       we simply duplicate ending nodes. This solution is done
674
       for the compatibility to the old code, and definitely
675
       there exists a better one. Likely Adobe does the same.
676
677
       For a 2-dimensional case we apply the 1-dimentional case through
678
       the first dimension, and then construct a surface by varying the
679
       second coordinate as a parameter. It gives a bicubic surface,
680
       and the result doesn't depend on the order of coordinates
681
       (I proved the latter with Matematica 3.0).
682
       Then we know that an interpolation by one coordinate and
683
       a differentiation by another coordinate are interchangeble operators.
684
       Due to that poles of the interpolated function are same as
685
       interpolated poles of the function (well, we didn't spend time
686
       for a strong proof, but this fact was confirmed with testing the
687
       implementation with POLE_CACHE_DEBUG).
688
689
       Then we apply the 2-dimentional considerations recursively
690
       to all dimensions. This is exactly what the function does.
691
692
     */
693
388
    int code;
694
695
388
    if (ii < 0) {
696
176
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
697
176
            code = load_vector(pfn, a_offset, s_offset);
698
176
            if (code < 0)
699
0
                return code;
700
176
        }
701
212
    } else {
702
212
        int Ii, ib, ie, i;
703
212
        int sa = pfn->params.array_step[ii];
704
212
        int ss = pfn->params.stream_step[ii];
705
706
212
        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
707
212
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
708
343
            for (i = ib; i < ie; i++) {
709
176
                code = make_interpolation_tensor(pfn, I, T,
710
176
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
711
176
                if (code < 0)
712
0
                    return code;
713
176
            }
714
167
            if (T[ii] != 0)
715
3
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
716
3
                                Ii - ib, ii - 1);
717
167
        }
718
212
    }
719
388
    return 0;
720
388
}
721
722
/* Creates a subarray of samples. */
723
static inline int
724
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
725
                            int *I, double *T,
726
                            int a_offset, int s_offset, int ii)
727
0
{
728
0
    int code;
729
730
0
    if (ii < 0) {
731
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
732
0
            code = load_vector(pfn, a_offset, s_offset);
733
0
            if (code < 0)
734
0
                return code;
735
0
        }
736
0
        if (pfn->params.Order == 3) {
737
0
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
738
0
            if (code < 0)
739
0
                return code;
740
0
        }
741
0
    } else {
742
0
        int i;
743
0
        int i0 = (int)floor(T0[ii]);
744
0
        int i1 = (int)ceil(T1[ii]);
745
0
        int sa = pfn->params.array_step[ii];
746
0
        int ss = pfn->params.stream_step[ii];
747
748
0
        if (i0 < 0 || i0 >= pfn->params.Size[ii])
749
0
            return_error(gs_error_unregistered); /* Must not happen. */
750
0
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
0
        I[ii] = i0;
753
0
        T[ii] = (i1 > i0 ? 1 : 0);
754
0
        for (i = i0; i <= i1; i++) {
755
0
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
756
0
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
757
0
            if (code < 0)
758
0
                return code;
759
0
        }
760
0
    }
761
0
    return 0;
762
0
}
763
764
static inline int
765
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
766
433
{
767
433
    int s = pfn->params.array_step[ii], k, l, code;
768
769
433
    if (ii < 0) {
770
1.10k
        for (k = 0; k < pfn->params.n; k++)
771
884
            y[k] = *(pfn->params.pole + offset + k);
772
221
    } else if (T[ii] == 0) {
773
209
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
774
209
    } else {
775
3
        double t0 = T[ii], t1 = 1 - t0;
776
3
        double p[4][max_Sd_n];
777
778
15
        for (l = 0; l < 4; l++) {
779
12
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
780
12
            if (code < 0)
781
0
                return code;
782
12
        }
783
15
        for (k = 0; k < pfn->params.n; k++)
784
12
            y[k] = p[0][k] * t1 * t1 * t1 +
785
12
                   p[1][k] * t1 * t1 * t0 * 3 +
786
12
                   p[2][k] * t1 * t0 * t0 * 3 +
787
12
           p[3][k] * t0 * t0 * t0;
788
3
    }
789
224
    return 0;
790
433
}
791
792
/* Evaluate a Sampled function. */
793
/* A cubic interpolation with pole cache. */
794
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
795
static int
796
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
797
212
{
798
212
    double T[max_Sd_m], y[max_Sd_n];
799
212
    int I[max_Sd_m], k, code;
800
801
212
    decode_argument(pfn, in, T, I);
802
212
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
803
212
    if (code < 0)
804
0
        return code;
805
212
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
806
1.06k
    for (k = 0; k < pfn->params.n; k++) {
807
848
        double yk = y[k];
808
809
848
        if (yk < pfn->params.Range[k * 2 + 0])
810
0
            yk = pfn->params.Range[k * 2 + 0];
811
848
        if (yk > pfn->params.Range[k * 2 + 1])
812
0
            yk = pfn->params.Range[k * 2 + 1];
813
848
        out[k] = yk;
814
848
    }
815
212
    return 0;
816
212
}
817
818
/* Evaluate a Sampled function. */
819
static int
820
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
821
2.40M
{
822
2.40M
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
823
2.40M
    int code;
824
825
2.40M
    if (pfn->params.Order == 3) {
826
212
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
827
212
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
828
0
        else
829
0
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
830
# if POLE_CACHE_DEBUG
831
        {   float y[max_Sd_n];
832
            int k, code1;
833
834
            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
835
            if (code != code1)
836
                return_error(gs_error_unregistered); /* Must not happen. */
837
            for (k = 0; k < pfn->params.n; k++) {
838
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
839
                    return_error(gs_error_unregistered); /* Must not happen. */
840
            }
841
        }
842
# endif
843
212
    } else
844
2.40M
        code = fn_Sd_evaluate_general(pfn_common, in, out);
845
2.40M
    return code;
846
2.40M
}
847
848
/* Map a function subdomain to the sample index subdomain. */
849
static inline int
850
get_scaled_range(const gs_function_Sd_t *const pfn,
851
                   const float *lower, const float *upper,
852
                   int i, float *pw0, float *pw1)
853
60.0k
{
854
60.0k
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
855
60.0k
    float v0 = lower[i], v1 = upper[i];
856
60.0k
    float e0, e1, w0, w1, w;
857
60.0k
    const float small_noise = (float)1e-6;
858
859
60.0k
    if (v0 < d0 || v0 > d1)
860
16
        return_error(gs_error_rangecheck);
861
60.0k
    if (pfn->params.Encode)
862
26.6k
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
863
33.3k
    else
864
33.3k
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
865
60.0k
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
866
60.0k
    if (w0 < 0)
867
0
        w0 = 0;
868
60.0k
    else if (w0 >= pfn->params.Size[i] - 1)
869
13.7k
        w0 = (float)pfn->params.Size[i] - 1;
870
60.0k
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
871
60.0k
    if (w1 < 0)
872
0
        w1 = 0;
873
60.0k
    else if (w1 >= pfn->params.Size[i] - 1)
874
25.7k
        w1 = (float)pfn->params.Size[i] - 1;
875
60.0k
    if (w0 > w1) {
876
2.87k
        w = w0; w0 = w1; w1 = w;
877
2.87k
    }
878
60.0k
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
879
136
        w0 = (floor(w0) + 1);
880
60.0k
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
881
40.9k
        w1 = floor(w1);
882
60.0k
    if (w0 > w1)
883
100
        w0 = w1;
884
60.0k
    *pw0 = w0;
885
60.0k
    *pw1 = w1;
886
60.0k
    return 0;
887
60.0k
}
888
889
/* Copy a tensor to a differently indexed pole array. */
890
static int
891
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
892
                int ii, double *pole, int p_offset, int pole_step)
893
0
{
894
0
    int i, ei, sa, code;
895
0
    int order = pfn->params.Order;
896
897
0
    if (pole_step <= 0)
898
0
        return_error(gs_error_limitcheck); /* Too small buffer. */
899
0
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
900
0
    sa = pfn->params.array_step[ii];
901
0
    if (ii == 0) {
902
0
        for (i = 0; i < ei; i++)
903
0
            *(pole + p_offset + i * pole_step) =
904
0
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
905
0
    } else {
906
0
        for (i = 0; i < ei; i++) {
907
0
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
908
0
                            pole, p_offset + i * pole_step, pole_step / 4);
909
0
            if (code < 0)
910
0
                return code;
911
0
        }
912
0
    }
913
0
    return 0;
914
0
}
915
916
static inline void
917
subcurve(double *pole, int pole_step, double t0, double t1)
918
0
{
919
    /* Generated with subcurve.nb using Mathematica 3.0. */
920
0
    double q0 = pole[pole_step * 0];
921
0
    double q1 = pole[pole_step * 1];
922
0
    double q2 = pole[pole_step * 2];
923
0
    double q3 = pole[pole_step * 3];
924
0
    double t01 = t0 - 1, t11 = t1 - 1;
925
0
    double small = 1e-13;
926
927
0
#define Power2(a) (a) * (a)
928
0
#define Power3(a) (a) * (a) * (a)
929
0
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
930
0
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
931
0
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
932
0
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
933
0
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
934
0
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
935
0
                            3*q1*Power2(t11)) - q0*Power3(t11);
936
0
#undef Power2
937
0
#undef Power3
938
0
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
939
0
        pole[pole_step * 1] = pole[pole_step * 0];
940
0
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
941
0
        pole[pole_step * 2] = pole[pole_step * 3];
942
0
}
943
944
static inline void
945
subline(double *pole, int pole_step, double t0, double t1)
946
0
{
947
0
    double q0 = pole[pole_step * 0];
948
0
    double q1 = pole[pole_step * 1];
949
950
0
    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
951
0
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
952
0
}
953
954
static void
955
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
956
                int p_offset, int pole_step, int pole_step_i, int order)
957
0
{
958
0
    if (ii < 0) {
959
0
        if (order == 3)
960
0
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
961
0
        else
962
0
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
963
0
    } else if (i == ii) {
964
0
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
965
0
    } else {
966
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
967
968
0
        for (j = 0; j < ei; j++)
969
0
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
970
0
                            pole_step / 4, pole_step_i, order);
971
0
    }
972
0
}
973
974
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
975
curve_monotonity(double *pole, int pole_step)
976
0
{
977
0
    double p0 = pole[pole_step * 0];
978
0
    double p1 = pole[pole_step * 1];
979
0
    double p2 = pole[pole_step * 2];
980
0
    double p3 = pole[pole_step * 3];
981
982
0
    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
983
0
        return 0;
984
0
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
985
0
        return 1;
986
0
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
987
0
        return 2;
988
    /* Maybe not monotonic.
989
       Don't want to solve quadratic equations, so return "don't know".
990
       This case should be rare.
991
     */
992
0
    return 3;
993
0
}
994
995
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
996
line_monotonity(double *pole, int pole_step)
997
0
{
998
0
    double p0 = pole[pole_step * 0];
999
0
    double p1 = pole[pole_step * 1];
1000
1001
0
    if (p1 - p0 > 1e-13)
1002
0
        return 1;
1003
0
    if (p0 - p1 > 1e-13)
1004
0
        return 2;
1005
0
    return 0;
1006
0
}
1007
1008
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
1009
                    2 - decreesing, 0 - constant, 1 - increasing.
1010
                    The number of guides is order+1. */
1011
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
1012
                int p_offset, int pole_step, int pole_step_i, int order)
1013
0
{
1014
0
    if (ii < 0) {
1015
0
        if (order == 3)
1016
0
            return curve_monotonity(pole + p_offset, pole_step_i);
1017
0
        else
1018
0
            return line_monotonity(pole + p_offset, pole_step_i);
1019
0
    } else if (i0 == ii) {
1020
        /* Delay the dimension till the end, and adjust pole_step. */
1021
0
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
1022
0
                            pole_step / 4, pole_step, order);
1023
0
    } else {
1024
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
1025
1026
0
        for (j = 0; j < ei; j++) {
1027
0
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
1028
0
                            pole_step/ 4, pole_step_i, order);
1029
0
            m |= mm << (j * 3);
1030
0
            if (mm == 3) {
1031
                /* If one guide is not monotonic, the dimension is not monotonic.
1032
                   Can return early. */
1033
0
                break;
1034
0
            }
1035
0
        }
1036
0
        return m;
1037
0
    }
1038
0
}
1039
1040
static inline int
1041
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
1042
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
1043
                    2 - decreesing, 0 - constant, 1 - increasing.
1044
                    The number of guides is order+1. */)
1045
0
{
1046
0
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
1047
                 More arguments need a bigger buffer, but the rest of code is same. */
1048
0
    int i, code, ii = pfn->params.m - 1;
1049
0
    double TT0[3], TT1[3];
1050
1051
0
    *mask = 0;
1052
0
    if (ii >= 3) {
1053
         /* Unimplemented. We don't know practical cases,
1054
            because currently it is only called while decomposing a shading.  */
1055
0
        return_error(gs_error_limitcheck);
1056
0
    }
1057
0
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
1058
0
    if (code < 0)
1059
0
        return code;
1060
0
    for (i = ii; i >= 0; i--) {
1061
0
        TT0[i] = 0;
1062
0
        if (T0[i] != T1[i]) {
1063
0
            if (T0[i] != 0 || T1[i] != 1)
1064
0
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
1065
0
            TT1[i] = 1;
1066
0
        } else
1067
0
            TT1[i] = 0;
1068
0
    }
1069
0
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
1070
0
                        count_of(pole) / 4, 1, pfn->params.Order);
1071
0
    return 0;
1072
0
}
1073
1074
static int /* error code */
1075
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1076
        int *I, double *S0, double *S1, int ii, int i0, int k,
1077
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
1078
                      The number of guides is order+1. */)
1079
0
{
1080
0
    if (ii == -1) {
1081
        /* fixme : could cache the cell monotonity against redundant evaluation. */
1082
0
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
1083
0
    } else {
1084
0
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
1085
0
        int j, code;
1086
0
        int bi = (int)floor(T0[i1]);
1087
0
        int ei = (int)floor(T1[i1]);
1088
0
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
1089
1090
0
        if (floor(T1[i1]) == T1[i1])
1091
0
            ei --;
1092
0
        m = 0;
1093
0
        for (j = bi; j <= ei; j++) {
1094
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
1095
0
            I[i1] = j;
1096
0
            S0[i1] = max(T0[i1] - j, 0);
1097
0
            S1[i1] = min(T1[i1] - j, 1);
1098
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
1099
0
            if (code < 0)
1100
0
                return code;
1101
0
            m |= mm;
1102
0
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
1103
0
                break;
1104
0
        }
1105
0
        if (ii == 0) {
1106
            /* Detect non-monotonic guides. */
1107
0
            m = m & (m >> 1);
1108
0
        }
1109
0
        *mask = m;
1110
0
        return 0;
1111
0
    }
1112
0
}
1113
1114
static inline int /* error code */
1115
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1116
         int *I, double *S0, double *S1,
1117
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1118
                      0 - monotonic. */)
1119
0
{
1120
0
    uint m, mm = 0;
1121
0
    int i, code;
1122
1123
0
    for (i = 0; i < pfn->params.m; i++) {
1124
0
        if (T0[i] != T1[i]) {
1125
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
1126
0
            if (code < 0)
1127
0
                return code;
1128
0
            if (m)
1129
0
                mm |= 1 << i;
1130
0
        }
1131
0
    }
1132
0
    *mask = mm;
1133
0
    return 0;
1134
0
}
1135
1136
static int /* 3 bits per result : 3 - non-monotonic or don't know,
1137
               2 - decreesing, 0 - constant, 1 - increasing,
1138
               <0 - error. */
1139
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
1140
                                const double *V0, const double *V1)
1141
76.7M
{
1142
76.7M
    if (i1 - i0 <= 1) {
1143
38.3M
        int code = 0, i;
1144
1145
87.2M
        for (i = 0; i < pfn->params.n; i++) {
1146
48.8M
            if (V0[i] < V1[i])
1147
3.21M
                code |= 1 << (i * 3);
1148
45.6M
            else if (V0[i] > V1[i])
1149
2.38M
                code |= 2 << (i * 3);
1150
48.8M
        }
1151
38.3M
        return code;
1152
38.3M
    } else {
1153
38.3M
        double VV[MAX_FAST_COMPS];
1154
38.3M
        int ii = (i0 + i1) / 2, code, cod1;
1155
1156
38.3M
        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
1157
38.3M
        if (code < 0)
1158
0
            return code;
1159
38.3M
        if (code & (code >> 1))
1160
0
            return code; /* Not monotonic by some component of the result. */
1161
38.3M
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
1162
38.3M
        if (code < 0)
1163
0
            return code;
1164
38.3M
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
1165
38.3M
        if (cod1 < 0)
1166
0
            return cod1;
1167
38.3M
        return code | cod1;
1168
38.3M
    }
1169
76.7M
}
1170
1171
static int
1172
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
1173
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
1174
60.0k
{
1175
60.0k
    int i0 = (int)floor(T0);
1176
60.0k
    int i1 = (int)ceil(T1), code;
1177
60.0k
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
1178
1179
60.0k
    if (i1 - i0 > 1) {
1180
30.7k
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
1181
30.7k
        if (code < 0)
1182
0
            return code;
1183
30.7k
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
1184
30.7k
        if (code < 0)
1185
0
            return code;
1186
30.7k
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
1187
30.7k
        if (code < 0)
1188
0
            return code;
1189
30.7k
        if (code & (code >> 1)) {
1190
13.6k
            *mask = 1;
1191
13.6k
            return 0;
1192
13.6k
        }
1193
30.7k
    }
1194
46.3k
    *mask = 0;
1195
46.3k
    return 1;
1196
60.0k
}
1197
1198
0
#define DEBUG_Sd_1arg 0
1199
1200
/* Test whether a Sampled function is monotonic. */
1201
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
1202
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
1203
                   const float *lower, const float *upper,
1204
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1205
                      0 - monotonic. */)
1206
60.0k
{
1207
60.0k
    int i, code, ii = pfn->params.m - 1;
1208
60.0k
    int I[4];
1209
60.0k
    double T0[count_of(I)], T1[count_of(I)];
1210
60.0k
    double S0[count_of(I)], S1[count_of(I)];
1211
60.0k
    uint m, mm, m1;
1212
#   if DEBUG_Sd_1arg
1213
    int code1, mask1;
1214
#   endif
1215
1216
60.0k
    if (ii >= count_of(T0)) {
1217
         /* Unimplemented. We don't know practical cases,
1218
            because currently it is only called while decomposing a shading.  */
1219
0
        return_error(gs_error_limitcheck);
1220
0
    }
1221
120k
    for (i = 0; i <= ii; i++) {
1222
60.0k
        float w0, w1;
1223
1224
60.0k
        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
1225
60.0k
        if (code < 0)
1226
16
            return code;
1227
60.0k
        T0[i] = w0;
1228
60.0k
        T1[i] = w1;
1229
60.0k
    }
1230
60.0k
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
1231
60.0k
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
1232
60.0k
# if !DEBUG_Sd_1arg
1233
60.0k
            return code;
1234
# else
1235
            mask1 = *mask;
1236
            code1 = code;
1237
# endif
1238
60.0k
    }
1239
0
    m1 = (1 << pfn->params.m )- 1;
1240
0
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
1241
0
    if (code < 0)
1242
0
        return code;
1243
0
    mm = 0;
1244
0
    for (i = 0; i < pfn->params.n; i++) {
1245
0
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
1246
0
        if (code < 0)
1247
0
            return code;
1248
0
        mm |= m;
1249
0
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
1250
0
            break;
1251
0
    }
1252
#   if DEBUG_Sd_1arg
1253
        if (mask1 != mm)
1254
            return_error(gs_error_unregistered);
1255
        if (code1 != !mm)
1256
            return_error(gs_error_unregistered);
1257
#   endif
1258
0
    *mask = mm;
1259
0
    return !mm;
1260
0
}
1261
1262
/* Test whether a Sampled function is monotonic. */
1263
/* 1 = monotonic, 0 = don't know, <0 = error. */
1264
static int
1265
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
1266
                   const float *lower, const float *upper, uint *mask)
1267
60.0k
{
1268
60.0k
    const gs_function_Sd_t *const pfn =
1269
60.0k
        (const gs_function_Sd_t *)pfn_common;
1270
1271
60.0k
    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
1272
60.0k
}
1273
1274
/* Return Sampled function information. */
1275
static void
1276
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
1277
60.8k
{
1278
60.8k
    const gs_function_Sd_t *const pfn =
1279
60.8k
        (const gs_function_Sd_t *)pfn_common;
1280
60.8k
    long size;
1281
60.8k
    int i;
1282
1283
60.8k
    gs_function_get_info_default(pfn_common, pfi);
1284
60.8k
    pfi->DataSource = &pfn->params.DataSource;
1285
123k
    for (i = 0, size = 1; i < pfn->params.m; ++i)
1286
62.3k
        size *= pfn->params.Size[i];
1287
60.8k
    pfi->data_size =
1288
60.8k
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
1289
60.8k
}
1290
1291
/* Write Sampled function parameters on a parameter list. */
1292
static int
1293
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
1294
28.2k
{
1295
28.2k
    const gs_function_Sd_t *const pfn =
1296
28.2k
        (const gs_function_Sd_t *)pfn_common;
1297
28.2k
    int ecode = fn_common_get_params(pfn_common, plist);
1298
28.2k
    int code;
1299
1300
28.2k
    if (pfn->params.Order != 1) {
1301
42
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
1302
0
            ecode = code;
1303
42
    }
1304
28.2k
    if ((code = param_write_int(plist, "BitsPerSample",
1305
28.2k
                                &pfn->params.BitsPerSample)) < 0)
1306
0
        ecode = code;
1307
28.2k
    if (pfn->params.Encode) {
1308
879
        if ((code = param_write_float_values(plist, "Encode",
1309
879
                                             pfn->params.Encode,
1310
879
                                             2 * pfn->params.m, false)) < 0)
1311
0
            ecode = code;
1312
879
    }
1313
28.2k
    if (pfn->params.Decode) {
1314
9.89k
        if ((code = param_write_float_values(plist, "Decode",
1315
9.89k
                                             pfn->params.Decode,
1316
9.89k
                                             2 * pfn->params.n, false)) < 0)
1317
0
            ecode = code;
1318
9.89k
    }
1319
28.2k
    if (pfn->params.Size) {
1320
28.2k
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
1321
28.2k
                                           pfn->params.m, false)) < 0)
1322
0
            ecode = code;
1323
28.2k
    }
1324
28.2k
    return ecode;
1325
28.2k
}
1326
1327
/* Make a scaled copy of a Sampled function. */
1328
static int
1329
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
1330
                  const gs_range_t *pranges, gs_memory_t *mem)
1331
0
{
1332
0
    gs_function_Sd_t *psfn =
1333
0
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1334
0
                        "fn_Sd_make_scaled");
1335
0
    int code;
1336
1337
0
    if (psfn == 0)
1338
0
        return_error(gs_error_VMerror);
1339
0
    psfn->params = pfn->params;
1340
0
    psfn->params.Encode = 0;    /* in case of failure */
1341
0
    psfn->params.Decode = 0;
1342
0
    psfn->params.Size =
1343
0
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
1344
0
    if ((code = (psfn->params.Size == 0 ?
1345
0
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
1346
0
        (code = fn_common_scale((gs_function_t *)psfn,
1347
0
                                (const gs_function_t *)pfn,
1348
0
                                pranges, mem)) < 0 ||
1349
0
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
1350
0
                               pfn->params.m, NULL, mem)) < 0 ||
1351
0
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
1352
0
                               pfn->params.n, pranges, mem)) < 0) {
1353
0
        gs_function_free((gs_function_t *)psfn, true, mem);
1354
0
    } else
1355
0
        *ppsfn = psfn;
1356
0
    return code;
1357
0
}
1358
1359
/* Free the parameters of a Sampled function. */
1360
void
1361
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
1362
47.7k
{
1363
47.7k
    gs_free_const_object(mem, params->Size, "Size");
1364
47.7k
    params->Size = NULL;
1365
47.7k
    gs_free_const_object(mem, params->Decode, "Decode");
1366
47.7k
    params->Decode = NULL;
1367
47.7k
    gs_free_const_object(mem, params->Encode, "Encode");
1368
47.7k
    params->Encode = NULL;
1369
47.7k
    fn_common_free_params((gs_function_params_t *) params, mem);
1370
47.7k
    if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
1371
44.1k
        s_close_filters(&params->DataSource.data.strm, params->DataSource.data.strm->strm);
1372
44.1k
        params->DataSource.data.strm = NULL;
1373
44.1k
    }
1374
47.7k
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
1375
47.7k
    params->pole = NULL;
1376
47.7k
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
1377
47.7k
    params->array_step = NULL;
1378
47.7k
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
1379
47.7k
    params->stream_step = NULL;
1380
47.7k
}
1381
1382
/* aA helper for gs_function_Sd_serialize. */
1383
static int serialize_array(const float *a, int half_size, stream *s)
1384
65.3k
{
1385
65.3k
    uint n;
1386
65.3k
    const float dummy[2] = {0, 0};
1387
65.3k
    int i, code;
1388
1389
65.3k
    if (a != NULL)
1390
36.8k
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
1391
99.8k
    for (i = 0; i < half_size; i++) {
1392
71.3k
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
1393
71.3k
        if (code < 0)
1394
0
            return code;
1395
71.3k
    }
1396
28.4k
    return 0;
1397
28.4k
}
1398
1399
/* Serialize. */
1400
static int
1401
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
1402
32.6k
{
1403
32.6k
    uint n;
1404
32.6k
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
1405
32.6k
    gs_function_info_t info;
1406
32.6k
    int code = fn_common_serialize(pfn, s);
1407
32.6k
    ulong pos;
1408
32.6k
    uint count;
1409
32.6k
    byte buf[100];
1410
32.6k
    const byte *ptr;
1411
1412
32.6k
    if (code < 0)
1413
0
        return code;
1414
32.6k
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
1415
32.6k
    if (code < 0)
1416
0
        return code;
1417
32.6k
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
1418
32.6k
    if (code < 0)
1419
0
        return code;
1420
32.6k
    code = serialize_array(p->Encode, p->m, s);
1421
32.6k
    if (code < 0)
1422
0
        return code;
1423
32.6k
    code = serialize_array(p->Decode, p->n, s);
1424
32.6k
    if (code < 0)
1425
0
        return code;
1426
32.6k
    gs_function_get_info(pfn, &info);
1427
32.6k
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
1428
32.6k
    if (code < 0)
1429
0
        return code;
1430
357k
    for (pos = 0; pos < info.data_size; pos += count) {
1431
324k
        count = min(sizeof(buf), info.data_size - pos);
1432
324k
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
1433
324k
        code = sputs(s, ptr, count, &n);
1434
324k
        if (code < 0)
1435
0
            return code;
1436
324k
    }
1437
32.6k
    return 0;
1438
32.6k
}
1439
1440
/* Allocate and initialize a Sampled function. */
1441
int
1442
gs_function_Sd_init(gs_function_t ** ppfn,
1443
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
1444
64.3k
{
1445
64.3k
    static const gs_function_head_t function_Sd_head = {
1446
64.3k
        function_type_Sampled,
1447
64.3k
        {
1448
64.3k
            (fn_evaluate_proc_t) fn_Sd_evaluate,
1449
64.3k
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
1450
64.3k
            (fn_get_info_proc_t) fn_Sd_get_info,
1451
64.3k
            (fn_get_params_proc_t) fn_Sd_get_params,
1452
64.3k
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
1453
64.3k
            (fn_free_params_proc_t) gs_function_Sd_free_params,
1454
64.3k
            fn_common_free,
1455
64.3k
            (fn_serialize_proc_t) gs_function_Sd_serialize,
1456
64.3k
        }
1457
64.3k
    };
1458
64.3k
    int code;
1459
64.3k
    int i;
1460
1461
64.3k
    *ppfn = 0;      /* in case of error */
1462
64.3k
    code = fn_check_mnDR((const gs_function_params_t *)params,
1463
64.3k
                         params->m, params->n);
1464
64.3k
    if (code < 0)
1465
22
        return code;
1466
64.2k
    if (params->m > max_Sd_m)
1467
0
        return_error(gs_error_limitcheck);
1468
64.2k
    switch (params->Order) {
1469
1.16k
        case 0:   /* use default */
1470
63.8k
        case 1:
1471
64.2k
        case 3:
1472
64.2k
            break;
1473
0
        default:
1474
0
            return_error(gs_error_rangecheck);
1475
64.2k
    }
1476
64.2k
    switch (params->BitsPerSample) {
1477
0
        case 1:
1478
0
        case 2:
1479
0
        case 4:
1480
62.1k
        case 8:
1481
62.1k
        case 12:
1482
63.9k
        case 16:
1483
63.9k
        case 24:
1484
63.9k
        case 32:
1485
63.9k
            break;
1486
326
        default:
1487
326
            return_error(gs_error_rangecheck);
1488
64.2k
    }
1489
129k
    for (i = 0; i < params->m; ++i)
1490
65.7k
        if (params->Size[i] <= 0)
1491
0
            return_error(gs_error_rangecheck);
1492
63.9k
    {
1493
63.9k
        gs_function_Sd_t *pfn =
1494
63.9k
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1495
63.9k
                            "gs_function_Sd_init");
1496
63.9k
        int bps, sa, ss, i, order, was;
1497
1498
63.9k
        if (pfn == 0)
1499
0
            return_error(gs_error_VMerror);
1500
63.9k
        pfn->params = *params;
1501
63.9k
        if (params->Order == 0)
1502
1.16k
            pfn->params.Order = 1; /* default */
1503
63.9k
        pfn->params.pole = NULL;
1504
63.9k
        pfn->params.array_step = NULL;
1505
63.9k
        pfn->params.stream_step = NULL;
1506
63.9k
        pfn->head = function_Sd_head;
1507
63.9k
        pfn->params.array_size = 0;
1508
63.9k
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
1509
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
1510
62.0k
        } else {
1511
1.94k
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
1512
1.94k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1513
1.94k
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
1514
1.94k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1515
1.94k
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
1516
0
                return_error(gs_error_VMerror);
1517
1.94k
            bps = pfn->params.BitsPerSample;
1518
1.94k
            sa = pfn->params.n;
1519
1.94k
            ss = pfn->params.n * bps;
1520
1.94k
            order = pfn->params.Order;
1521
5.63k
            for (i = 0; i < pfn->params.m; i++) {
1522
3.69k
                pfn->params.array_step[i] = sa * order;
1523
3.69k
                was = sa;
1524
3.69k
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
1525
                /* If the calculation of sa went backwards then we overflowed! */
1526
3.69k
                if (was > sa)
1527
0
                    return_error(gs_error_VMerror);
1528
3.69k
                pfn->params.stream_step[i] = ss;
1529
3.69k
                ss = pfn->params.Size[i] * ss;
1530
3.69k
            }
1531
1.94k
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
1532
1.94k
                                    sa, sizeof(double), "gs_function_Sd_init");
1533
1.94k
            if (pfn->params.pole == NULL)
1534
0
                return_error(gs_error_VMerror);
1535
4.95M
            for (i = 0; i < sa; i++)
1536
4.94M
                pfn->params.pole[i] = double_stub;
1537
1.94k
            pfn->params.array_size = sa;
1538
1.94k
        }
1539
63.9k
        *ppfn = (gs_function_t *) pfn;
1540
63.9k
    }
1541
0
    return 0;
1542
63.9k
}