/src/ghostpdl/openjpeg/src/lib/openjp2/dwt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * The copyright in this software is being made available under the 2-clauses |
3 | | * BSD License, included below. This software may be subject to other third |
4 | | * party and contributor rights, including patent rights, and no such rights |
5 | | * are granted under this license. |
6 | | * |
7 | | * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium |
8 | | * Copyright (c) 2002-2014, Professor Benoit Macq |
9 | | * Copyright (c) 2001-2003, David Janssens |
10 | | * Copyright (c) 2002-2003, Yannick Verschueren |
11 | | * Copyright (c) 2003-2007, Francois-Olivier Devaux |
12 | | * Copyright (c) 2003-2014, Antonin Descampe |
13 | | * Copyright (c) 2005, Herve Drolon, FreeImage Team |
14 | | * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net> |
15 | | * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com> |
16 | | * Copyright (c) 2017, IntoPIX SA <support@intopix.com> |
17 | | * All rights reserved. |
18 | | * |
19 | | * Redistribution and use in source and binary forms, with or without |
20 | | * modification, are permitted provided that the following conditions |
21 | | * are met: |
22 | | * 1. Redistributions of source code must retain the above copyright |
23 | | * notice, this list of conditions and the following disclaimer. |
24 | | * 2. Redistributions in binary form must reproduce the above copyright |
25 | | * notice, this list of conditions and the following disclaimer in the |
26 | | * documentation and/or other materials provided with the distribution. |
27 | | * |
28 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
29 | | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
30 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
31 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
32 | | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
33 | | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
34 | | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
35 | | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
36 | | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
37 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
38 | | * POSSIBILITY OF SUCH DAMAGE. |
39 | | */ |
40 | | |
41 | | #include <assert.h> |
42 | | |
43 | | #define OPJ_SKIP_POISON |
44 | | #include "opj_includes.h" |
45 | | |
46 | | #ifdef __SSE__ |
47 | | #include <xmmintrin.h> |
48 | | #endif |
49 | | #ifdef __SSE2__ |
50 | | #include <emmintrin.h> |
51 | | #endif |
52 | | #ifdef __SSSE3__ |
53 | | #include <tmmintrin.h> |
54 | | #endif |
55 | | #if (defined(__AVX2__) || defined(__AVX512F__)) |
56 | | #include <immintrin.h> |
57 | | #endif |
58 | | |
59 | | #if defined(__GNUC__) |
60 | | #pragma GCC poison malloc calloc realloc free |
61 | | #endif |
62 | | |
63 | | /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ |
64 | | /*@{*/ |
65 | | |
66 | | #define OPJ_WS(i) v->mem[(i)*2] |
67 | | #define OPJ_WD(i) v->mem[(1+(i)*2)] |
68 | | |
69 | | #if defined(__AVX512F__) |
70 | | /** Number of int32 values in a AVX512 register */ |
71 | | #define VREG_INT_COUNT 16 |
72 | | #elif defined(__AVX2__) |
73 | | /** Number of int32 values in a AVX2 register */ |
74 | | #define VREG_INT_COUNT 8 |
75 | | #else |
76 | | /** Number of int32 values in a SSE2 register */ |
77 | 384k | #define VREG_INT_COUNT 4 |
78 | | #endif |
79 | | |
80 | | /** Number of columns that we can process in parallel in the vertical pass */ |
81 | 384k | #define PARALLEL_COLS_53 (2*VREG_INT_COUNT) |
82 | | |
83 | | /** @name Local data structures */ |
84 | | /*@{*/ |
85 | | |
86 | | typedef struct dwt_local { |
87 | | OPJ_INT32* mem; |
88 | | OPJ_INT32 dn; /* number of elements in high pass band */ |
89 | | OPJ_INT32 sn; /* number of elements in low pass band */ |
90 | | OPJ_INT32 cas; /* 0 = start on even coord, 1 = start on odd coord */ |
91 | | } opj_dwt_t; |
92 | | |
93 | 1.06G | #define NB_ELTS_V8 8 |
94 | | |
95 | | typedef union { |
96 | | OPJ_FLOAT32 f[NB_ELTS_V8]; |
97 | | } opj_v8_t; |
98 | | |
99 | | typedef struct v8dwt_local { |
100 | | opj_v8_t* wavelet ; |
101 | | OPJ_INT32 dn ; /* number of elements in high pass band */ |
102 | | OPJ_INT32 sn ; /* number of elements in low pass band */ |
103 | | OPJ_INT32 cas ; /* 0 = start on even coord, 1 = start on odd coord */ |
104 | | OPJ_UINT32 win_l_x0; /* start coord in low pass band */ |
105 | | OPJ_UINT32 win_l_x1; /* end coord in low pass band */ |
106 | | OPJ_UINT32 win_h_x0; /* start coord in high pass band */ |
107 | | OPJ_UINT32 win_h_x1; /* end coord in high pass band */ |
108 | | } opj_v8dwt_t ; |
109 | | |
110 | | /* From table F.4 from the standard */ |
111 | | static const OPJ_FLOAT32 opj_dwt_alpha = -1.586134342f; |
112 | | static const OPJ_FLOAT32 opj_dwt_beta = -0.052980118f; |
113 | | static const OPJ_FLOAT32 opj_dwt_gamma = 0.882911075f; |
114 | | static const OPJ_FLOAT32 opj_dwt_delta = 0.443506852f; |
115 | | |
116 | | static const OPJ_FLOAT32 opj_K = 1.230174105f; |
117 | | static const OPJ_FLOAT32 opj_invK = (OPJ_FLOAT32)(1.0 / 1.230174105); |
118 | | |
119 | | /*@}*/ |
120 | | |
121 | | /** @name Local static functions */ |
122 | | /*@{*/ |
123 | | |
124 | | /** |
125 | | Forward lazy transform (horizontal) |
126 | | */ |
127 | | static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a, |
128 | | OPJ_INT32 * OPJ_RESTRICT b, |
129 | | OPJ_INT32 dn, |
130 | | OPJ_INT32 sn, OPJ_INT32 cas); |
131 | | |
132 | | /** |
133 | | Forward 9-7 wavelet transform in 1-D |
134 | | */ |
135 | | static void opj_dwt_encode_1_real(void *a, OPJ_INT32 dn, OPJ_INT32 sn, |
136 | | OPJ_INT32 cas); |
137 | | /** |
138 | | Explicit calculation of the Quantization Stepsizes |
139 | | */ |
140 | | static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, |
141 | | opj_stepsize_t *bandno_stepsize); |
142 | | /** |
143 | | Inverse wavelet transform in 2-D. |
144 | | */ |
145 | | static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, |
146 | | opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i); |
147 | | |
148 | | static OPJ_BOOL opj_dwt_decode_partial_tile( |
149 | | opj_tcd_tilecomp_t* tilec, |
150 | | OPJ_UINT32 numres); |
151 | | |
152 | | /* Forward transform, for the vertical pass, processing cols columns */ |
153 | | /* where cols <= NB_ELTS_V8 */ |
154 | | /* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */ |
155 | | typedef void (*opj_encode_and_deinterleave_v_fnptr_type)( |
156 | | void *array, |
157 | | void *tmp, |
158 | | OPJ_UINT32 height, |
159 | | OPJ_BOOL even, |
160 | | OPJ_UINT32 stride_width, |
161 | | OPJ_UINT32 cols); |
162 | | |
163 | | /* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */ |
164 | | typedef void (*opj_encode_and_deinterleave_h_one_row_fnptr_type)( |
165 | | void *row, |
166 | | void *tmp, |
167 | | OPJ_UINT32 width, |
168 | | OPJ_BOOL even); |
169 | | |
170 | | static OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp, |
171 | | opj_tcd_tilecomp_t * tilec, |
172 | | opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v, |
173 | | opj_encode_and_deinterleave_h_one_row_fnptr_type |
174 | | p_encode_and_deinterleave_h_one_row); |
175 | | |
176 | | static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, |
177 | | OPJ_UINT32 i); |
178 | | |
179 | | /* <summary> */ |
180 | | /* Inverse 9-7 wavelet transform in 1-D. */ |
181 | | /* </summary> */ |
182 | | |
183 | | /*@}*/ |
184 | | |
185 | | /*@}*/ |
186 | | |
187 | 468M | #define OPJ_S(i) a[(i)*2] |
188 | 468M | #define OPJ_D(i) a[(1+(i)*2)] |
189 | 311M | #define OPJ_S_(i) ((i)<0?OPJ_S(0):((i)>=sn?OPJ_S(sn-1):OPJ_S(i))) |
190 | 312M | #define OPJ_D_(i) ((i)<0?OPJ_D(0):((i)>=dn?OPJ_D(dn-1):OPJ_D(i))) |
191 | | /* new */ |
192 | 0 | #define OPJ_SS_(i) ((i)<0?OPJ_S(0):((i)>=dn?OPJ_S(dn-1):OPJ_S(i))) |
193 | 0 | #define OPJ_DD_(i) ((i)<0?OPJ_D(0):((i)>=sn?OPJ_D(sn-1):OPJ_D(i))) |
194 | | |
195 | | /* <summary> */ |
196 | | /* This table contains the norms of the 5-3 wavelets for different bands. */ |
197 | | /* </summary> */ |
198 | | /* FIXME! the array should really be extended up to 33 resolution levels */ |
199 | | /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
200 | | static const OPJ_FLOAT64 opj_dwt_norms[4][10] = { |
201 | | {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, |
202 | | {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
203 | | {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
204 | | {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} |
205 | | }; |
206 | | |
207 | | /* <summary> */ |
208 | | /* This table contains the norms of the 9-7 wavelets for different bands. */ |
209 | | /* </summary> */ |
210 | | /* FIXME! the array should really be extended up to 33 resolution levels */ |
211 | | /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
212 | | static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = { |
213 | | {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, |
214 | | {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
215 | | {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
216 | | {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} |
217 | | }; |
218 | | |
219 | | /* |
220 | | ========================================================== |
221 | | local functions |
222 | | ========================================================== |
223 | | */ |
224 | | |
225 | | /* <summary> */ |
226 | | /* Forward lazy transform (horizontal). */ |
227 | | /* </summary> */ |
228 | | static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a, |
229 | | OPJ_INT32 * OPJ_RESTRICT b, |
230 | | OPJ_INT32 dn, |
231 | | OPJ_INT32 sn, OPJ_INT32 cas) |
232 | 0 | { |
233 | 0 | OPJ_INT32 i; |
234 | 0 | OPJ_INT32 * OPJ_RESTRICT l_dest = b; |
235 | 0 | const OPJ_INT32 * OPJ_RESTRICT l_src = a + cas; |
236 | |
|
237 | 0 | for (i = 0; i < sn; ++i) { |
238 | 0 | *l_dest++ = *l_src; |
239 | 0 | l_src += 2; |
240 | 0 | } |
241 | |
|
242 | 0 | l_dest = b + sn; |
243 | 0 | l_src = a + 1 - cas; |
244 | |
|
245 | 0 | for (i = 0; i < dn; ++i) { |
246 | 0 | *l_dest++ = *l_src; |
247 | 0 | l_src += 2; |
248 | 0 | } |
249 | 0 | } |
250 | | |
251 | | #ifdef STANDARD_SLOW_VERSION |
252 | | /* <summary> */ |
253 | | /* Inverse lazy transform (horizontal). */ |
254 | | /* </summary> */ |
255 | | static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a) |
256 | 1.10M | { |
257 | 1.10M | const OPJ_INT32 *ai = a; |
258 | 1.10M | OPJ_INT32 *bi = h->mem + h->cas; |
259 | 1.10M | OPJ_INT32 i = h->sn; |
260 | 79.4M | while (i--) { |
261 | 78.3M | *bi = *(ai++); |
262 | 78.3M | bi += 2; |
263 | 78.3M | } |
264 | 1.10M | ai = a + h->sn; |
265 | 1.10M | bi = h->mem + 1 - h->cas; |
266 | 1.10M | i = h->dn ; |
267 | 78.9M | while (i--) { |
268 | 77.8M | *bi = *(ai++); |
269 | 77.8M | bi += 2; |
270 | 77.8M | } |
271 | 1.10M | } |
272 | | |
273 | | /* <summary> */ |
274 | | /* Inverse lazy transform (vertical). */ |
275 | | /* </summary> */ |
276 | | static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) |
277 | 997k | { |
278 | 997k | const OPJ_INT32 *ai = a; |
279 | 997k | OPJ_INT32 *bi = v->mem + v->cas; |
280 | 997k | OPJ_INT32 i = v->sn; |
281 | 79.1M | while (i--) { |
282 | 78.1M | *bi = *ai; |
283 | 78.1M | bi += 2; |
284 | 78.1M | ai += x; |
285 | 78.1M | } |
286 | 997k | ai = a + (v->sn * (OPJ_SIZE_T)x); |
287 | 997k | bi = v->mem + 1 - v->cas; |
288 | 997k | i = v->dn ; |
289 | 78.9M | while (i--) { |
290 | 77.9M | *bi = *ai; |
291 | 77.9M | bi += 2; |
292 | 77.9M | ai += x; |
293 | 77.9M | } |
294 | 997k | } |
295 | | |
296 | | #endif /* STANDARD_SLOW_VERSION */ |
297 | | |
298 | | #ifdef STANDARD_SLOW_VERSION |
299 | | /* <summary> */ |
300 | | /* Inverse 5-3 wavelet transform in 1-D. */ |
301 | | /* </summary> */ |
302 | | static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
303 | | OPJ_INT32 cas) |
304 | 2.10M | { |
305 | 2.10M | OPJ_INT32 i; |
306 | | |
307 | 2.10M | if (!cas) { |
308 | 2.10M | if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
309 | 158M | for (i = 0; i < sn; i++) { |
310 | 156M | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
311 | 156M | } |
312 | 157M | for (i = 0; i < dn; i++) { |
313 | 155M | OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
314 | 155M | } |
315 | 2.10M | } |
316 | 2.10M | } else { |
317 | 0 | if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
318 | 0 | OPJ_S(0) /= 2; |
319 | 0 | } else { |
320 | 0 | for (i = 0; i < sn; i++) { |
321 | 0 | OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; |
322 | 0 | } |
323 | 0 | for (i = 0; i < dn; i++) { |
324 | 0 | OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; |
325 | 0 | } |
326 | 0 | } |
327 | 0 | } |
328 | 2.10M | } |
329 | | |
330 | | static void opj_dwt_decode_1(const opj_dwt_t *v) |
331 | 2.10M | { |
332 | 2.10M | opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas); |
333 | 2.10M | } |
334 | | |
335 | | #endif /* STANDARD_SLOW_VERSION */ |
336 | | |
337 | | #if defined(__AVX512F__) |
338 | | static int32_t loop_short_sse(int32_t len, const int32_t** lf_ptr, |
339 | | const int32_t** hf_ptr, int32_t** out_ptr, |
340 | | int32_t* prev_even) |
341 | | { |
342 | | int32_t next_even; |
343 | | __m128i odd, even_m1, unpack1, unpack2; |
344 | | const int32_t batch = (len - 2) / 8; |
345 | | const __m128i two = _mm_set1_epi32(2); |
346 | | |
347 | | for (int32_t i = 0; i < batch; i++) { |
348 | | const __m128i lf_ = _mm_loadu_si128((__m128i*)(*lf_ptr + 1)); |
349 | | const __m128i hf1_ = _mm_loadu_si128((__m128i*)(*hf_ptr)); |
350 | | const __m128i hf2_ = _mm_loadu_si128((__m128i*)(*hf_ptr + 1)); |
351 | | |
352 | | __m128i even = _mm_add_epi32(hf1_, hf2_); |
353 | | even = _mm_add_epi32(even, two); |
354 | | even = _mm_srai_epi32(even, 2); |
355 | | even = _mm_sub_epi32(lf_, even); |
356 | | |
357 | | next_even = _mm_extract_epi32(even, 3); |
358 | | even_m1 = _mm_bslli_si128(even, 4); |
359 | | even_m1 = _mm_insert_epi32(even_m1, *prev_even, 0); |
360 | | |
361 | | //out[0] + out[2] |
362 | | odd = _mm_add_epi32(even_m1, even); |
363 | | odd = _mm_srai_epi32(odd, 1); |
364 | | odd = _mm_add_epi32(odd, hf1_); |
365 | | |
366 | | unpack1 = _mm_unpacklo_epi32(even_m1, odd); |
367 | | unpack2 = _mm_unpackhi_epi32(even_m1, odd); |
368 | | |
369 | | _mm_storeu_si128((__m128i*)(*out_ptr + 0), unpack1); |
370 | | _mm_storeu_si128((__m128i*)(*out_ptr + 4), unpack2); |
371 | | |
372 | | *prev_even = next_even; |
373 | | |
374 | | *out_ptr += 8; |
375 | | *lf_ptr += 4; |
376 | | *hf_ptr += 4; |
377 | | } |
378 | | return batch; |
379 | | } |
380 | | #endif |
381 | | |
382 | | #if !defined(STANDARD_SLOW_VERSION) |
383 | | static void opj_idwt53_h_cas0(OPJ_INT32* tmp, |
384 | | const OPJ_INT32 sn, |
385 | | const OPJ_INT32 len, |
386 | | OPJ_INT32* tiledp) |
387 | | { |
388 | | OPJ_INT32 i, j; |
389 | | const OPJ_INT32* in_even = &tiledp[0]; |
390 | | const OPJ_INT32* in_odd = &tiledp[sn]; |
391 | | |
392 | | #ifdef TWO_PASS_VERSION |
393 | | /* For documentation purpose: performs lifting in two iterations, */ |
394 | | /* but without explicit interleaving */ |
395 | | |
396 | | assert(len > 1); |
397 | | |
398 | | /* Even */ |
399 | | tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1); |
400 | | for (i = 2, j = 0; i <= len - 2; i += 2, j++) { |
401 | | tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2); |
402 | | } |
403 | | if (len & 1) { /* if len is odd */ |
404 | | tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1); |
405 | | } |
406 | | |
407 | | /* Odd */ |
408 | | for (i = 1, j = 0; i < len - 1; i += 2, j++) { |
409 | | tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1); |
410 | | } |
411 | | if (!(len & 1)) { /* if len is even */ |
412 | | tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2]; |
413 | | } |
414 | | #else |
415 | | #if defined(__AVX512F__) |
416 | | OPJ_INT32* out_ptr = tmp; |
417 | | int32_t prev_even = in_even[0] - ((in_odd[0] + 1) >> 1); |
418 | | |
419 | | const __m512i permutevar_mask = _mm512_setr_epi32( |
420 | | 0x10, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, |
421 | | 0x0c, 0x0d, 0x0e); |
422 | | const __m512i store1_perm = _mm512_setr_epi64(0x00, 0x01, 0x08, 0x09, 0x02, |
423 | | 0x03, 0x0a, 0x0b); |
424 | | const __m512i store2_perm = _mm512_setr_epi64(0x04, 0x05, 0x0c, 0x0d, 0x06, |
425 | | 0x07, 0x0e, 0x0f); |
426 | | |
427 | | const __m512i two = _mm512_set1_epi32(2); |
428 | | |
429 | | int32_t simd_batch_512 = (len - 2) / 32; |
430 | | int32_t leftover; |
431 | | |
432 | | for (i = 0; i < simd_batch_512; i++) { |
433 | | const __m512i lf_avx2 = _mm512_loadu_si512((__m512i*)(in_even + 1)); |
434 | | const __m512i hf1_avx2 = _mm512_loadu_si512((__m512i*)(in_odd)); |
435 | | const __m512i hf2_avx2 = _mm512_loadu_si512((__m512i*)(in_odd + 1)); |
436 | | int32_t next_even; |
437 | | __m512i duplicate, even_m1, odd, unpack1, unpack2, store1, store2; |
438 | | |
439 | | __m512i even = _mm512_add_epi32(hf1_avx2, hf2_avx2); |
440 | | even = _mm512_add_epi32(even, two); |
441 | | even = _mm512_srai_epi32(even, 2); |
442 | | even = _mm512_sub_epi32(lf_avx2, even); |
443 | | |
444 | | next_even = _mm_extract_epi32(_mm512_extracti32x4_epi32(even, 3), 3); |
445 | | |
446 | | duplicate = _mm512_set1_epi32(prev_even); |
447 | | even_m1 = _mm512_permutex2var_epi32(even, permutevar_mask, duplicate); |
448 | | |
449 | | //out[0] + out[2] |
450 | | odd = _mm512_add_epi32(even_m1, even); |
451 | | odd = _mm512_srai_epi32(odd, 1); |
452 | | odd = _mm512_add_epi32(odd, hf1_avx2); |
453 | | |
454 | | unpack1 = _mm512_unpacklo_epi32(even_m1, odd); |
455 | | unpack2 = _mm512_unpackhi_epi32(even_m1, odd); |
456 | | |
457 | | store1 = _mm512_permutex2var_epi64(unpack1, store1_perm, unpack2); |
458 | | store2 = _mm512_permutex2var_epi64(unpack1, store2_perm, unpack2); |
459 | | |
460 | | _mm512_storeu_si512(out_ptr, store1); |
461 | | _mm512_storeu_si512(out_ptr + 16, store2); |
462 | | |
463 | | prev_even = next_even; |
464 | | |
465 | | out_ptr += 32; |
466 | | in_even += 16; |
467 | | in_odd += 16; |
468 | | } |
469 | | |
470 | | leftover = len - simd_batch_512 * 32; |
471 | | if (leftover > 8) { |
472 | | leftover -= 8 * loop_short_sse(leftover, &in_even, &in_odd, &out_ptr, |
473 | | &prev_even); |
474 | | } |
475 | | out_ptr[0] = prev_even; |
476 | | |
477 | | for (j = 1; j < (leftover - 2); j += 2) { |
478 | | out_ptr[2] = in_even[1] - ((in_odd[0] + (in_odd[1]) + 2) >> 2); |
479 | | out_ptr[1] = in_odd[0] + ((out_ptr[0] + out_ptr[2]) >> 1); |
480 | | in_even++; |
481 | | in_odd++; |
482 | | out_ptr += 2; |
483 | | } |
484 | | |
485 | | if (len & 1) { |
486 | | out_ptr[2] = in_even[1] - ((in_odd[0] + 1) >> 1); |
487 | | out_ptr[1] = in_odd[0] + ((out_ptr[0] + out_ptr[2]) >> 1); |
488 | | } else { //!(len & 1) |
489 | | out_ptr[1] = in_odd[0] + out_ptr[0]; |
490 | | } |
491 | | #elif defined(__AVX2__) |
492 | | OPJ_INT32* out_ptr = tmp; |
493 | | int32_t prev_even = in_even[0] - ((in_odd[0] + 1) >> 1); |
494 | | |
495 | | const __m256i reg_permutevar_mask_move_right = _mm256_setr_epi32(0x00, 0x00, |
496 | | 0x01, 0x02, 0x03, 0x04, 0x05, 0x06); |
497 | | const __m256i two = _mm256_set1_epi32(2); |
498 | | |
499 | | int32_t simd_batch = (len - 2) / 16; |
500 | | int32_t next_even; |
501 | | __m256i even_m1, odd, unpack1_avx2, unpack2_avx2; |
502 | | |
503 | | for (i = 0; i < simd_batch; i++) { |
504 | | const __m256i lf_avx2 = _mm256_loadu_si256((__m256i*)(in_even + 1)); |
505 | | const __m256i hf1_avx2 = _mm256_loadu_si256((__m256i*)(in_odd)); |
506 | | const __m256i hf2_avx2 = _mm256_loadu_si256((__m256i*)(in_odd + 1)); |
507 | | |
508 | | __m256i even = _mm256_add_epi32(hf1_avx2, hf2_avx2); |
509 | | even = _mm256_add_epi32(even, two); |
510 | | even = _mm256_srai_epi32(even, 2); |
511 | | even = _mm256_sub_epi32(lf_avx2, even); |
512 | | |
513 | | next_even = _mm_extract_epi32(_mm256_extracti128_si256(even, 1), 3); |
514 | | even_m1 = _mm256_permutevar8x32_epi32(even, reg_permutevar_mask_move_right); |
515 | | even_m1 = _mm256_blend_epi32(even_m1, _mm256_set1_epi32(prev_even), (1 << 0)); |
516 | | |
517 | | //out[0] + out[2] |
518 | | odd = _mm256_add_epi32(even_m1, even); |
519 | | odd = _mm256_srai_epi32(odd, 1); |
520 | | odd = _mm256_add_epi32(odd, hf1_avx2); |
521 | | |
522 | | unpack1_avx2 = _mm256_unpacklo_epi32(even_m1, odd); |
523 | | unpack2_avx2 = _mm256_unpackhi_epi32(even_m1, odd); |
524 | | |
525 | | _mm_storeu_si128((__m128i*)(out_ptr + 0), _mm256_castsi256_si128(unpack1_avx2)); |
526 | | _mm_storeu_si128((__m128i*)(out_ptr + 4), _mm256_castsi256_si128(unpack2_avx2)); |
527 | | _mm_storeu_si128((__m128i*)(out_ptr + 8), _mm256_extracti128_si256(unpack1_avx2, |
528 | | 0x1)); |
529 | | _mm_storeu_si128((__m128i*)(out_ptr + 12), |
530 | | _mm256_extracti128_si256(unpack2_avx2, 0x1)); |
531 | | |
532 | | prev_even = next_even; |
533 | | |
534 | | out_ptr += 16; |
535 | | in_even += 8; |
536 | | in_odd += 8; |
537 | | } |
538 | | out_ptr[0] = prev_even; |
539 | | for (j = simd_batch * 16 + 1; j < (len - 2); j += 2) { |
540 | | out_ptr[2] = in_even[1] - ((in_odd[0] + in_odd[1] + 2) >> 2); |
541 | | out_ptr[1] = in_odd[0] + ((out_ptr[0] + out_ptr[2]) >> 1); |
542 | | in_even++; |
543 | | in_odd++; |
544 | | out_ptr += 2; |
545 | | } |
546 | | |
547 | | if (len & 1) { |
548 | | out_ptr[2] = in_even[1] - ((in_odd[0] + 1) >> 1); |
549 | | out_ptr[1] = in_odd[0] + ((out_ptr[0] + out_ptr[2]) >> 1); |
550 | | } else { //!(len & 1) |
551 | | out_ptr[1] = in_odd[0] + out_ptr[0]; |
552 | | } |
553 | | #else |
554 | | OPJ_INT32 d1c, d1n, s1n, s0c, s0n; |
555 | | |
556 | | assert(len > 1); |
557 | | |
558 | | /* Improved version of the TWO_PASS_VERSION: */ |
559 | | /* Performs lifting in one single iteration. Saves memory */ |
560 | | /* accesses and explicit interleaving. */ |
561 | | s1n = in_even[0]; |
562 | | d1n = in_odd[0]; |
563 | | s0n = s1n - ((d1n + 1) >> 1); |
564 | | |
565 | | for (i = 0, j = 1; i < (len - 3); i += 2, j++) { |
566 | | d1c = d1n; |
567 | | s0c = s0n; |
568 | | |
569 | | s1n = in_even[j]; |
570 | | d1n = in_odd[j]; |
571 | | |
572 | | s0n = s1n - ((d1c + d1n + 2) >> 2); |
573 | | |
574 | | tmp[i ] = s0c; |
575 | | tmp[i + 1] = opj_int_add_no_overflow(d1c, opj_int_add_no_overflow(s0c, |
576 | | s0n) >> 1); |
577 | | } |
578 | | |
579 | | tmp[i] = s0n; |
580 | | |
581 | | if (len & 1) { |
582 | | tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1); |
583 | | tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); |
584 | | } else { |
585 | | tmp[len - 1] = d1n + s0n; |
586 | | } |
587 | | #endif /*(__AVX512F__ || __AVX2__)*/ |
588 | | #endif /*TWO_PASS_VERSION*/ |
589 | | memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
590 | | } |
591 | | |
592 | | static void opj_idwt53_h_cas1(OPJ_INT32* tmp, |
593 | | const OPJ_INT32 sn, |
594 | | const OPJ_INT32 len, |
595 | | OPJ_INT32* tiledp) |
596 | | { |
597 | | OPJ_INT32 i, j; |
598 | | const OPJ_INT32* in_even = &tiledp[sn]; |
599 | | const OPJ_INT32* in_odd = &tiledp[0]; |
600 | | |
601 | | #ifdef TWO_PASS_VERSION |
602 | | /* For documentation purpose: performs lifting in two iterations, */ |
603 | | /* but without explicit interleaving */ |
604 | | |
605 | | assert(len > 2); |
606 | | |
607 | | /* Odd */ |
608 | | for (i = 1, j = 0; i < len - 1; i += 2, j++) { |
609 | | tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2); |
610 | | } |
611 | | if (!(len & 1)) { |
612 | | tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1); |
613 | | } |
614 | | |
615 | | /* Even */ |
616 | | tmp[0] = in_even[0] + tmp[1]; |
617 | | for (i = 2, j = 1; i < len - 1; i += 2, j++) { |
618 | | tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1); |
619 | | } |
620 | | if (len & 1) { |
621 | | tmp[len - 1] = in_even[len / 2] + tmp[len - 2]; |
622 | | } |
623 | | #else |
624 | | OPJ_INT32 s1, s2, dc, dn; |
625 | | |
626 | | assert(len > 2); |
627 | | |
628 | | /* Improved version of the TWO_PASS_VERSION: */ |
629 | | /* Performs lifting in one single iteration. Saves memory */ |
630 | | /* accesses and explicit interleaving. */ |
631 | | |
632 | | s1 = in_even[1]; |
633 | | dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); |
634 | | tmp[0] = in_even[0] + dc; |
635 | | |
636 | | for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
637 | | |
638 | | s2 = in_even[j + 1]; |
639 | | |
640 | | dn = in_odd[j] - ((s1 + s2 + 2) >> 2); |
641 | | tmp[i ] = dc; |
642 | | tmp[i + 1] = opj_int_add_no_overflow(s1, opj_int_add_no_overflow(dn, dc) >> 1); |
643 | | |
644 | | dc = dn; |
645 | | s1 = s2; |
646 | | } |
647 | | |
648 | | tmp[i] = dc; |
649 | | |
650 | | if (!(len & 1)) { |
651 | | dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1); |
652 | | tmp[len - 2] = s1 + ((dn + dc) >> 1); |
653 | | tmp[len - 1] = dn; |
654 | | } else { |
655 | | tmp[len - 1] = s1 + dc; |
656 | | } |
657 | | #endif |
658 | | memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
659 | | } |
660 | | |
661 | | |
662 | | #endif /* !defined(STANDARD_SLOW_VERSION) */ |
663 | | |
664 | | /* <summary> */ |
665 | | /* Inverse 5-3 wavelet transform in 1-D for one row. */ |
666 | | /* </summary> */ |
667 | | /* Performs interleave, inverse wavelet transform and copy back to buffer */ |
668 | | static void opj_idwt53_h(const opj_dwt_t *dwt, |
669 | | OPJ_INT32* tiledp) |
670 | 1.10M | { |
671 | 1.10M | #ifdef STANDARD_SLOW_VERSION |
672 | | /* For documentation purpose */ |
673 | 1.10M | opj_dwt_interleave_h(dwt, tiledp); |
674 | 1.10M | opj_dwt_decode_1(dwt); |
675 | 1.10M | memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32)); |
676 | | #else |
677 | | const OPJ_INT32 sn = dwt->sn; |
678 | | const OPJ_INT32 len = sn + dwt->dn; |
679 | | if (dwt->cas == 0) { /* Left-most sample is on even coordinate */ |
680 | | if (len > 1) { |
681 | | opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp); |
682 | | } else { |
683 | | /* Unmodified value */ |
684 | | } |
685 | | } else { /* Left-most sample is on odd coordinate */ |
686 | | if (len == 1) { |
687 | | tiledp[0] /= 2; |
688 | | } else if (len == 2) { |
689 | | OPJ_INT32* out = dwt->mem; |
690 | | const OPJ_INT32* in_even = &tiledp[sn]; |
691 | | const OPJ_INT32* in_odd = &tiledp[0]; |
692 | | out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); |
693 | | out[0] = in_even[0] + out[1]; |
694 | | memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
695 | | } else if (len > 2) { |
696 | | opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp); |
697 | | } |
698 | | } |
699 | | #endif |
700 | 1.10M | } |
701 | | |
702 | | #if (defined(__SSE2__) || defined(__AVX2__) || defined(__AVX512F__)) && !defined(STANDARD_SLOW_VERSION) |
703 | | |
704 | | /* Conveniency macros to improve the readability of the formulas */ |
705 | | #if defined(__AVX512F__) |
706 | | #define VREG __m512i |
707 | | #define LOAD_CST(x) _mm512_set1_epi32(x) |
708 | | #define LOAD(x) _mm512_loadu_si512((const VREG*)(x)) |
709 | | #define LOADU(x) _mm512_loadu_si512((const VREG*)(x)) |
710 | | #define STORE(x,y) _mm512_storeu_si512((VREG*)(x),(y)) |
711 | | #define STOREU(x,y) _mm512_storeu_si512((VREG*)(x),(y)) |
712 | | #define ADD(x,y) _mm512_add_epi32((x),(y)) |
713 | | #define SUB(x,y) _mm512_sub_epi32((x),(y)) |
714 | | #define SAR(x,y) _mm512_srai_epi32((x),(y)) |
715 | | #elif defined(__AVX2__) |
716 | | #define VREG __m256i |
717 | | #define LOAD_CST(x) _mm256_set1_epi32(x) |
718 | | #define LOAD(x) _mm256_load_si256((const VREG*)(x)) |
719 | | #define LOADU(x) _mm256_loadu_si256((const VREG*)(x)) |
720 | | #define STORE(x,y) _mm256_store_si256((VREG*)(x),(y)) |
721 | | #define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y)) |
722 | | #define ADD(x,y) _mm256_add_epi32((x),(y)) |
723 | | #define SUB(x,y) _mm256_sub_epi32((x),(y)) |
724 | | #define SAR(x,y) _mm256_srai_epi32((x),(y)) |
725 | | #else |
726 | | #define VREG __m128i |
727 | | #define LOAD_CST(x) _mm_set1_epi32(x) |
728 | | #define LOAD(x) _mm_load_si128((const VREG*)(x)) |
729 | | #define LOADU(x) _mm_loadu_si128((const VREG*)(x)) |
730 | | #define STORE(x,y) _mm_store_si128((VREG*)(x),(y)) |
731 | | #define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y)) |
732 | | #define ADD(x,y) _mm_add_epi32((x),(y)) |
733 | | #define SUB(x,y) _mm_sub_epi32((x),(y)) |
734 | | #define SAR(x,y) _mm_srai_epi32((x),(y)) |
735 | | #endif |
736 | | #define ADD3(x,y,z) ADD(ADD(x,y),z) |
737 | | |
738 | | static |
739 | | void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col, |
740 | | const OPJ_INT32* tmp, |
741 | | OPJ_INT32 len, |
742 | | OPJ_SIZE_T stride) |
743 | | { |
744 | | OPJ_INT32 i; |
745 | | for (i = 0; i < len; ++i) { |
746 | | /* A memcpy(&tiledp_col[i * stride + 0], |
747 | | &tmp[PARALLEL_COLS_53 * i + 0], |
748 | | PARALLEL_COLS_53 * sizeof(OPJ_INT32)) |
749 | | would do but would be a tiny bit slower. |
750 | | We can take here advantage of our knowledge of alignment */ |
751 | | STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0], |
752 | | LOAD(&tmp[PARALLEL_COLS_53 * i + 0])); |
753 | | STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT], |
754 | | LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT])); |
755 | | } |
756 | | } |
757 | | |
758 | | /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or |
759 | | * 16 in AVX2, when top-most pixel is on even coordinate */ |
760 | | static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2( |
761 | | OPJ_INT32* tmp, |
762 | | const OPJ_INT32 sn, |
763 | | const OPJ_INT32 len, |
764 | | OPJ_INT32* tiledp_col, |
765 | | const OPJ_SIZE_T stride) |
766 | | { |
767 | | const OPJ_INT32* in_even = &tiledp_col[0]; |
768 | | const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
769 | | |
770 | | OPJ_INT32 i; |
771 | | OPJ_SIZE_T j; |
772 | | VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0; |
773 | | VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1; |
774 | | const VREG two = LOAD_CST(2); |
775 | | |
776 | | assert(len > 1); |
777 | | #if defined(__AVX512F__) |
778 | | assert(PARALLEL_COLS_53 == 32); |
779 | | assert(VREG_INT_COUNT == 16); |
780 | | #elif defined(__AVX2__) |
781 | | assert(PARALLEL_COLS_53 == 16); |
782 | | assert(VREG_INT_COUNT == 8); |
783 | | #else |
784 | | assert(PARALLEL_COLS_53 == 8); |
785 | | assert(VREG_INT_COUNT == 4); |
786 | | #endif |
787 | | |
788 | | //For AVX512 code aligned load/store is set to it's unaligned equivalents |
789 | | #if !defined(__AVX512F__) |
790 | | /* Note: loads of input even/odd values must be done in a unaligned */ |
791 | | /* fashion. But stores in tmp can be done with aligned store, since */ |
792 | | /* the temporary buffer is properly aligned */ |
793 | | assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); |
794 | | #endif |
795 | | |
796 | | s1n_0 = LOADU(in_even + 0); |
797 | | s1n_1 = LOADU(in_even + VREG_INT_COUNT); |
798 | | d1n_0 = LOADU(in_odd); |
799 | | d1n_1 = LOADU(in_odd + VREG_INT_COUNT); |
800 | | |
801 | | /* s0n = s1n - ((d1n + 1) >> 1); <==> */ |
802 | | /* s0n = s1n - ((d1n + d1n + 2) >> 2); */ |
803 | | s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); |
804 | | s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); |
805 | | |
806 | | for (i = 0, j = 1; i < (len - 3); i += 2, j++) { |
807 | | d1c_0 = d1n_0; |
808 | | s0c_0 = s0n_0; |
809 | | d1c_1 = d1n_1; |
810 | | s0c_1 = s0n_1; |
811 | | |
812 | | s1n_0 = LOADU(in_even + j * stride); |
813 | | s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT); |
814 | | d1n_0 = LOADU(in_odd + j * stride); |
815 | | d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT); |
816 | | |
817 | | /*s0n = s1n - ((d1c + d1n + 2) >> 2);*/ |
818 | | s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2)); |
819 | | s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2)); |
820 | | |
821 | | STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0); |
822 | | STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1); |
823 | | |
824 | | /* d1c + ((s0c + s0n) >> 1) */ |
825 | | STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, |
826 | | ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1))); |
827 | | STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, |
828 | | ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1))); |
829 | | } |
830 | | |
831 | | STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0); |
832 | | STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1); |
833 | | |
834 | | if (len & 1) { |
835 | | VREG tmp_len_minus_1; |
836 | | s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride); |
837 | | /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ |
838 | | tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); |
839 | | STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1); |
840 | | /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ |
841 | | STORE(tmp + PARALLEL_COLS_53 * (len - 2), |
842 | | ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1))); |
843 | | |
844 | | s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT); |
845 | | /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ |
846 | | tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); |
847 | | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
848 | | tmp_len_minus_1); |
849 | | /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ |
850 | | STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, |
851 | | ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1))); |
852 | | |
853 | | |
854 | | } else { |
855 | | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, |
856 | | ADD(d1n_0, s0n_0)); |
857 | | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
858 | | ADD(d1n_1, s0n_1)); |
859 | | } |
860 | | |
861 | | opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); |
862 | | } |
863 | | |
864 | | |
865 | | /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or |
866 | | * 16 in AVX2, when top-most pixel is on odd coordinate */ |
867 | | static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2( |
868 | | OPJ_INT32* tmp, |
869 | | const OPJ_INT32 sn, |
870 | | const OPJ_INT32 len, |
871 | | OPJ_INT32* tiledp_col, |
872 | | const OPJ_SIZE_T stride) |
873 | | { |
874 | | OPJ_INT32 i; |
875 | | OPJ_SIZE_T j; |
876 | | |
877 | | VREG s1_0, s2_0, dc_0, dn_0; |
878 | | VREG s1_1, s2_1, dc_1, dn_1; |
879 | | const VREG two = LOAD_CST(2); |
880 | | |
881 | | const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
882 | | const OPJ_INT32* in_odd = &tiledp_col[0]; |
883 | | |
884 | | assert(len > 2); |
885 | | #if defined(__AVX512F__) |
886 | | assert(PARALLEL_COLS_53 == 32); |
887 | | assert(VREG_INT_COUNT == 16); |
888 | | #elif defined(__AVX2__) |
889 | | assert(PARALLEL_COLS_53 == 16); |
890 | | assert(VREG_INT_COUNT == 8); |
891 | | #else |
892 | | assert(PARALLEL_COLS_53 == 8); |
893 | | assert(VREG_INT_COUNT == 4); |
894 | | #endif |
895 | | |
896 | | //For AVX512 code aligned load/store is set to it's unaligned equivalents |
897 | | #if !defined(__AVX512F__) |
898 | | /* Note: loads of input even/odd values must be done in a unaligned */ |
899 | | /* fashion. But stores in tmp can be done with aligned store, since */ |
900 | | /* the temporary buffer is properly aligned */ |
901 | | assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); |
902 | | #endif |
903 | | |
904 | | s1_0 = LOADU(in_even + stride); |
905 | | /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ |
906 | | dc_0 = SUB(LOADU(in_odd + 0), |
907 | | SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2)); |
908 | | STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0)); |
909 | | |
910 | | s1_1 = LOADU(in_even + stride + VREG_INT_COUNT); |
911 | | /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ |
912 | | dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT), |
913 | | SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2)); |
914 | | STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT, |
915 | | ADD(LOADU(in_even + VREG_INT_COUNT), dc_1)); |
916 | | |
917 | | for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
918 | | |
919 | | s2_0 = LOADU(in_even + (j + 1) * stride); |
920 | | s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT); |
921 | | |
922 | | /* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */ |
923 | | dn_0 = SUB(LOADU(in_odd + j * stride), |
924 | | SAR(ADD3(s1_0, s2_0, two), 2)); |
925 | | dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT), |
926 | | SAR(ADD3(s1_1, s2_1, two), 2)); |
927 | | |
928 | | STORE(tmp + PARALLEL_COLS_53 * i, dc_0); |
929 | | STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); |
930 | | |
931 | | /* tmp[i + 1] = s1 + ((dn + dc) >> 1); */ |
932 | | STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, |
933 | | ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); |
934 | | STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, |
935 | | ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); |
936 | | |
937 | | dc_0 = dn_0; |
938 | | s1_0 = s2_0; |
939 | | dc_1 = dn_1; |
940 | | s1_1 = s2_1; |
941 | | } |
942 | | STORE(tmp + PARALLEL_COLS_53 * i, dc_0); |
943 | | STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); |
944 | | |
945 | | if (!(len & 1)) { |
946 | | /*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */ |
947 | | dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride), |
948 | | SAR(ADD3(s1_0, s1_0, two), 2)); |
949 | | dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT), |
950 | | SAR(ADD3(s1_1, s1_1, two), 2)); |
951 | | |
952 | | /* tmp[len - 2] = s1 + ((dn + dc) >> 1); */ |
953 | | STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0, |
954 | | ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); |
955 | | STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, |
956 | | ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); |
957 | | |
958 | | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0); |
959 | | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1); |
960 | | } else { |
961 | | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0)); |
962 | | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
963 | | ADD(s1_1, dc_1)); |
964 | | } |
965 | | |
966 | | opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); |
967 | | } |
968 | | |
969 | | #undef VREG |
970 | | #undef LOAD_CST |
971 | | #undef LOADU |
972 | | #undef LOAD |
973 | | #undef STORE |
974 | | #undef STOREU |
975 | | #undef ADD |
976 | | #undef ADD3 |
977 | | #undef SUB |
978 | | #undef SAR |
979 | | |
980 | | #endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */ |
981 | | |
982 | | #if !defined(STANDARD_SLOW_VERSION) |
983 | | /** Vertical inverse 5x3 wavelet transform for one column, when top-most |
984 | | * pixel is on even coordinate */ |
985 | | static void opj_idwt3_v_cas0(OPJ_INT32* tmp, |
986 | | const OPJ_INT32 sn, |
987 | | const OPJ_INT32 len, |
988 | | OPJ_INT32* tiledp_col, |
989 | | const OPJ_SIZE_T stride) |
990 | | { |
991 | | OPJ_INT32 i, j; |
992 | | OPJ_INT32 d1c, d1n, s1n, s0c, s0n; |
993 | | |
994 | | assert(len > 1); |
995 | | |
996 | | /* Performs lifting in one single iteration. Saves memory */ |
997 | | /* accesses and explicit interleaving. */ |
998 | | |
999 | | s1n = tiledp_col[0]; |
1000 | | d1n = tiledp_col[(OPJ_SIZE_T)sn * stride]; |
1001 | | s0n = s1n - ((d1n + 1) >> 1); |
1002 | | |
1003 | | for (i = 0, j = 0; i < (len - 3); i += 2, j++) { |
1004 | | d1c = d1n; |
1005 | | s0c = s0n; |
1006 | | |
1007 | | s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride]; |
1008 | | d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride]; |
1009 | | |
1010 | | s0n = opj_int_sub_no_overflow(s1n, |
1011 | | opj_int_add_no_overflow(opj_int_add_no_overflow(d1c, d1n), 2) >> 2); |
1012 | | |
1013 | | tmp[i ] = s0c; |
1014 | | tmp[i + 1] = opj_int_add_no_overflow(d1c, opj_int_add_no_overflow(s0c, |
1015 | | s0n) >> 1); |
1016 | | } |
1017 | | |
1018 | | tmp[i] = s0n; |
1019 | | |
1020 | | if (len & 1) { |
1021 | | tmp[len - 1] = |
1022 | | tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] - |
1023 | | ((d1n + 1) >> 1); |
1024 | | tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); |
1025 | | } else { |
1026 | | tmp[len - 1] = d1n + s0n; |
1027 | | } |
1028 | | |
1029 | | for (i = 0; i < len; ++i) { |
1030 | | tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; |
1031 | | } |
1032 | | } |
1033 | | |
1034 | | |
1035 | | /** Vertical inverse 5x3 wavelet transform for one column, when top-most |
1036 | | * pixel is on odd coordinate */ |
1037 | | static void opj_idwt3_v_cas1(OPJ_INT32* tmp, |
1038 | | const OPJ_INT32 sn, |
1039 | | const OPJ_INT32 len, |
1040 | | OPJ_INT32* tiledp_col, |
1041 | | const OPJ_SIZE_T stride) |
1042 | | { |
1043 | | OPJ_INT32 i, j; |
1044 | | OPJ_INT32 s1, s2, dc, dn; |
1045 | | const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
1046 | | const OPJ_INT32* in_odd = &tiledp_col[0]; |
1047 | | |
1048 | | assert(len > 2); |
1049 | | |
1050 | | /* Performs lifting in one single iteration. Saves memory */ |
1051 | | /* accesses and explicit interleaving. */ |
1052 | | |
1053 | | s1 = in_even[stride]; |
1054 | | dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); |
1055 | | tmp[0] = in_even[0] + dc; |
1056 | | for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
1057 | | |
1058 | | s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride]; |
1059 | | |
1060 | | dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2); |
1061 | | tmp[i ] = dc; |
1062 | | tmp[i + 1] = s1 + ((dn + dc) >> 1); |
1063 | | |
1064 | | dc = dn; |
1065 | | s1 = s2; |
1066 | | } |
1067 | | tmp[i] = dc; |
1068 | | if (!(len & 1)) { |
1069 | | dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1); |
1070 | | tmp[len - 2] = s1 + ((dn + dc) >> 1); |
1071 | | tmp[len - 1] = dn; |
1072 | | } else { |
1073 | | tmp[len - 1] = s1 + dc; |
1074 | | } |
1075 | | |
1076 | | for (i = 0; i < len; ++i) { |
1077 | | tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; |
1078 | | } |
1079 | | } |
1080 | | #endif /* !defined(STANDARD_SLOW_VERSION) */ |
1081 | | |
1082 | | /* <summary> */ |
1083 | | /* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */ |
1084 | | /* </summary> */ |
1085 | | /* Performs interleave, inverse wavelet transform and copy back to buffer */ |
1086 | | static void opj_idwt53_v(const opj_dwt_t *dwt, |
1087 | | OPJ_INT32* tiledp_col, |
1088 | | OPJ_SIZE_T stride, |
1089 | | OPJ_INT32 nb_cols) |
1090 | 129k | { |
1091 | 129k | #ifdef STANDARD_SLOW_VERSION |
1092 | | /* For documentation purpose */ |
1093 | 129k | OPJ_INT32 k, c; |
1094 | 1.12M | for (c = 0; c < nb_cols; c ++) { |
1095 | 997k | opj_dwt_interleave_v(dwt, tiledp_col + c, stride); |
1096 | 997k | opj_dwt_decode_1(dwt); |
1097 | 157M | for (k = 0; k < dwt->sn + dwt->dn; ++k) { |
1098 | 156M | tiledp_col[c + k * stride] = dwt->mem[k]; |
1099 | 156M | } |
1100 | 997k | } |
1101 | | #else |
1102 | | const OPJ_INT32 sn = dwt->sn; |
1103 | | const OPJ_INT32 len = sn + dwt->dn; |
1104 | | if (dwt->cas == 0) { |
1105 | | /* If len == 1, unmodified value */ |
1106 | | |
1107 | | #if (defined(__SSE2__) || defined(__AVX2__)) |
1108 | | if (len > 1 && nb_cols == PARALLEL_COLS_53) { |
1109 | | /* Same as below general case, except that thanks to SSE2/AVX2 */ |
1110 | | /* we can efficiently process 8/16 columns in parallel */ |
1111 | | opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); |
1112 | | return; |
1113 | | } |
1114 | | #endif |
1115 | | if (len > 1) { |
1116 | | OPJ_INT32 c; |
1117 | | for (c = 0; c < nb_cols; c++, tiledp_col++) { |
1118 | | opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride); |
1119 | | } |
1120 | | return; |
1121 | | } |
1122 | | } else { |
1123 | | if (len == 1) { |
1124 | | OPJ_INT32 c; |
1125 | | for (c = 0; c < nb_cols; c++, tiledp_col++) { |
1126 | | tiledp_col[0] /= 2; |
1127 | | } |
1128 | | return; |
1129 | | } |
1130 | | |
1131 | | if (len == 2) { |
1132 | | OPJ_INT32 c; |
1133 | | OPJ_INT32* out = dwt->mem; |
1134 | | for (c = 0; c < nb_cols; c++, tiledp_col++) { |
1135 | | OPJ_INT32 i; |
1136 | | const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
1137 | | const OPJ_INT32* in_odd = &tiledp_col[0]; |
1138 | | |
1139 | | out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); |
1140 | | out[0] = in_even[0] + out[1]; |
1141 | | |
1142 | | for (i = 0; i < len; ++i) { |
1143 | | tiledp_col[(OPJ_SIZE_T)i * stride] = out[i]; |
1144 | | } |
1145 | | } |
1146 | | |
1147 | | return; |
1148 | | } |
1149 | | |
1150 | | #if (defined(__SSE2__) || defined(__AVX2__)) |
1151 | | if (len > 2 && nb_cols == PARALLEL_COLS_53) { |
1152 | | /* Same as below general case, except that thanks to SSE2/AVX2 */ |
1153 | | /* we can efficiently process 8/16 columns in parallel */ |
1154 | | opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); |
1155 | | return; |
1156 | | } |
1157 | | #endif |
1158 | | if (len > 2) { |
1159 | | OPJ_INT32 c; |
1160 | | for (c = 0; c < nb_cols; c++, tiledp_col++) { |
1161 | | opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride); |
1162 | | } |
1163 | | return; |
1164 | | } |
1165 | | } |
1166 | | #endif |
1167 | 129k | } |
1168 | | |
1169 | | #if 0 |
1170 | | static void opj_dwt_encode_step1(OPJ_FLOAT32* fw, |
1171 | | OPJ_UINT32 end, |
1172 | | const OPJ_FLOAT32 c) |
1173 | | { |
1174 | | OPJ_UINT32 i = 0; |
1175 | | for (; i < end; ++i) { |
1176 | | fw[0] *= c; |
1177 | | fw += 2; |
1178 | | } |
1179 | | } |
1180 | | #else |
1181 | | static void opj_dwt_encode_step1_combined(OPJ_FLOAT32* fw, |
1182 | | OPJ_UINT32 iters_c1, |
1183 | | OPJ_UINT32 iters_c2, |
1184 | | const OPJ_FLOAT32 c1, |
1185 | | const OPJ_FLOAT32 c2) |
1186 | 0 | { |
1187 | 0 | OPJ_UINT32 i = 0; |
1188 | 0 | const OPJ_UINT32 iters_common = opj_uint_min(iters_c1, iters_c2); |
1189 | 0 | assert((((OPJ_SIZE_T)fw) & 0xf) == 0); |
1190 | 0 | assert(opj_int_abs((OPJ_INT32)iters_c1 - (OPJ_INT32)iters_c2) <= 1); |
1191 | 0 | for (; i + 3 < iters_common; i += 4) { |
1192 | 0 | #ifdef __SSE__ |
1193 | 0 | const __m128 vcst = _mm_set_ps(c2, c1, c2, c1); |
1194 | 0 | *(__m128*)fw = _mm_mul_ps(*(__m128*)fw, vcst); |
1195 | 0 | *(__m128*)(fw + 4) = _mm_mul_ps(*(__m128*)(fw + 4), vcst); |
1196 | | #else |
1197 | | fw[0] *= c1; |
1198 | | fw[1] *= c2; |
1199 | | fw[2] *= c1; |
1200 | | fw[3] *= c2; |
1201 | | fw[4] *= c1; |
1202 | | fw[5] *= c2; |
1203 | | fw[6] *= c1; |
1204 | | fw[7] *= c2; |
1205 | | #endif |
1206 | 0 | fw += 8; |
1207 | 0 | } |
1208 | 0 | for (; i < iters_common; i++) { |
1209 | 0 | fw[0] *= c1; |
1210 | 0 | fw[1] *= c2; |
1211 | 0 | fw += 2; |
1212 | 0 | } |
1213 | 0 | if (i < iters_c1) { |
1214 | 0 | fw[0] *= c1; |
1215 | 0 | } else if (i < iters_c2) { |
1216 | 0 | fw[1] *= c2; |
1217 | 0 | } |
1218 | 0 | } |
1219 | | |
1220 | | #endif |
1221 | | |
1222 | | static void opj_dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw, |
1223 | | OPJ_UINT32 end, |
1224 | | OPJ_UINT32 m, |
1225 | | OPJ_FLOAT32 c) |
1226 | 0 | { |
1227 | 0 | OPJ_UINT32 i; |
1228 | 0 | OPJ_UINT32 imax = opj_uint_min(end, m); |
1229 | 0 | if (imax > 0) { |
1230 | 0 | fw[-1] += (fl[0] + fw[0]) * c; |
1231 | 0 | fw += 2; |
1232 | 0 | i = 1; |
1233 | 0 | for (; i + 3 < imax; i += 4) { |
1234 | 0 | fw[-1] += (fw[-2] + fw[0]) * c; |
1235 | 0 | fw[1] += (fw[0] + fw[2]) * c; |
1236 | 0 | fw[3] += (fw[2] + fw[4]) * c; |
1237 | 0 | fw[5] += (fw[4] + fw[6]) * c; |
1238 | 0 | fw += 8; |
1239 | 0 | } |
1240 | 0 | for (; i < imax; ++i) { |
1241 | 0 | fw[-1] += (fw[-2] + fw[0]) * c; |
1242 | 0 | fw += 2; |
1243 | 0 | } |
1244 | 0 | } |
1245 | 0 | if (m < end) { |
1246 | 0 | assert(m + 1 == end); |
1247 | 0 | fw[-1] += (2 * fw[-2]) * c; |
1248 | 0 | } |
1249 | 0 | } |
1250 | | |
1251 | | static void opj_dwt_encode_1_real(void *aIn, OPJ_INT32 dn, OPJ_INT32 sn, |
1252 | | OPJ_INT32 cas) |
1253 | 0 | { |
1254 | 0 | OPJ_FLOAT32* w = (OPJ_FLOAT32*)aIn; |
1255 | 0 | OPJ_INT32 a, b; |
1256 | 0 | assert(dn + sn > 1); |
1257 | 0 | if (cas == 0) { |
1258 | 0 | a = 0; |
1259 | 0 | b = 1; |
1260 | 0 | } else { |
1261 | 0 | a = 1; |
1262 | 0 | b = 0; |
1263 | 0 | } |
1264 | 0 | opj_dwt_encode_step2(w + a, w + b + 1, |
1265 | 0 | (OPJ_UINT32)dn, |
1266 | 0 | (OPJ_UINT32)opj_int_min(dn, sn - b), |
1267 | 0 | opj_dwt_alpha); |
1268 | 0 | opj_dwt_encode_step2(w + b, w + a + 1, |
1269 | 0 | (OPJ_UINT32)sn, |
1270 | 0 | (OPJ_UINT32)opj_int_min(sn, dn - a), |
1271 | 0 | opj_dwt_beta); |
1272 | 0 | opj_dwt_encode_step2(w + a, w + b + 1, |
1273 | 0 | (OPJ_UINT32)dn, |
1274 | 0 | (OPJ_UINT32)opj_int_min(dn, sn - b), |
1275 | 0 | opj_dwt_gamma); |
1276 | 0 | opj_dwt_encode_step2(w + b, w + a + 1, |
1277 | 0 | (OPJ_UINT32)sn, |
1278 | 0 | (OPJ_UINT32)opj_int_min(sn, dn - a), |
1279 | 0 | opj_dwt_delta); |
1280 | | #if 0 |
1281 | | opj_dwt_encode_step1(w + b, (OPJ_UINT32)dn, |
1282 | | opj_K); |
1283 | | opj_dwt_encode_step1(w + a, (OPJ_UINT32)sn, |
1284 | | opj_invK); |
1285 | | #else |
1286 | 0 | if (a == 0) { |
1287 | 0 | opj_dwt_encode_step1_combined(w, |
1288 | 0 | (OPJ_UINT32)sn, |
1289 | 0 | (OPJ_UINT32)dn, |
1290 | 0 | opj_invK, |
1291 | 0 | opj_K); |
1292 | 0 | } else { |
1293 | 0 | opj_dwt_encode_step1_combined(w, |
1294 | 0 | (OPJ_UINT32)dn, |
1295 | 0 | (OPJ_UINT32)sn, |
1296 | 0 | opj_K, |
1297 | 0 | opj_invK); |
1298 | 0 | } |
1299 | 0 | #endif |
1300 | 0 | } |
1301 | | |
1302 | | static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, |
1303 | | opj_stepsize_t *bandno_stepsize) |
1304 | 0 | { |
1305 | 0 | OPJ_INT32 p, n; |
1306 | 0 | p = opj_int_floorlog2(stepsize) - 13; |
1307 | 0 | n = 11 - opj_int_floorlog2(stepsize); |
1308 | 0 | bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; |
1309 | 0 | bandno_stepsize->expn = numbps - p; |
1310 | 0 | } |
1311 | | |
1312 | | /* |
1313 | | ========================================================== |
1314 | | DWT interface |
1315 | | ========================================================== |
1316 | | */ |
1317 | | |
1318 | | /** Process one line for the horizontal pass of the 5x3 forward transform */ |
1319 | | static |
1320 | | void opj_dwt_encode_and_deinterleave_h_one_row(void* rowIn, |
1321 | | void* tmpIn, |
1322 | | OPJ_UINT32 width, |
1323 | | OPJ_BOOL even) |
1324 | 0 | { |
1325 | 0 | OPJ_INT32* OPJ_RESTRICT row = (OPJ_INT32*)rowIn; |
1326 | 0 | OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32*)tmpIn; |
1327 | 0 | const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1); |
1328 | 0 | const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn); |
1329 | |
|
1330 | 0 | if (even) { |
1331 | 0 | if (width > 1) { |
1332 | 0 | OPJ_INT32 i; |
1333 | 0 | for (i = 0; i < sn - 1; i++) { |
1334 | 0 | tmp[sn + i] = row[2 * i + 1] - ((row[(i) * 2] + row[(i + 1) * 2]) >> 1); |
1335 | 0 | } |
1336 | 0 | if ((width % 2) == 0) { |
1337 | 0 | tmp[sn + i] = row[2 * i + 1] - row[(i) * 2]; |
1338 | 0 | } |
1339 | 0 | row[0] += (tmp[sn] + tmp[sn] + 2) >> 2; |
1340 | 0 | for (i = 1; i < dn; i++) { |
1341 | 0 | row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + i] + 2) >> 2); |
1342 | 0 | } |
1343 | 0 | if ((width % 2) == 1) { |
1344 | 0 | row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + (i - 1)] + 2) >> 2); |
1345 | 0 | } |
1346 | 0 | memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32)); |
1347 | 0 | } |
1348 | 0 | } else { |
1349 | 0 | if (width == 1) { |
1350 | 0 | row[0] *= 2; |
1351 | 0 | } else { |
1352 | 0 | OPJ_INT32 i; |
1353 | 0 | tmp[sn + 0] = row[0] - row[1]; |
1354 | 0 | for (i = 1; i < sn; i++) { |
1355 | 0 | tmp[sn + i] = row[2 * i] - ((row[2 * i + 1] + row[2 * (i - 1) + 1]) >> 1); |
1356 | 0 | } |
1357 | 0 | if ((width % 2) == 1) { |
1358 | 0 | tmp[sn + i] = row[2 * i] - row[2 * (i - 1) + 1]; |
1359 | 0 | } |
1360 | |
|
1361 | 0 | for (i = 0; i < dn - 1; i++) { |
1362 | 0 | row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i + 1] + 2) >> 2); |
1363 | 0 | } |
1364 | 0 | if ((width % 2) == 0) { |
1365 | 0 | row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i] + 2) >> 2); |
1366 | 0 | } |
1367 | 0 | memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32)); |
1368 | 0 | } |
1369 | 0 | } |
1370 | 0 | } |
1371 | | |
1372 | | /** Process one line for the horizontal pass of the 9x7 forward transform */ |
1373 | | static |
1374 | | void opj_dwt_encode_and_deinterleave_h_one_row_real(void* rowIn, |
1375 | | void* tmpIn, |
1376 | | OPJ_UINT32 width, |
1377 | | OPJ_BOOL even) |
1378 | 0 | { |
1379 | 0 | OPJ_FLOAT32* OPJ_RESTRICT row = (OPJ_FLOAT32*)rowIn; |
1380 | 0 | OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32*)tmpIn; |
1381 | 0 | const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1); |
1382 | 0 | const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn); |
1383 | 0 | if (width == 1) { |
1384 | 0 | return; |
1385 | 0 | } |
1386 | 0 | memcpy(tmp, row, width * sizeof(OPJ_FLOAT32)); |
1387 | 0 | opj_dwt_encode_1_real(tmp, dn, sn, even ? 0 : 1); |
1388 | 0 | opj_dwt_deinterleave_h((OPJ_INT32 * OPJ_RESTRICT)tmp, |
1389 | 0 | (OPJ_INT32 * OPJ_RESTRICT)row, |
1390 | 0 | dn, sn, even ? 0 : 1); |
1391 | 0 | } |
1392 | | |
1393 | | typedef struct { |
1394 | | opj_dwt_t h; |
1395 | | OPJ_UINT32 rw; /* Width of the resolution to process */ |
1396 | | OPJ_UINT32 w; /* Width of tiledp */ |
1397 | | OPJ_INT32 * OPJ_RESTRICT tiledp; |
1398 | | OPJ_UINT32 min_j; |
1399 | | OPJ_UINT32 max_j; |
1400 | | opj_encode_and_deinterleave_h_one_row_fnptr_type p_function; |
1401 | | } opj_dwt_encode_h_job_t; |
1402 | | |
1403 | | static void opj_dwt_encode_h_func(void* user_data, opj_tls_t* tls) |
1404 | 0 | { |
1405 | 0 | OPJ_UINT32 j; |
1406 | 0 | opj_dwt_encode_h_job_t* job; |
1407 | 0 | (void)tls; |
1408 | |
|
1409 | 0 | job = (opj_dwt_encode_h_job_t*)user_data; |
1410 | 0 | for (j = job->min_j; j < job->max_j; j++) { |
1411 | 0 | OPJ_INT32* OPJ_RESTRICT aj = job->tiledp + j * job->w; |
1412 | 0 | (*job->p_function)(aj, job->h.mem, job->rw, |
1413 | 0 | job->h.cas == 0 ? OPJ_TRUE : OPJ_FALSE); |
1414 | 0 | } |
1415 | |
|
1416 | 0 | opj_aligned_free(job->h.mem); |
1417 | 0 | opj_free(job); |
1418 | 0 | } |
1419 | | |
1420 | | typedef struct { |
1421 | | opj_dwt_t v; |
1422 | | OPJ_UINT32 rh; |
1423 | | OPJ_UINT32 w; |
1424 | | OPJ_INT32 * OPJ_RESTRICT tiledp; |
1425 | | OPJ_UINT32 min_j; |
1426 | | OPJ_UINT32 max_j; |
1427 | | opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v; |
1428 | | } opj_dwt_encode_v_job_t; |
1429 | | |
1430 | | static void opj_dwt_encode_v_func(void* user_data, opj_tls_t* tls) |
1431 | 0 | { |
1432 | 0 | OPJ_UINT32 j; |
1433 | 0 | opj_dwt_encode_v_job_t* job; |
1434 | 0 | (void)tls; |
1435 | |
|
1436 | 0 | job = (opj_dwt_encode_v_job_t*)user_data; |
1437 | 0 | for (j = job->min_j; j + NB_ELTS_V8 - 1 < job->max_j; j += NB_ELTS_V8) { |
1438 | 0 | (*job->p_encode_and_deinterleave_v)(job->tiledp + j, |
1439 | 0 | job->v.mem, |
1440 | 0 | job->rh, |
1441 | 0 | job->v.cas == 0, |
1442 | 0 | job->w, |
1443 | 0 | NB_ELTS_V8); |
1444 | 0 | } |
1445 | 0 | if (j < job->max_j) { |
1446 | 0 | (*job->p_encode_and_deinterleave_v)(job->tiledp + j, |
1447 | 0 | job->v.mem, |
1448 | 0 | job->rh, |
1449 | 0 | job->v.cas == 0, |
1450 | 0 | job->w, |
1451 | 0 | job->max_j - j); |
1452 | 0 | } |
1453 | |
|
1454 | 0 | opj_aligned_free(job->v.mem); |
1455 | 0 | opj_free(job); |
1456 | 0 | } |
1457 | | |
1458 | | /** Fetch up to cols <= NB_ELTS_V8 for each line, and put them in tmpOut */ |
1459 | | /* that has a NB_ELTS_V8 interleave factor. */ |
1460 | | static void opj_dwt_fetch_cols_vertical_pass(const void *arrayIn, |
1461 | | void *tmpOut, |
1462 | | OPJ_UINT32 height, |
1463 | | OPJ_UINT32 stride_width, |
1464 | | OPJ_UINT32 cols) |
1465 | 0 | { |
1466 | 0 | const OPJ_INT32* OPJ_RESTRICT array = (const OPJ_INT32 * OPJ_RESTRICT)arrayIn; |
1467 | 0 | OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpOut; |
1468 | 0 | if (cols == NB_ELTS_V8) { |
1469 | 0 | OPJ_UINT32 k; |
1470 | 0 | for (k = 0; k < height; ++k) { |
1471 | 0 | memcpy(tmp + NB_ELTS_V8 * k, |
1472 | 0 | array + k * stride_width, |
1473 | 0 | NB_ELTS_V8 * sizeof(OPJ_INT32)); |
1474 | 0 | } |
1475 | 0 | } else { |
1476 | 0 | OPJ_UINT32 k; |
1477 | 0 | for (k = 0; k < height; ++k) { |
1478 | 0 | OPJ_UINT32 c; |
1479 | 0 | for (c = 0; c < cols; c++) { |
1480 | 0 | tmp[NB_ELTS_V8 * k + c] = array[c + k * stride_width]; |
1481 | 0 | } |
1482 | 0 | for (; c < NB_ELTS_V8; c++) { |
1483 | 0 | tmp[NB_ELTS_V8 * k + c] = 0; |
1484 | 0 | } |
1485 | 0 | } |
1486 | 0 | } |
1487 | 0 | } |
1488 | | |
1489 | | /* Deinterleave result of forward transform, where cols <= NB_ELTS_V8 */ |
1490 | | /* and src contains NB_ELTS_V8 consecutive values for up to NB_ELTS_V8 */ |
1491 | | /* columns. */ |
1492 | | static INLINE void opj_dwt_deinterleave_v_cols( |
1493 | | const OPJ_INT32 * OPJ_RESTRICT src, |
1494 | | OPJ_INT32 * OPJ_RESTRICT dst, |
1495 | | OPJ_INT32 dn, |
1496 | | OPJ_INT32 sn, |
1497 | | OPJ_UINT32 stride_width, |
1498 | | OPJ_INT32 cas, |
1499 | | OPJ_UINT32 cols) |
1500 | 0 | { |
1501 | 0 | OPJ_INT32 k; |
1502 | 0 | OPJ_INT32 i = sn; |
1503 | 0 | OPJ_INT32 * OPJ_RESTRICT l_dest = dst; |
1504 | 0 | const OPJ_INT32 * OPJ_RESTRICT l_src = src + cas * NB_ELTS_V8; |
1505 | 0 | OPJ_UINT32 c; |
1506 | |
|
1507 | 0 | for (k = 0; k < 2; k++) { |
1508 | 0 | while (i--) { |
1509 | 0 | if (cols == NB_ELTS_V8) { |
1510 | 0 | memcpy(l_dest, l_src, NB_ELTS_V8 * sizeof(OPJ_INT32)); |
1511 | 0 | } else { |
1512 | 0 | c = 0; |
1513 | 0 | switch (cols) { |
1514 | 0 | case 7: |
1515 | 0 | l_dest[c] = l_src[c]; |
1516 | 0 | c++; /* fallthru */ |
1517 | 0 | case 6: |
1518 | 0 | l_dest[c] = l_src[c]; |
1519 | 0 | c++; /* fallthru */ |
1520 | 0 | case 5: |
1521 | 0 | l_dest[c] = l_src[c]; |
1522 | 0 | c++; /* fallthru */ |
1523 | 0 | case 4: |
1524 | 0 | l_dest[c] = l_src[c]; |
1525 | 0 | c++; /* fallthru */ |
1526 | 0 | case 3: |
1527 | 0 | l_dest[c] = l_src[c]; |
1528 | 0 | c++; /* fallthru */ |
1529 | 0 | case 2: |
1530 | 0 | l_dest[c] = l_src[c]; |
1531 | 0 | c++; /* fallthru */ |
1532 | 0 | default: |
1533 | 0 | l_dest[c] = l_src[c]; |
1534 | 0 | break; |
1535 | 0 | } |
1536 | 0 | } |
1537 | 0 | l_dest += stride_width; |
1538 | 0 | l_src += 2 * NB_ELTS_V8; |
1539 | 0 | } |
1540 | | |
1541 | 0 | l_dest = dst + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)stride_width; |
1542 | 0 | l_src = src + (1 - cas) * NB_ELTS_V8; |
1543 | 0 | i = dn; |
1544 | 0 | } |
1545 | 0 | } |
1546 | | |
1547 | | |
1548 | | /* Forward 5-3 transform, for the vertical pass, processing cols columns */ |
1549 | | /* where cols <= NB_ELTS_V8 */ |
1550 | | static void opj_dwt_encode_and_deinterleave_v( |
1551 | | void *arrayIn, |
1552 | | void *tmpIn, |
1553 | | OPJ_UINT32 height, |
1554 | | OPJ_BOOL even, |
1555 | | OPJ_UINT32 stride_width, |
1556 | | OPJ_UINT32 cols) |
1557 | 0 | { |
1558 | 0 | OPJ_INT32* OPJ_RESTRICT array = (OPJ_INT32 * OPJ_RESTRICT)arrayIn; |
1559 | 0 | OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpIn; |
1560 | 0 | const OPJ_UINT32 sn = (height + (even ? 1 : 0)) >> 1; |
1561 | 0 | const OPJ_UINT32 dn = height - sn; |
1562 | |
|
1563 | 0 | opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols); |
1564 | |
|
1565 | 0 | #define OPJ_Sc(i) tmp[(i)*2* NB_ELTS_V8 + c] |
1566 | 0 | #define OPJ_Dc(i) tmp[((1+(i)*2))* NB_ELTS_V8 + c] |
1567 | |
|
1568 | 0 | #ifdef __SSE2__ |
1569 | 0 | if (height == 1) { |
1570 | 0 | if (!even) { |
1571 | 0 | OPJ_UINT32 c; |
1572 | 0 | for (c = 0; c < NB_ELTS_V8; c++) { |
1573 | 0 | tmp[c] *= 2; |
1574 | 0 | } |
1575 | 0 | } |
1576 | 0 | } else if (even) { |
1577 | 0 | OPJ_UINT32 c; |
1578 | 0 | OPJ_UINT32 i; |
1579 | 0 | i = 0; |
1580 | 0 | if (i + 1 < sn) { |
1581 | 0 | __m128i xmm_Si_0 = *(const __m128i*)(tmp + 4 * 0); |
1582 | 0 | __m128i xmm_Si_1 = *(const __m128i*)(tmp + 4 * 1); |
1583 | 0 | for (; i + 1 < sn; i++) { |
1584 | 0 | __m128i xmm_Sip1_0 = *(const __m128i*)(tmp + |
1585 | 0 | (i + 1) * 2 * NB_ELTS_V8 + 4 * 0); |
1586 | 0 | __m128i xmm_Sip1_1 = *(const __m128i*)(tmp + |
1587 | 0 | (i + 1) * 2 * NB_ELTS_V8 + 4 * 1); |
1588 | 0 | __m128i xmm_Di_0 = *(const __m128i*)(tmp + |
1589 | 0 | (1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
1590 | 0 | __m128i xmm_Di_1 = *(const __m128i*)(tmp + |
1591 | 0 | (1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
1592 | 0 | xmm_Di_0 = _mm_sub_epi32(xmm_Di_0, |
1593 | 0 | _mm_srai_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), 1)); |
1594 | 0 | xmm_Di_1 = _mm_sub_epi32(xmm_Di_1, |
1595 | 0 | _mm_srai_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), 1)); |
1596 | 0 | *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Di_0; |
1597 | 0 | *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Di_1; |
1598 | 0 | xmm_Si_0 = xmm_Sip1_0; |
1599 | 0 | xmm_Si_1 = xmm_Sip1_1; |
1600 | 0 | } |
1601 | 0 | } |
1602 | 0 | if (((height) % 2) == 0) { |
1603 | 0 | for (c = 0; c < NB_ELTS_V8; c++) { |
1604 | 0 | OPJ_Dc(i) -= OPJ_Sc(i); |
1605 | 0 | } |
1606 | 0 | } |
1607 | 0 | for (c = 0; c < NB_ELTS_V8; c++) { |
1608 | 0 | OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2; |
1609 | 0 | } |
1610 | 0 | i = 1; |
1611 | 0 | if (i < dn) { |
1612 | 0 | __m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 + |
1613 | 0 | (i - 1) * 2) * NB_ELTS_V8 + 4 * 0); |
1614 | 0 | __m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 + |
1615 | 0 | (i - 1) * 2) * NB_ELTS_V8 + 4 * 1); |
1616 | 0 | const __m128i xmm_two = _mm_set1_epi32(2); |
1617 | 0 | for (; i < dn; i++) { |
1618 | 0 | __m128i xmm_Di_0 = *(const __m128i*)(tmp + |
1619 | 0 | (1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
1620 | 0 | __m128i xmm_Di_1 = *(const __m128i*)(tmp + |
1621 | 0 | (1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
1622 | 0 | __m128i xmm_Si_0 = *(const __m128i*)(tmp + |
1623 | 0 | (i * 2) * NB_ELTS_V8 + 4 * 0); |
1624 | 0 | __m128i xmm_Si_1 = *(const __m128i*)(tmp + |
1625 | 0 | (i * 2) * NB_ELTS_V8 + 4 * 1); |
1626 | 0 | xmm_Si_0 = _mm_add_epi32(xmm_Si_0, |
1627 | 0 | _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_0, xmm_Di_0), xmm_two), 2)); |
1628 | 0 | xmm_Si_1 = _mm_add_epi32(xmm_Si_1, |
1629 | 0 | _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_1, xmm_Di_1), xmm_two), 2)); |
1630 | 0 | *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0; |
1631 | 0 | *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1; |
1632 | 0 | xmm_Dim1_0 = xmm_Di_0; |
1633 | 0 | xmm_Dim1_1 = xmm_Di_1; |
1634 | 0 | } |
1635 | 0 | } |
1636 | 0 | if (((height) % 2) == 1) { |
1637 | 0 | for (c = 0; c < NB_ELTS_V8; c++) { |
1638 | 0 | OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2; |
1639 | 0 | } |
1640 | 0 | } |
1641 | 0 | } else { |
1642 | 0 | OPJ_UINT32 c; |
1643 | 0 | OPJ_UINT32 i; |
1644 | 0 | for (c = 0; c < NB_ELTS_V8; c++) { |
1645 | 0 | OPJ_Sc(0) -= OPJ_Dc(0); |
1646 | 0 | } |
1647 | 0 | i = 1; |
1648 | 0 | if (i < sn) { |
1649 | 0 | __m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 + |
1650 | 0 | (i - 1) * 2) * NB_ELTS_V8 + 4 * 0); |
1651 | 0 | __m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 + |
1652 | 0 | (i - 1) * 2) * NB_ELTS_V8 + 4 * 1); |
1653 | 0 | for (; i < sn; i++) { |
1654 | 0 | __m128i xmm_Di_0 = *(const __m128i*)(tmp + |
1655 | 0 | (1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
1656 | 0 | __m128i xmm_Di_1 = *(const __m128i*)(tmp + |
1657 | 0 | (1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
1658 | 0 | __m128i xmm_Si_0 = *(const __m128i*)(tmp + |
1659 | 0 | (i * 2) * NB_ELTS_V8 + 4 * 0); |
1660 | 0 | __m128i xmm_Si_1 = *(const __m128i*)(tmp + |
1661 | 0 | (i * 2) * NB_ELTS_V8 + 4 * 1); |
1662 | 0 | xmm_Si_0 = _mm_sub_epi32(xmm_Si_0, |
1663 | 0 | _mm_srai_epi32(_mm_add_epi32(xmm_Di_0, xmm_Dim1_0), 1)); |
1664 | 0 | xmm_Si_1 = _mm_sub_epi32(xmm_Si_1, |
1665 | 0 | _mm_srai_epi32(_mm_add_epi32(xmm_Di_1, xmm_Dim1_1), 1)); |
1666 | 0 | *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0; |
1667 | 0 | *(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1; |
1668 | 0 | xmm_Dim1_0 = xmm_Di_0; |
1669 | 0 | xmm_Dim1_1 = xmm_Di_1; |
1670 | 0 | } |
1671 | 0 | } |
1672 | 0 | if (((height) % 2) == 1) { |
1673 | 0 | for (c = 0; c < NB_ELTS_V8; c++) { |
1674 | 0 | OPJ_Sc(i) -= OPJ_Dc(i - 1); |
1675 | 0 | } |
1676 | 0 | } |
1677 | 0 | i = 0; |
1678 | 0 | if (i + 1 < dn) { |
1679 | 0 | __m128i xmm_Si_0 = *((const __m128i*)(tmp + 4 * 0)); |
1680 | 0 | __m128i xmm_Si_1 = *((const __m128i*)(tmp + 4 * 1)); |
1681 | 0 | const __m128i xmm_two = _mm_set1_epi32(2); |
1682 | 0 | for (; i + 1 < dn; i++) { |
1683 | 0 | __m128i xmm_Sip1_0 = *(const __m128i*)(tmp + |
1684 | 0 | (i + 1) * 2 * NB_ELTS_V8 + 4 * 0); |
1685 | 0 | __m128i xmm_Sip1_1 = *(const __m128i*)(tmp + |
1686 | 0 | (i + 1) * 2 * NB_ELTS_V8 + 4 * 1); |
1687 | 0 | __m128i xmm_Di_0 = *(const __m128i*)(tmp + |
1688 | 0 | (1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
1689 | 0 | __m128i xmm_Di_1 = *(const __m128i*)(tmp + |
1690 | 0 | (1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
1691 | 0 | xmm_Di_0 = _mm_add_epi32(xmm_Di_0, |
1692 | 0 | _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), xmm_two), 2)); |
1693 | 0 | xmm_Di_1 = _mm_add_epi32(xmm_Di_1, |
1694 | 0 | _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), xmm_two), 2)); |
1695 | 0 | *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Di_0; |
1696 | 0 | *(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Di_1; |
1697 | 0 | xmm_Si_0 = xmm_Sip1_0; |
1698 | 0 | xmm_Si_1 = xmm_Sip1_1; |
1699 | 0 | } |
1700 | 0 | } |
1701 | 0 | if (((height) % 2) == 0) { |
1702 | 0 | for (c = 0; c < NB_ELTS_V8; c++) { |
1703 | 0 | OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2; |
1704 | 0 | } |
1705 | 0 | } |
1706 | 0 | } |
1707 | | #else |
1708 | | if (even) { |
1709 | | OPJ_UINT32 c; |
1710 | | if (height > 1) { |
1711 | | OPJ_UINT32 i; |
1712 | | for (i = 0; i + 1 < sn; i++) { |
1713 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1714 | | OPJ_Dc(i) -= (OPJ_Sc(i) + OPJ_Sc(i + 1)) >> 1; |
1715 | | } |
1716 | | } |
1717 | | if (((height) % 2) == 0) { |
1718 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1719 | | OPJ_Dc(i) -= OPJ_Sc(i); |
1720 | | } |
1721 | | } |
1722 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1723 | | OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2; |
1724 | | } |
1725 | | for (i = 1; i < dn; i++) { |
1726 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1727 | | OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i) + 2) >> 2; |
1728 | | } |
1729 | | } |
1730 | | if (((height) % 2) == 1) { |
1731 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1732 | | OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2; |
1733 | | } |
1734 | | } |
1735 | | } |
1736 | | } else { |
1737 | | OPJ_UINT32 c; |
1738 | | if (height == 1) { |
1739 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1740 | | OPJ_Sc(0) *= 2; |
1741 | | } |
1742 | | } else { |
1743 | | OPJ_UINT32 i; |
1744 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1745 | | OPJ_Sc(0) -= OPJ_Dc(0); |
1746 | | } |
1747 | | for (i = 1; i < sn; i++) { |
1748 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1749 | | OPJ_Sc(i) -= (OPJ_Dc(i) + OPJ_Dc(i - 1)) >> 1; |
1750 | | } |
1751 | | } |
1752 | | if (((height) % 2) == 1) { |
1753 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1754 | | OPJ_Sc(i) -= OPJ_Dc(i - 1); |
1755 | | } |
1756 | | } |
1757 | | for (i = 0; i + 1 < dn; i++) { |
1758 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1759 | | OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i + 1) + 2) >> 2; |
1760 | | } |
1761 | | } |
1762 | | if (((height) % 2) == 0) { |
1763 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1764 | | OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2; |
1765 | | } |
1766 | | } |
1767 | | } |
1768 | | } |
1769 | | #endif |
1770 | |
|
1771 | 0 | if (cols == NB_ELTS_V8) { |
1772 | 0 | opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn, |
1773 | 0 | stride_width, even ? 0 : 1, NB_ELTS_V8); |
1774 | 0 | } else { |
1775 | 0 | opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn, |
1776 | 0 | stride_width, even ? 0 : 1, cols); |
1777 | 0 | } |
1778 | 0 | } |
1779 | | |
1780 | | static void opj_v8dwt_encode_step1(OPJ_FLOAT32* fw, |
1781 | | OPJ_UINT32 end, |
1782 | | const OPJ_FLOAT32 cst) |
1783 | 0 | { |
1784 | 0 | OPJ_UINT32 i; |
1785 | 0 | #ifdef __SSE__ |
1786 | 0 | __m128* vw = (__m128*) fw; |
1787 | 0 | const __m128 vcst = _mm_set1_ps(cst); |
1788 | 0 | for (i = 0; i < end; ++i) { |
1789 | 0 | vw[0] = _mm_mul_ps(vw[0], vcst); |
1790 | 0 | vw[1] = _mm_mul_ps(vw[1], vcst); |
1791 | 0 | vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128)); |
1792 | 0 | } |
1793 | | #else |
1794 | | OPJ_UINT32 c; |
1795 | | for (i = 0; i < end; ++i) { |
1796 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1797 | | fw[i * 2 * NB_ELTS_V8 + c] *= cst; |
1798 | | } |
1799 | | } |
1800 | | #endif |
1801 | 0 | } |
1802 | | |
1803 | | static void opj_v8dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw, |
1804 | | OPJ_UINT32 end, |
1805 | | OPJ_UINT32 m, |
1806 | | OPJ_FLOAT32 cst) |
1807 | 0 | { |
1808 | 0 | OPJ_UINT32 i; |
1809 | 0 | OPJ_UINT32 imax = opj_uint_min(end, m); |
1810 | 0 | #ifdef __SSE__ |
1811 | 0 | __m128* vw = (__m128*) fw; |
1812 | 0 | __m128 vcst = _mm_set1_ps(cst); |
1813 | 0 | if (imax > 0) { |
1814 | 0 | __m128* vl = (__m128*) fl; |
1815 | 0 | vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vl[0], vw[0]), vcst)); |
1816 | 0 | vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vl[1], vw[1]), vcst)); |
1817 | 0 | vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128)); |
1818 | 0 | i = 1; |
1819 | |
|
1820 | 0 | for (; i < imax; ++i) { |
1821 | 0 | vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vw[-4], vw[0]), vcst)); |
1822 | 0 | vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vw[-3], vw[1]), vcst)); |
1823 | 0 | vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128)); |
1824 | 0 | } |
1825 | 0 | } |
1826 | 0 | if (m < end) { |
1827 | 0 | assert(m + 1 == end); |
1828 | 0 | vcst = _mm_add_ps(vcst, vcst); |
1829 | 0 | vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(vw[-4], vcst)); |
1830 | 0 | vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(vw[-3], vcst)); |
1831 | 0 | } |
1832 | | #else |
1833 | | OPJ_INT32 c; |
1834 | | if (imax > 0) { |
1835 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1836 | | fw[-1 * NB_ELTS_V8 + c] += (fl[0 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) * |
1837 | | cst; |
1838 | | } |
1839 | | fw += 2 * NB_ELTS_V8; |
1840 | | i = 1; |
1841 | | for (; i < imax; ++i) { |
1842 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1843 | | fw[-1 * NB_ELTS_V8 + c] += (fw[-2 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) * |
1844 | | cst; |
1845 | | } |
1846 | | fw += 2 * NB_ELTS_V8; |
1847 | | } |
1848 | | } |
1849 | | if (m < end) { |
1850 | | assert(m + 1 == end); |
1851 | | for (c = 0; c < NB_ELTS_V8; c++) { |
1852 | | fw[-1 * NB_ELTS_V8 + c] += (2 * fw[-2 * NB_ELTS_V8 + c]) * cst; |
1853 | | } |
1854 | | } |
1855 | | #endif |
1856 | 0 | } |
1857 | | |
1858 | | /* Forward 9-7 transform, for the vertical pass, processing cols columns */ |
1859 | | /* where cols <= NB_ELTS_V8 */ |
1860 | | static void opj_dwt_encode_and_deinterleave_v_real( |
1861 | | void *arrayIn, |
1862 | | void *tmpIn, |
1863 | | OPJ_UINT32 height, |
1864 | | OPJ_BOOL even, |
1865 | | OPJ_UINT32 stride_width, |
1866 | | OPJ_UINT32 cols) |
1867 | 0 | { |
1868 | 0 | OPJ_FLOAT32* OPJ_RESTRICT array = (OPJ_FLOAT32 * OPJ_RESTRICT)arrayIn; |
1869 | 0 | OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32 * OPJ_RESTRICT)tmpIn; |
1870 | 0 | const OPJ_INT32 sn = (OPJ_INT32)((height + (even ? 1 : 0)) >> 1); |
1871 | 0 | const OPJ_INT32 dn = (OPJ_INT32)(height - (OPJ_UINT32)sn); |
1872 | 0 | OPJ_INT32 a, b; |
1873 | |
|
1874 | 0 | if (height == 1) { |
1875 | 0 | return; |
1876 | 0 | } |
1877 | | |
1878 | 0 | opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols); |
1879 | |
|
1880 | 0 | if (even) { |
1881 | 0 | a = 0; |
1882 | 0 | b = 1; |
1883 | 0 | } else { |
1884 | 0 | a = 1; |
1885 | 0 | b = 0; |
1886 | 0 | } |
1887 | 0 | opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8, |
1888 | 0 | tmp + (b + 1) * NB_ELTS_V8, |
1889 | 0 | (OPJ_UINT32)dn, |
1890 | 0 | (OPJ_UINT32)opj_int_min(dn, sn - b), |
1891 | 0 | opj_dwt_alpha); |
1892 | 0 | opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8, |
1893 | 0 | tmp + (a + 1) * NB_ELTS_V8, |
1894 | 0 | (OPJ_UINT32)sn, |
1895 | 0 | (OPJ_UINT32)opj_int_min(sn, dn - a), |
1896 | 0 | opj_dwt_beta); |
1897 | 0 | opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8, |
1898 | 0 | tmp + (b + 1) * NB_ELTS_V8, |
1899 | 0 | (OPJ_UINT32)dn, |
1900 | 0 | (OPJ_UINT32)opj_int_min(dn, sn - b), |
1901 | 0 | opj_dwt_gamma); |
1902 | 0 | opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8, |
1903 | 0 | tmp + (a + 1) * NB_ELTS_V8, |
1904 | 0 | (OPJ_UINT32)sn, |
1905 | 0 | (OPJ_UINT32)opj_int_min(sn, dn - a), |
1906 | 0 | opj_dwt_delta); |
1907 | 0 | opj_v8dwt_encode_step1(tmp + b * NB_ELTS_V8, (OPJ_UINT32)dn, |
1908 | 0 | opj_K); |
1909 | 0 | opj_v8dwt_encode_step1(tmp + a * NB_ELTS_V8, (OPJ_UINT32)sn, |
1910 | 0 | opj_invK); |
1911 | | |
1912 | |
|
1913 | 0 | if (cols == NB_ELTS_V8) { |
1914 | 0 | opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp, |
1915 | 0 | (OPJ_INT32*)array, |
1916 | 0 | (OPJ_INT32)dn, (OPJ_INT32)sn, |
1917 | 0 | stride_width, even ? 0 : 1, NB_ELTS_V8); |
1918 | 0 | } else { |
1919 | 0 | opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp, |
1920 | 0 | (OPJ_INT32*)array, |
1921 | 0 | (OPJ_INT32)dn, (OPJ_INT32)sn, |
1922 | 0 | stride_width, even ? 0 : 1, cols); |
1923 | 0 | } |
1924 | 0 | } |
1925 | | |
1926 | | |
1927 | | /* <summary> */ |
1928 | | /* Forward 5-3 wavelet transform in 2-D. */ |
1929 | | /* </summary> */ |
1930 | | static INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp, |
1931 | | opj_tcd_tilecomp_t * tilec, |
1932 | | opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v, |
1933 | | opj_encode_and_deinterleave_h_one_row_fnptr_type |
1934 | | p_encode_and_deinterleave_h_one_row) |
1935 | 0 | { |
1936 | 0 | OPJ_INT32 i; |
1937 | 0 | OPJ_INT32 *bj = 00; |
1938 | 0 | OPJ_UINT32 w; |
1939 | 0 | OPJ_INT32 l; |
1940 | |
|
1941 | 0 | OPJ_SIZE_T l_data_size; |
1942 | |
|
1943 | 0 | opj_tcd_resolution_t * l_cur_res = 0; |
1944 | 0 | opj_tcd_resolution_t * l_last_res = 0; |
1945 | 0 | const int num_threads = opj_thread_pool_get_thread_count(tp); |
1946 | 0 | OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data; |
1947 | |
|
1948 | 0 | w = (OPJ_UINT32)(tilec->x1 - tilec->x0); |
1949 | 0 | l = (OPJ_INT32)tilec->numresolutions - 1; |
1950 | |
|
1951 | 0 | l_cur_res = tilec->resolutions + l; |
1952 | 0 | l_last_res = l_cur_res - 1; |
1953 | |
|
1954 | 0 | l_data_size = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions); |
1955 | | /* overflow check */ |
1956 | 0 | if (l_data_size > (SIZE_MAX / (NB_ELTS_V8 * sizeof(OPJ_INT32)))) { |
1957 | | /* FIXME event manager error callback */ |
1958 | 0 | return OPJ_FALSE; |
1959 | 0 | } |
1960 | 0 | l_data_size *= NB_ELTS_V8 * sizeof(OPJ_INT32); |
1961 | 0 | bj = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size); |
1962 | | /* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */ |
1963 | | /* in that case, so do not error out */ |
1964 | 0 | if (l_data_size != 0 && ! bj) { |
1965 | 0 | return OPJ_FALSE; |
1966 | 0 | } |
1967 | 0 | i = l; |
1968 | |
|
1969 | 0 | while (i--) { |
1970 | 0 | OPJ_UINT32 j; |
1971 | 0 | OPJ_UINT32 rw; /* width of the resolution level computed */ |
1972 | 0 | OPJ_UINT32 rh; /* height of the resolution level computed */ |
1973 | 0 | OPJ_UINT32 |
1974 | 0 | rw1; /* width of the resolution level once lower than computed one */ |
1975 | 0 | OPJ_UINT32 |
1976 | 0 | rh1; /* height of the resolution level once lower than computed one */ |
1977 | 0 | OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ |
1978 | 0 | OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ |
1979 | 0 | OPJ_INT32 dn, sn; |
1980 | |
|
1981 | 0 | rw = (OPJ_UINT32)(l_cur_res->x1 - l_cur_res->x0); |
1982 | 0 | rh = (OPJ_UINT32)(l_cur_res->y1 - l_cur_res->y0); |
1983 | 0 | rw1 = (OPJ_UINT32)(l_last_res->x1 - l_last_res->x0); |
1984 | 0 | rh1 = (OPJ_UINT32)(l_last_res->y1 - l_last_res->y0); |
1985 | |
|
1986 | 0 | cas_row = l_cur_res->x0 & 1; |
1987 | 0 | cas_col = l_cur_res->y0 & 1; |
1988 | |
|
1989 | 0 | sn = (OPJ_INT32)rh1; |
1990 | 0 | dn = (OPJ_INT32)(rh - rh1); |
1991 | | |
1992 | | /* Perform vertical pass */ |
1993 | 0 | if (num_threads <= 1 || rw < 2 * NB_ELTS_V8) { |
1994 | 0 | for (j = 0; j + NB_ELTS_V8 - 1 < rw; j += NB_ELTS_V8) { |
1995 | 0 | p_encode_and_deinterleave_v(tiledp + j, |
1996 | 0 | bj, |
1997 | 0 | rh, |
1998 | 0 | cas_col == 0, |
1999 | 0 | w, |
2000 | 0 | NB_ELTS_V8); |
2001 | 0 | } |
2002 | 0 | if (j < rw) { |
2003 | 0 | p_encode_and_deinterleave_v(tiledp + j, |
2004 | 0 | bj, |
2005 | 0 | rh, |
2006 | 0 | cas_col == 0, |
2007 | 0 | w, |
2008 | 0 | rw - j); |
2009 | 0 | } |
2010 | 0 | } else { |
2011 | 0 | OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
2012 | 0 | OPJ_UINT32 step_j; |
2013 | |
|
2014 | 0 | if (rw < num_jobs) { |
2015 | 0 | num_jobs = rw; |
2016 | 0 | } |
2017 | 0 | step_j = ((rw / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8; |
2018 | |
|
2019 | 0 | for (j = 0; j < num_jobs; j++) { |
2020 | 0 | opj_dwt_encode_v_job_t* job; |
2021 | |
|
2022 | 0 | job = (opj_dwt_encode_v_job_t*) opj_malloc(sizeof(opj_dwt_encode_v_job_t)); |
2023 | 0 | if (!job) { |
2024 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2025 | 0 | opj_aligned_free(bj); |
2026 | 0 | return OPJ_FALSE; |
2027 | 0 | } |
2028 | 0 | job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size); |
2029 | 0 | if (!job->v.mem) { |
2030 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2031 | 0 | opj_free(job); |
2032 | 0 | opj_aligned_free(bj); |
2033 | 0 | return OPJ_FALSE; |
2034 | 0 | } |
2035 | 0 | job->v.dn = dn; |
2036 | 0 | job->v.sn = sn; |
2037 | 0 | job->v.cas = cas_col; |
2038 | 0 | job->rh = rh; |
2039 | 0 | job->w = w; |
2040 | 0 | job->tiledp = tiledp; |
2041 | 0 | job->min_j = j * step_j; |
2042 | 0 | job->max_j = (j + 1 == num_jobs) ? rw : (j + 1) * step_j; |
2043 | 0 | job->p_encode_and_deinterleave_v = p_encode_and_deinterleave_v; |
2044 | 0 | opj_thread_pool_submit_job(tp, opj_dwt_encode_v_func, job); |
2045 | 0 | } |
2046 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2047 | 0 | } |
2048 | | |
2049 | 0 | sn = (OPJ_INT32)rw1; |
2050 | 0 | dn = (OPJ_INT32)(rw - rw1); |
2051 | | |
2052 | | /* Perform horizontal pass */ |
2053 | 0 | if (num_threads <= 1 || rh <= 1) { |
2054 | 0 | for (j = 0; j < rh; j++) { |
2055 | 0 | OPJ_INT32* OPJ_RESTRICT aj = tiledp + j * w; |
2056 | 0 | (*p_encode_and_deinterleave_h_one_row)(aj, bj, rw, |
2057 | 0 | cas_row == 0 ? OPJ_TRUE : OPJ_FALSE); |
2058 | 0 | } |
2059 | 0 | } else { |
2060 | 0 | OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
2061 | 0 | OPJ_UINT32 step_j; |
2062 | |
|
2063 | 0 | if (rh < num_jobs) { |
2064 | 0 | num_jobs = rh; |
2065 | 0 | } |
2066 | 0 | step_j = (rh / num_jobs); |
2067 | |
|
2068 | 0 | for (j = 0; j < num_jobs; j++) { |
2069 | 0 | opj_dwt_encode_h_job_t* job; |
2070 | |
|
2071 | 0 | job = (opj_dwt_encode_h_job_t*) opj_malloc(sizeof(opj_dwt_encode_h_job_t)); |
2072 | 0 | if (!job) { |
2073 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2074 | 0 | opj_aligned_free(bj); |
2075 | 0 | return OPJ_FALSE; |
2076 | 0 | } |
2077 | 0 | job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size); |
2078 | 0 | if (!job->h.mem) { |
2079 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2080 | 0 | opj_free(job); |
2081 | 0 | opj_aligned_free(bj); |
2082 | 0 | return OPJ_FALSE; |
2083 | 0 | } |
2084 | 0 | job->h.dn = dn; |
2085 | 0 | job->h.sn = sn; |
2086 | 0 | job->h.cas = cas_row; |
2087 | 0 | job->rw = rw; |
2088 | 0 | job->w = w; |
2089 | 0 | job->tiledp = tiledp; |
2090 | 0 | job->min_j = j * step_j; |
2091 | 0 | job->max_j = (j + 1U) * step_j; /* this can overflow */ |
2092 | 0 | if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
2093 | 0 | job->max_j = rh; |
2094 | 0 | } |
2095 | 0 | job->p_function = p_encode_and_deinterleave_h_one_row; |
2096 | 0 | opj_thread_pool_submit_job(tp, opj_dwt_encode_h_func, job); |
2097 | 0 | } |
2098 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2099 | 0 | } |
2100 | | |
2101 | 0 | l_cur_res = l_last_res; |
2102 | |
|
2103 | 0 | --l_last_res; |
2104 | 0 | } |
2105 | | |
2106 | 0 | opj_aligned_free(bj); |
2107 | 0 | return OPJ_TRUE; |
2108 | 0 | } |
2109 | | |
2110 | | /* Forward 5-3 wavelet transform in 2-D. */ |
2111 | | /* </summary> */ |
2112 | | OPJ_BOOL opj_dwt_encode(opj_tcd_t *p_tcd, |
2113 | | opj_tcd_tilecomp_t * tilec) |
2114 | 0 | { |
2115 | 0 | return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec, |
2116 | 0 | opj_dwt_encode_and_deinterleave_v, |
2117 | 0 | opj_dwt_encode_and_deinterleave_h_one_row); |
2118 | 0 | } |
2119 | | |
2120 | | /* <summary> */ |
2121 | | /* Inverse 5-3 wavelet transform in 2-D. */ |
2122 | | /* </summary> */ |
2123 | | OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec, |
2124 | | OPJ_UINT32 numres) |
2125 | 3.20k | { |
2126 | 3.20k | if (p_tcd->whole_tile_decoding) { |
2127 | 3.20k | return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres); |
2128 | 3.20k | } else { |
2129 | 0 | return opj_dwt_decode_partial_tile(tilec, numres); |
2130 | 0 | } |
2131 | 3.20k | } |
2132 | | |
2133 | | /* <summary> */ |
2134 | | /* Get norm of 5-3 wavelet. */ |
2135 | | /* </summary> */ |
2136 | | OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) |
2137 | 0 | { |
2138 | | /* FIXME ! This is just a band-aid to avoid a buffer overflow */ |
2139 | | /* but the array should really be extended up to 33 resolution levels */ |
2140 | | /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
2141 | 0 | if (orient == 0 && level >= 10) { |
2142 | 0 | level = 9; |
2143 | 0 | } else if (orient > 0 && level >= 9) { |
2144 | 0 | level = 8; |
2145 | 0 | } |
2146 | 0 | return opj_dwt_norms[orient][level]; |
2147 | 0 | } |
2148 | | |
2149 | | /* <summary> */ |
2150 | | /* Forward 9-7 wavelet transform in 2-D. */ |
2151 | | /* </summary> */ |
2152 | | OPJ_BOOL opj_dwt_encode_real(opj_tcd_t *p_tcd, |
2153 | | opj_tcd_tilecomp_t * tilec) |
2154 | 0 | { |
2155 | 0 | return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec, |
2156 | 0 | opj_dwt_encode_and_deinterleave_v_real, |
2157 | 0 | opj_dwt_encode_and_deinterleave_h_one_row_real); |
2158 | 0 | } |
2159 | | |
2160 | | /* <summary> */ |
2161 | | /* Get norm of 9-7 wavelet. */ |
2162 | | /* </summary> */ |
2163 | | OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) |
2164 | 0 | { |
2165 | | /* FIXME ! This is just a band-aid to avoid a buffer overflow */ |
2166 | | /* but the array should really be extended up to 33 resolution levels */ |
2167 | | /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
2168 | 0 | if (orient == 0 && level >= 10) { |
2169 | 0 | level = 9; |
2170 | 0 | } else if (orient > 0 && level >= 9) { |
2171 | 0 | level = 8; |
2172 | 0 | } |
2173 | 0 | return opj_dwt_norms_real[orient][level]; |
2174 | 0 | } |
2175 | | |
2176 | | void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) |
2177 | 0 | { |
2178 | 0 | OPJ_UINT32 numbands, bandno; |
2179 | 0 | numbands = 3 * tccp->numresolutions - 2; |
2180 | 0 | for (bandno = 0; bandno < numbands; bandno++) { |
2181 | 0 | OPJ_FLOAT64 stepsize; |
2182 | 0 | OPJ_UINT32 resno, level, orient, gain; |
2183 | |
|
2184 | 0 | resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); |
2185 | 0 | orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); |
2186 | 0 | level = tccp->numresolutions - 1 - resno; |
2187 | 0 | gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || |
2188 | 0 | (orient == 2)) ? 1 : 2)); |
2189 | 0 | if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { |
2190 | 0 | stepsize = 1.0; |
2191 | 0 | } else { |
2192 | 0 | OPJ_FLOAT64 norm = opj_dwt_getnorm_real(level, orient); |
2193 | 0 | stepsize = (1 << (gain)) / norm; |
2194 | 0 | } |
2195 | 0 | opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), |
2196 | 0 | (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]); |
2197 | 0 | } |
2198 | 0 | } |
2199 | | |
2200 | | /* <summary> */ |
2201 | | /* Determine maximum computed resolution level for inverse wavelet transform */ |
2202 | | /* </summary> */ |
2203 | | static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, |
2204 | | OPJ_UINT32 i) |
2205 | 60.1k | { |
2206 | 60.1k | OPJ_UINT32 mr = 0; |
2207 | 60.1k | OPJ_UINT32 w; |
2208 | 341k | while (--i) { |
2209 | 281k | ++r; |
2210 | 281k | if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) { |
2211 | 224k | mr = w ; |
2212 | 224k | } |
2213 | 281k | if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) { |
2214 | 130k | mr = w ; |
2215 | 130k | } |
2216 | 281k | } |
2217 | 60.1k | return mr ; |
2218 | 60.1k | } |
2219 | | |
2220 | | typedef struct { |
2221 | | opj_dwt_t h; |
2222 | | OPJ_UINT32 rw; |
2223 | | OPJ_UINT32 w; |
2224 | | OPJ_INT32 * OPJ_RESTRICT tiledp; |
2225 | | OPJ_UINT32 min_j; |
2226 | | OPJ_UINT32 max_j; |
2227 | | } opj_dwt_decode_h_job_t; |
2228 | | |
2229 | | static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls) |
2230 | 0 | { |
2231 | 0 | OPJ_UINT32 j; |
2232 | 0 | opj_dwt_decode_h_job_t* job; |
2233 | 0 | (void)tls; |
2234 | |
|
2235 | 0 | job = (opj_dwt_decode_h_job_t*)user_data; |
2236 | 0 | for (j = job->min_j; j < job->max_j; j++) { |
2237 | 0 | opj_idwt53_h(&job->h, &job->tiledp[j * job->w]); |
2238 | 0 | } |
2239 | |
|
2240 | 0 | opj_aligned_free(job->h.mem); |
2241 | 0 | opj_free(job); |
2242 | 0 | } |
2243 | | |
2244 | | typedef struct { |
2245 | | opj_dwt_t v; |
2246 | | OPJ_UINT32 rh; |
2247 | | OPJ_UINT32 w; |
2248 | | OPJ_INT32 * OPJ_RESTRICT tiledp; |
2249 | | OPJ_UINT32 min_j; |
2250 | | OPJ_UINT32 max_j; |
2251 | | } opj_dwt_decode_v_job_t; |
2252 | | |
2253 | | static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls) |
2254 | 0 | { |
2255 | 0 | OPJ_UINT32 j; |
2256 | 0 | opj_dwt_decode_v_job_t* job; |
2257 | 0 | (void)tls; |
2258 | |
|
2259 | 0 | job = (opj_dwt_decode_v_job_t*)user_data; |
2260 | 0 | for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j; |
2261 | 0 | j += PARALLEL_COLS_53) { |
2262 | 0 | opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, |
2263 | 0 | PARALLEL_COLS_53); |
2264 | 0 | } |
2265 | 0 | if (j < job->max_j) |
2266 | 0 | opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, |
2267 | 0 | (OPJ_INT32)(job->max_j - j)); |
2268 | |
|
2269 | 0 | opj_aligned_free(job->v.mem); |
2270 | 0 | opj_free(job); |
2271 | 0 | } |
2272 | | |
2273 | | |
2274 | | /* <summary> */ |
2275 | | /* Inverse wavelet transform in 2-D. */ |
2276 | | /* </summary> */ |
2277 | | static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, |
2278 | | opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) |
2279 | 3.20k | { |
2280 | 3.20k | opj_dwt_t h; |
2281 | 3.20k | opj_dwt_t v; |
2282 | | |
2283 | 3.20k | opj_tcd_resolution_t* tr = tilec->resolutions; |
2284 | | |
2285 | 3.20k | OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
2286 | 3.20k | tr->x0); /* width of the resolution level computed */ |
2287 | 3.20k | OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
2288 | 3.20k | tr->y0); /* height of the resolution level computed */ |
2289 | | |
2290 | 3.20k | OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - |
2291 | 3.20k | 1].x1 - |
2292 | 3.20k | tilec->resolutions[tilec->minimum_num_resolutions - 1].x0); |
2293 | 3.20k | OPJ_SIZE_T h_mem_size; |
2294 | 3.20k | int num_threads; |
2295 | | |
2296 | | /* Not entirely sure for the return code of w == 0 which is triggered per */ |
2297 | | /* https://github.com/uclouvain/openjpeg/issues/1505 */ |
2298 | 3.20k | if (numres == 1U || w == 0) { |
2299 | 0 | return OPJ_TRUE; |
2300 | 0 | } |
2301 | 3.20k | num_threads = opj_thread_pool_get_thread_count(tp); |
2302 | 3.20k | h_mem_size = opj_dwt_max_resolution(tr, numres); |
2303 | | /* overflow check */ |
2304 | 3.20k | if (h_mem_size > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) { |
2305 | | /* FIXME event manager error callback */ |
2306 | 0 | return OPJ_FALSE; |
2307 | 0 | } |
2308 | | /* We need PARALLEL_COLS_53 times the height of the array, */ |
2309 | | /* since for the vertical pass */ |
2310 | | /* we process PARALLEL_COLS_53 columns at a time */ |
2311 | 3.20k | h_mem_size *= PARALLEL_COLS_53 * sizeof(OPJ_INT32); |
2312 | 3.20k | h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
2313 | 3.20k | if (! h.mem) { |
2314 | | /* FIXME event manager error callback */ |
2315 | 0 | return OPJ_FALSE; |
2316 | 0 | } |
2317 | | |
2318 | 3.20k | v.mem = h.mem; |
2319 | | |
2320 | 19.2k | while (--numres) { |
2321 | 16.0k | OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data; |
2322 | 16.0k | OPJ_UINT32 j; |
2323 | | |
2324 | 16.0k | ++tr; |
2325 | 16.0k | h.sn = (OPJ_INT32)rw; |
2326 | 16.0k | v.sn = (OPJ_INT32)rh; |
2327 | | |
2328 | 16.0k | rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
2329 | 16.0k | rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
2330 | | |
2331 | 16.0k | h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
2332 | 16.0k | h.cas = tr->x0 % 2; |
2333 | | |
2334 | 16.0k | if (num_threads <= 1 || rh <= 1) { |
2335 | 1.12M | for (j = 0; j < rh; ++j) { |
2336 | 1.10M | opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]); |
2337 | 1.10M | } |
2338 | 16.0k | } else { |
2339 | 0 | OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
2340 | 0 | OPJ_UINT32 step_j; |
2341 | |
|
2342 | 0 | if (rh < num_jobs) { |
2343 | 0 | num_jobs = rh; |
2344 | 0 | } |
2345 | 0 | step_j = (rh / num_jobs); |
2346 | |
|
2347 | 0 | for (j = 0; j < num_jobs; j++) { |
2348 | 0 | opj_dwt_decode_h_job_t* job; |
2349 | |
|
2350 | 0 | job = (opj_dwt_decode_h_job_t*) opj_malloc(sizeof(opj_dwt_decode_h_job_t)); |
2351 | 0 | if (!job) { |
2352 | | /* It would be nice to fallback to single thread case, but */ |
2353 | | /* unfortunately some jobs may be launched and have modified */ |
2354 | | /* tiledp, so it is not practical to recover from that error */ |
2355 | | /* FIXME event manager error callback */ |
2356 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2357 | 0 | opj_aligned_free(h.mem); |
2358 | 0 | return OPJ_FALSE; |
2359 | 0 | } |
2360 | 0 | job->h = h; |
2361 | 0 | job->rw = rw; |
2362 | 0 | job->w = w; |
2363 | 0 | job->tiledp = tiledp; |
2364 | 0 | job->min_j = j * step_j; |
2365 | 0 | job->max_j = (j + 1U) * step_j; /* this can overflow */ |
2366 | 0 | if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
2367 | 0 | job->max_j = rh; |
2368 | 0 | } |
2369 | 0 | job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
2370 | 0 | if (!job->h.mem) { |
2371 | | /* FIXME event manager error callback */ |
2372 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2373 | 0 | opj_free(job); |
2374 | 0 | opj_aligned_free(h.mem); |
2375 | 0 | return OPJ_FALSE; |
2376 | 0 | } |
2377 | 0 | opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job); |
2378 | 0 | } |
2379 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2380 | 0 | } |
2381 | | |
2382 | 16.0k | v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
2383 | 16.0k | v.cas = tr->y0 % 2; |
2384 | | |
2385 | 16.0k | if (num_threads <= 1 || rw <= 1) { |
2386 | 136k | for (j = 0; j + PARALLEL_COLS_53 <= rw; |
2387 | 120k | j += PARALLEL_COLS_53) { |
2388 | 120k | opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53); |
2389 | 120k | } |
2390 | 16.0k | if (j < rw) { |
2391 | 8.65k | opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j)); |
2392 | 8.65k | } |
2393 | 16.0k | } else { |
2394 | 0 | OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
2395 | 0 | OPJ_UINT32 step_j; |
2396 | |
|
2397 | 0 | if (rw < num_jobs) { |
2398 | 0 | num_jobs = rw; |
2399 | 0 | } |
2400 | 0 | step_j = (rw / num_jobs); |
2401 | |
|
2402 | 0 | for (j = 0; j < num_jobs; j++) { |
2403 | 0 | opj_dwt_decode_v_job_t* job; |
2404 | |
|
2405 | 0 | job = (opj_dwt_decode_v_job_t*) opj_malloc(sizeof(opj_dwt_decode_v_job_t)); |
2406 | 0 | if (!job) { |
2407 | | /* It would be nice to fallback to single thread case, but */ |
2408 | | /* unfortunately some jobs may be launched and have modified */ |
2409 | | /* tiledp, so it is not practical to recover from that error */ |
2410 | | /* FIXME event manager error callback */ |
2411 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2412 | 0 | opj_aligned_free(v.mem); |
2413 | 0 | return OPJ_FALSE; |
2414 | 0 | } |
2415 | 0 | job->v = v; |
2416 | 0 | job->rh = rh; |
2417 | 0 | job->w = w; |
2418 | 0 | job->tiledp = tiledp; |
2419 | 0 | job->min_j = j * step_j; |
2420 | 0 | job->max_j = (j + 1U) * step_j; /* this can overflow */ |
2421 | 0 | if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
2422 | 0 | job->max_j = rw; |
2423 | 0 | } |
2424 | 0 | job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
2425 | 0 | if (!job->v.mem) { |
2426 | | /* FIXME event manager error callback */ |
2427 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2428 | 0 | opj_free(job); |
2429 | 0 | opj_aligned_free(v.mem); |
2430 | 0 | return OPJ_FALSE; |
2431 | 0 | } |
2432 | 0 | opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job); |
2433 | 0 | } |
2434 | 0 | opj_thread_pool_wait_completion(tp, 0); |
2435 | 0 | } |
2436 | 16.0k | } |
2437 | 3.20k | opj_aligned_free(h.mem); |
2438 | 3.20k | return OPJ_TRUE; |
2439 | 3.20k | } |
2440 | | |
2441 | | static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest, |
2442 | | OPJ_INT32 cas, |
2443 | | opj_sparse_array_int32_t* sa, |
2444 | | OPJ_UINT32 sa_line, |
2445 | | OPJ_UINT32 sn, |
2446 | | OPJ_UINT32 win_l_x0, |
2447 | | OPJ_UINT32 win_l_x1, |
2448 | | OPJ_UINT32 win_h_x0, |
2449 | | OPJ_UINT32 win_h_x1) |
2450 | 0 | { |
2451 | 0 | OPJ_BOOL ret; |
2452 | 0 | ret = opj_sparse_array_int32_read(sa, |
2453 | 0 | win_l_x0, sa_line, |
2454 | 0 | win_l_x1, sa_line + 1, |
2455 | 0 | dest + cas + 2 * win_l_x0, |
2456 | 0 | 2, 0, OPJ_TRUE); |
2457 | 0 | assert(ret); |
2458 | 0 | ret = opj_sparse_array_int32_read(sa, |
2459 | 0 | sn + win_h_x0, sa_line, |
2460 | 0 | sn + win_h_x1, sa_line + 1, |
2461 | 0 | dest + 1 - cas + 2 * win_h_x0, |
2462 | 0 | 2, 0, OPJ_TRUE); |
2463 | 0 | assert(ret); |
2464 | 0 | OPJ_UNUSED(ret); |
2465 | 0 | } |
2466 | | |
2467 | | |
2468 | | static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest, |
2469 | | OPJ_INT32 cas, |
2470 | | opj_sparse_array_int32_t* sa, |
2471 | | OPJ_UINT32 sa_col, |
2472 | | OPJ_UINT32 nb_cols, |
2473 | | OPJ_UINT32 sn, |
2474 | | OPJ_UINT32 win_l_y0, |
2475 | | OPJ_UINT32 win_l_y1, |
2476 | | OPJ_UINT32 win_h_y0, |
2477 | | OPJ_UINT32 win_h_y1) |
2478 | 0 | { |
2479 | 0 | OPJ_BOOL ret; |
2480 | 0 | ret = opj_sparse_array_int32_read(sa, |
2481 | 0 | sa_col, win_l_y0, |
2482 | 0 | sa_col + nb_cols, win_l_y1, |
2483 | 0 | dest + cas * 4 + 2 * 4 * win_l_y0, |
2484 | 0 | 1, 2 * 4, OPJ_TRUE); |
2485 | 0 | assert(ret); |
2486 | 0 | ret = opj_sparse_array_int32_read(sa, |
2487 | 0 | sa_col, sn + win_h_y0, |
2488 | 0 | sa_col + nb_cols, sn + win_h_y1, |
2489 | 0 | dest + (1 - cas) * 4 + 2 * 4 * win_h_y0, |
2490 | 0 | 1, 2 * 4, OPJ_TRUE); |
2491 | 0 | assert(ret); |
2492 | 0 | OPJ_UNUSED(ret); |
2493 | 0 | } |
2494 | | |
2495 | | static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
2496 | | OPJ_INT32 cas, |
2497 | | OPJ_INT32 win_l_x0, |
2498 | | OPJ_INT32 win_l_x1, |
2499 | | OPJ_INT32 win_h_x0, |
2500 | | OPJ_INT32 win_h_x1) |
2501 | 0 | { |
2502 | 0 | OPJ_INT32 i; |
2503 | |
|
2504 | 0 | if (!cas) { |
2505 | 0 | if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
2506 | | |
2507 | | /* Naive version is : |
2508 | | for (i = win_l_x0; i < i_max; i++) { |
2509 | | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
2510 | | } |
2511 | | for (i = win_h_x0; i < win_h_x1; i++) { |
2512 | | OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
2513 | | } |
2514 | | but the compiler doesn't manage to unroll it to avoid bound |
2515 | | checking in OPJ_S_ and OPJ_D_ macros |
2516 | | */ |
2517 | |
|
2518 | 0 | i = win_l_x0; |
2519 | 0 | if (i < win_l_x1) { |
2520 | 0 | OPJ_INT32 i_max; |
2521 | | |
2522 | | /* Left-most case */ |
2523 | 0 | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
2524 | 0 | i ++; |
2525 | |
|
2526 | 0 | i_max = win_l_x1; |
2527 | 0 | if (i_max > dn) { |
2528 | 0 | i_max = dn; |
2529 | 0 | } |
2530 | 0 | for (; i < i_max; i++) { |
2531 | | /* No bound checking */ |
2532 | 0 | OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2; |
2533 | 0 | } |
2534 | 0 | for (; i < win_l_x1; i++) { |
2535 | | /* Right-most case */ |
2536 | 0 | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
2537 | 0 | } |
2538 | 0 | } |
2539 | |
|
2540 | 0 | i = win_h_x0; |
2541 | 0 | if (i < win_h_x1) { |
2542 | 0 | OPJ_INT32 i_max = win_h_x1; |
2543 | 0 | if (i_max >= sn) { |
2544 | 0 | i_max = sn - 1; |
2545 | 0 | } |
2546 | 0 | for (; i < i_max; i++) { |
2547 | | /* No bound checking */ |
2548 | 0 | OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1; |
2549 | 0 | } |
2550 | 0 | for (; i < win_h_x1; i++) { |
2551 | | /* Right-most case */ |
2552 | 0 | OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
2553 | 0 | } |
2554 | 0 | } |
2555 | 0 | } |
2556 | 0 | } else { |
2557 | 0 | if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
2558 | 0 | OPJ_S(0) /= 2; |
2559 | 0 | } else { |
2560 | 0 | for (i = win_l_x0; i < win_l_x1; i++) { |
2561 | 0 | OPJ_D(i) = opj_int_sub_no_overflow(OPJ_D(i), |
2562 | 0 | opj_int_add_no_overflow(opj_int_add_no_overflow(OPJ_SS_(i), OPJ_SS_(i + 1)), |
2563 | 0 | 2) >> 2); |
2564 | 0 | } |
2565 | 0 | for (i = win_h_x0; i < win_h_x1; i++) { |
2566 | 0 | OPJ_S(i) = opj_int_add_no_overflow(OPJ_S(i), |
2567 | 0 | opj_int_add_no_overflow(OPJ_DD_(i), OPJ_DD_(i - 1)) >> 1); |
2568 | 0 | } |
2569 | 0 | } |
2570 | 0 | } |
2571 | 0 | } |
2572 | | |
2573 | 0 | #define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off] |
2574 | 0 | #define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off] |
2575 | 0 | #define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off))) |
2576 | 0 | #define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off))) |
2577 | 0 | #define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off))) |
2578 | 0 | #define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off))) |
2579 | | |
2580 | | static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a, |
2581 | | OPJ_UINT32 nb_cols, |
2582 | | OPJ_INT32 dn, OPJ_INT32 sn, |
2583 | | OPJ_INT32 cas, |
2584 | | OPJ_INT32 win_l_x0, |
2585 | | OPJ_INT32 win_l_x1, |
2586 | | OPJ_INT32 win_h_x0, |
2587 | | OPJ_INT32 win_h_x1) |
2588 | 0 | { |
2589 | 0 | OPJ_INT32 i; |
2590 | 0 | OPJ_UINT32 off; |
2591 | |
|
2592 | 0 | (void)nb_cols; |
2593 | |
|
2594 | 0 | if (!cas) { |
2595 | 0 | if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
2596 | | |
2597 | | /* Naive version is : |
2598 | | for (i = win_l_x0; i < i_max; i++) { |
2599 | | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
2600 | | } |
2601 | | for (i = win_h_x0; i < win_h_x1; i++) { |
2602 | | OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
2603 | | } |
2604 | | but the compiler doesn't manage to unroll it to avoid bound |
2605 | | checking in OPJ_S_ and OPJ_D_ macros |
2606 | | */ |
2607 | |
|
2608 | 0 | i = win_l_x0; |
2609 | 0 | if (i < win_l_x1) { |
2610 | 0 | OPJ_INT32 i_max; |
2611 | | |
2612 | | /* Left-most case */ |
2613 | 0 | for (off = 0; off < 4; off++) { |
2614 | 0 | OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; |
2615 | 0 | } |
2616 | 0 | i ++; |
2617 | |
|
2618 | 0 | i_max = win_l_x1; |
2619 | 0 | if (i_max > dn) { |
2620 | 0 | i_max = dn; |
2621 | 0 | } |
2622 | |
|
2623 | 0 | #ifdef __SSE2__ |
2624 | 0 | if (i + 1 < i_max) { |
2625 | 0 | const __m128i two = _mm_set1_epi32(2); |
2626 | 0 | __m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8)); |
2627 | 0 | for (; i + 1 < i_max; i += 2) { |
2628 | | /* No bound checking */ |
2629 | 0 | __m128i S = _mm_load_si128((__m128i * const)(a + i * 8)); |
2630 | 0 | __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); |
2631 | 0 | __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); |
2632 | 0 | __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); |
2633 | 0 | S = _mm_sub_epi32(S, |
2634 | 0 | _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2)); |
2635 | 0 | S1 = _mm_sub_epi32(S1, |
2636 | 0 | _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2)); |
2637 | 0 | _mm_store_si128((__m128i*)(a + i * 8), S); |
2638 | 0 | _mm_store_si128((__m128i*)(a + (i + 1) * 8), S1); |
2639 | 0 | Dm1 = D1; |
2640 | 0 | } |
2641 | 0 | } |
2642 | 0 | #endif |
2643 | |
|
2644 | 0 | for (; i < i_max; i++) { |
2645 | | /* No bound checking */ |
2646 | 0 | for (off = 0; off < 4; off++) { |
2647 | 0 | OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2; |
2648 | 0 | } |
2649 | 0 | } |
2650 | 0 | for (; i < win_l_x1; i++) { |
2651 | | /* Right-most case */ |
2652 | 0 | for (off = 0; off < 4; off++) { |
2653 | 0 | OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; |
2654 | 0 | } |
2655 | 0 | } |
2656 | 0 | } |
2657 | |
|
2658 | 0 | i = win_h_x0; |
2659 | 0 | if (i < win_h_x1) { |
2660 | 0 | OPJ_INT32 i_max = win_h_x1; |
2661 | 0 | if (i_max >= sn) { |
2662 | 0 | i_max = sn - 1; |
2663 | 0 | } |
2664 | |
|
2665 | 0 | #ifdef __SSE2__ |
2666 | 0 | if (i + 1 < i_max) { |
2667 | 0 | __m128i S = _mm_load_si128((__m128i * const)(a + i * 8)); |
2668 | 0 | for (; i + 1 < i_max; i += 2) { |
2669 | | /* No bound checking */ |
2670 | 0 | __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); |
2671 | 0 | __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); |
2672 | 0 | __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); |
2673 | 0 | __m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8)); |
2674 | 0 | D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1)); |
2675 | 0 | D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1)); |
2676 | 0 | _mm_store_si128((__m128i*)(a + 4 + i * 8), D); |
2677 | 0 | _mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1); |
2678 | 0 | S = S2; |
2679 | 0 | } |
2680 | 0 | } |
2681 | 0 | #endif |
2682 | |
|
2683 | 0 | for (; i < i_max; i++) { |
2684 | | /* No bound checking */ |
2685 | 0 | for (off = 0; off < 4; off++) { |
2686 | 0 | OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1; |
2687 | 0 | } |
2688 | 0 | } |
2689 | 0 | for (; i < win_h_x1; i++) { |
2690 | | /* Right-most case */ |
2691 | 0 | for (off = 0; off < 4; off++) { |
2692 | 0 | OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1; |
2693 | 0 | } |
2694 | 0 | } |
2695 | 0 | } |
2696 | 0 | } |
2697 | 0 | } else { |
2698 | 0 | if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
2699 | 0 | for (off = 0; off < 4; off++) { |
2700 | 0 | OPJ_S_off(0, off) /= 2; |
2701 | 0 | } |
2702 | 0 | } else { |
2703 | 0 | for (i = win_l_x0; i < win_l_x1; i++) { |
2704 | 0 | for (off = 0; off < 4; off++) { |
2705 | 0 | OPJ_D_off(i, off) = opj_int_sub_no_overflow( |
2706 | 0 | OPJ_D_off(i, off), |
2707 | 0 | opj_int_add_no_overflow( |
2708 | 0 | opj_int_add_no_overflow(OPJ_SS__off(i, off), OPJ_SS__off(i + 1, off)), 2) >> 2); |
2709 | 0 | } |
2710 | 0 | } |
2711 | 0 | for (i = win_h_x0; i < win_h_x1; i++) { |
2712 | 0 | for (off = 0; off < 4; off++) { |
2713 | 0 | OPJ_S_off(i, off) = opj_int_add_no_overflow( |
2714 | 0 | OPJ_S_off(i, off), |
2715 | 0 | opj_int_add_no_overflow(OPJ_DD__off(i, off), OPJ_DD__off(i - 1, off)) >> 1); |
2716 | 0 | } |
2717 | 0 | } |
2718 | 0 | } |
2719 | 0 | } |
2720 | 0 | } |
2721 | | |
2722 | | static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec, |
2723 | | OPJ_UINT32 resno, |
2724 | | OPJ_UINT32 bandno, |
2725 | | OPJ_UINT32 tcx0, |
2726 | | OPJ_UINT32 tcy0, |
2727 | | OPJ_UINT32 tcx1, |
2728 | | OPJ_UINT32 tcy1, |
2729 | | OPJ_UINT32* tbx0, |
2730 | | OPJ_UINT32* tby0, |
2731 | | OPJ_UINT32* tbx1, |
2732 | | OPJ_UINT32* tby1) |
2733 | 0 | { |
2734 | | /* Compute number of decomposition for this band. See table F-1 */ |
2735 | 0 | OPJ_UINT32 nb = (resno == 0) ? |
2736 | 0 | tilec->numresolutions - 1 : |
2737 | 0 | tilec->numresolutions - resno; |
2738 | | /* Map above tile-based coordinates to sub-band-based coordinates per */ |
2739 | | /* equation B-15 of the standard */ |
2740 | 0 | OPJ_UINT32 x0b = bandno & 1; |
2741 | 0 | OPJ_UINT32 y0b = bandno >> 1; |
2742 | 0 | if (tbx0) { |
2743 | 0 | *tbx0 = (nb == 0) ? tcx0 : |
2744 | 0 | (tcx0 <= (1U << (nb - 1)) * x0b) ? 0 : |
2745 | 0 | opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb); |
2746 | 0 | } |
2747 | 0 | if (tby0) { |
2748 | 0 | *tby0 = (nb == 0) ? tcy0 : |
2749 | 0 | (tcy0 <= (1U << (nb - 1)) * y0b) ? 0 : |
2750 | 0 | opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb); |
2751 | 0 | } |
2752 | 0 | if (tbx1) { |
2753 | 0 | *tbx1 = (nb == 0) ? tcx1 : |
2754 | 0 | (tcx1 <= (1U << (nb - 1)) * x0b) ? 0 : |
2755 | 0 | opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb); |
2756 | 0 | } |
2757 | 0 | if (tby1) { |
2758 | 0 | *tby1 = (nb == 0) ? tcy1 : |
2759 | 0 | (tcy1 <= (1U << (nb - 1)) * y0b) ? 0 : |
2760 | 0 | opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb); |
2761 | 0 | } |
2762 | 0 | } |
2763 | | |
2764 | | static void opj_dwt_segment_grow(OPJ_UINT32 filter_width, |
2765 | | OPJ_UINT32 max_size, |
2766 | | OPJ_UINT32* start, |
2767 | | OPJ_UINT32* end) |
2768 | 0 | { |
2769 | 0 | *start = opj_uint_subs(*start, filter_width); |
2770 | 0 | *end = opj_uint_adds(*end, filter_width); |
2771 | 0 | *end = opj_uint_min(*end, max_size); |
2772 | 0 | } |
2773 | | |
2774 | | |
2775 | | static opj_sparse_array_int32_t* opj_dwt_init_sparse_array( |
2776 | | opj_tcd_tilecomp_t* tilec, |
2777 | | OPJ_UINT32 numres) |
2778 | 0 | { |
2779 | 0 | opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
2780 | 0 | OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0); |
2781 | 0 | OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0); |
2782 | 0 | OPJ_UINT32 resno, bandno, precno, cblkno; |
2783 | 0 | opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create( |
2784 | 0 | w, h, opj_uint_min(w, 64), opj_uint_min(h, 64)); |
2785 | 0 | if (sa == NULL) { |
2786 | 0 | return NULL; |
2787 | 0 | } |
2788 | | |
2789 | 0 | for (resno = 0; resno < numres; ++resno) { |
2790 | 0 | opj_tcd_resolution_t* res = &tilec->resolutions[resno]; |
2791 | |
|
2792 | 0 | for (bandno = 0; bandno < res->numbands; ++bandno) { |
2793 | 0 | opj_tcd_band_t* band = &res->bands[bandno]; |
2794 | |
|
2795 | 0 | for (precno = 0; precno < res->pw * res->ph; ++precno) { |
2796 | 0 | opj_tcd_precinct_t* precinct = &band->precincts[precno]; |
2797 | 0 | for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) { |
2798 | 0 | opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno]; |
2799 | 0 | if (cblk->decoded_data != NULL) { |
2800 | 0 | OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0); |
2801 | 0 | OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0); |
2802 | 0 | OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0); |
2803 | 0 | OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0); |
2804 | |
|
2805 | 0 | if (band->bandno & 1) { |
2806 | 0 | opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1]; |
2807 | 0 | x += (OPJ_UINT32)(pres->x1 - pres->x0); |
2808 | 0 | } |
2809 | 0 | if (band->bandno & 2) { |
2810 | 0 | opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1]; |
2811 | 0 | y += (OPJ_UINT32)(pres->y1 - pres->y0); |
2812 | 0 | } |
2813 | |
|
2814 | 0 | if (!opj_sparse_array_int32_write(sa, x, y, |
2815 | 0 | x + cblk_w, y + cblk_h, |
2816 | 0 | cblk->decoded_data, |
2817 | 0 | 1, cblk_w, OPJ_TRUE)) { |
2818 | 0 | opj_sparse_array_int32_free(sa); |
2819 | 0 | return NULL; |
2820 | 0 | } |
2821 | 0 | } |
2822 | 0 | } |
2823 | 0 | } |
2824 | 0 | } |
2825 | 0 | } |
2826 | | |
2827 | 0 | return sa; |
2828 | 0 | } |
2829 | | |
2830 | | |
2831 | | static OPJ_BOOL opj_dwt_decode_partial_tile( |
2832 | | opj_tcd_tilecomp_t* tilec, |
2833 | | OPJ_UINT32 numres) |
2834 | 0 | { |
2835 | 0 | opj_sparse_array_int32_t* sa; |
2836 | 0 | opj_dwt_t h; |
2837 | 0 | opj_dwt_t v; |
2838 | 0 | OPJ_UINT32 resno; |
2839 | | /* This value matches the maximum left/right extension given in tables */ |
2840 | | /* F.2 and F.3 of the standard. */ |
2841 | 0 | const OPJ_UINT32 filter_width = 2U; |
2842 | |
|
2843 | 0 | opj_tcd_resolution_t* tr = tilec->resolutions; |
2844 | 0 | opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
2845 | |
|
2846 | 0 | OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
2847 | 0 | tr->x0); /* width of the resolution level computed */ |
2848 | 0 | OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
2849 | 0 | tr->y0); /* height of the resolution level computed */ |
2850 | |
|
2851 | 0 | OPJ_SIZE_T h_mem_size; |
2852 | | |
2853 | | /* Compute the intersection of the area of interest, expressed in tile coordinates */ |
2854 | | /* with the tile coordinates */ |
2855 | 0 | OPJ_UINT32 win_tcx0 = tilec->win_x0; |
2856 | 0 | OPJ_UINT32 win_tcy0 = tilec->win_y0; |
2857 | 0 | OPJ_UINT32 win_tcx1 = tilec->win_x1; |
2858 | 0 | OPJ_UINT32 win_tcy1 = tilec->win_y1; |
2859 | |
|
2860 | 0 | if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) { |
2861 | 0 | return OPJ_TRUE; |
2862 | 0 | } |
2863 | | |
2864 | 0 | sa = opj_dwt_init_sparse_array(tilec, numres); |
2865 | 0 | if (sa == NULL) { |
2866 | 0 | return OPJ_FALSE; |
2867 | 0 | } |
2868 | | |
2869 | 0 | if (numres == 1U) { |
2870 | 0 | OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
2871 | 0 | tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
2872 | 0 | tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
2873 | 0 | tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
2874 | 0 | tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
2875 | 0 | tilec->data_win, |
2876 | 0 | 1, tr_max->win_x1 - tr_max->win_x0, |
2877 | 0 | OPJ_TRUE); |
2878 | 0 | assert(ret); |
2879 | 0 | OPJ_UNUSED(ret); |
2880 | 0 | opj_sparse_array_int32_free(sa); |
2881 | 0 | return OPJ_TRUE; |
2882 | 0 | } |
2883 | 0 | h_mem_size = opj_dwt_max_resolution(tr, numres); |
2884 | | /* overflow check */ |
2885 | | /* in vertical pass, we process 4 columns at a time */ |
2886 | 0 | if (h_mem_size > (SIZE_MAX / (4 * sizeof(OPJ_INT32)))) { |
2887 | | /* FIXME event manager error callback */ |
2888 | 0 | opj_sparse_array_int32_free(sa); |
2889 | 0 | return OPJ_FALSE; |
2890 | 0 | } |
2891 | | |
2892 | 0 | h_mem_size *= 4 * sizeof(OPJ_INT32); |
2893 | 0 | h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
2894 | 0 | if (! h.mem) { |
2895 | | /* FIXME event manager error callback */ |
2896 | 0 | opj_sparse_array_int32_free(sa); |
2897 | 0 | return OPJ_FALSE; |
2898 | 0 | } |
2899 | | |
2900 | 0 | v.mem = h.mem; |
2901 | |
|
2902 | 0 | for (resno = 1; resno < numres; resno ++) { |
2903 | 0 | OPJ_UINT32 i, j; |
2904 | | /* Window of interest subband-based coordinates */ |
2905 | 0 | OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1; |
2906 | 0 | OPJ_UINT32 win_hl_x0, win_hl_x1; |
2907 | 0 | OPJ_UINT32 win_lh_y0, win_lh_y1; |
2908 | | /* Window of interest tile-resolution-based coordinates */ |
2909 | 0 | OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1; |
2910 | | /* Tile-resolution subband-based coordinates */ |
2911 | 0 | OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0; |
2912 | |
|
2913 | 0 | ++tr; |
2914 | |
|
2915 | 0 | h.sn = (OPJ_INT32)rw; |
2916 | 0 | v.sn = (OPJ_INT32)rh; |
2917 | |
|
2918 | 0 | rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
2919 | 0 | rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
2920 | |
|
2921 | 0 | h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
2922 | 0 | h.cas = tr->x0 % 2; |
2923 | |
|
2924 | 0 | v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
2925 | 0 | v.cas = tr->y0 % 2; |
2926 | | |
2927 | | /* Get the subband coordinates for the window of interest */ |
2928 | | /* LL band */ |
2929 | 0 | opj_dwt_get_band_coordinates(tilec, resno, 0, |
2930 | 0 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
2931 | 0 | &win_ll_x0, &win_ll_y0, |
2932 | 0 | &win_ll_x1, &win_ll_y1); |
2933 | | |
2934 | | /* HL band */ |
2935 | 0 | opj_dwt_get_band_coordinates(tilec, resno, 1, |
2936 | 0 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
2937 | 0 | &win_hl_x0, NULL, &win_hl_x1, NULL); |
2938 | | |
2939 | | /* LH band */ |
2940 | 0 | opj_dwt_get_band_coordinates(tilec, resno, 2, |
2941 | 0 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
2942 | 0 | NULL, &win_lh_y0, NULL, &win_lh_y1); |
2943 | | |
2944 | | /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */ |
2945 | 0 | tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0; |
2946 | 0 | tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0; |
2947 | 0 | tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0; |
2948 | 0 | tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0; |
2949 | | |
2950 | | /* Subtract the origin of the bands for this tile, to the subwindow */ |
2951 | | /* of interest band coordinates, so as to get them relative to the */ |
2952 | | /* tile */ |
2953 | 0 | win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0); |
2954 | 0 | win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0); |
2955 | 0 | win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0); |
2956 | 0 | win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0); |
2957 | 0 | win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0); |
2958 | 0 | win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0); |
2959 | 0 | win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0); |
2960 | 0 | win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0); |
2961 | |
|
2962 | 0 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1); |
2963 | 0 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1); |
2964 | |
|
2965 | 0 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1); |
2966 | 0 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1); |
2967 | | |
2968 | | /* Compute the tile-resolution-based coordinates for the window of interest */ |
2969 | 0 | if (h.cas == 0) { |
2970 | 0 | win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1); |
2971 | 0 | win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw); |
2972 | 0 | } else { |
2973 | 0 | win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1); |
2974 | 0 | win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw); |
2975 | 0 | } |
2976 | |
|
2977 | 0 | if (v.cas == 0) { |
2978 | 0 | win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1); |
2979 | 0 | win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh); |
2980 | 0 | } else { |
2981 | 0 | win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1); |
2982 | 0 | win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh); |
2983 | 0 | } |
2984 | |
|
2985 | 0 | for (j = 0; j < rh; ++j) { |
2986 | 0 | if ((j >= win_ll_y0 && j < win_ll_y1) || |
2987 | 0 | (j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) { |
2988 | | |
2989 | | /* Avoids dwt.c:1584:44 (in opj_dwt_decode_partial_1): runtime error: */ |
2990 | | /* signed integer overflow: -1094795586 + -1094795586 cannot be represented in type 'int' */ |
2991 | | /* on opj_decompress -i ../../openjpeg/MAPA.jp2 -o out.tif -d 0,0,256,256 */ |
2992 | | /* This is less extreme than memsetting the whole buffer to 0 */ |
2993 | | /* although we could potentially do better with better handling of edge conditions */ |
2994 | 0 | if (win_tr_x1 >= 1 && win_tr_x1 < rw) { |
2995 | 0 | h.mem[win_tr_x1 - 1] = 0; |
2996 | 0 | } |
2997 | 0 | if (win_tr_x1 < rw) { |
2998 | 0 | h.mem[win_tr_x1] = 0; |
2999 | 0 | } |
3000 | |
|
3001 | 0 | opj_dwt_interleave_partial_h(h.mem, |
3002 | 0 | h.cas, |
3003 | 0 | sa, |
3004 | 0 | j, |
3005 | 0 | (OPJ_UINT32)h.sn, |
3006 | 0 | win_ll_x0, |
3007 | 0 | win_ll_x1, |
3008 | 0 | win_hl_x0, |
3009 | 0 | win_hl_x1); |
3010 | 0 | opj_dwt_decode_partial_1(h.mem, h.dn, h.sn, h.cas, |
3011 | 0 | (OPJ_INT32)win_ll_x0, |
3012 | 0 | (OPJ_INT32)win_ll_x1, |
3013 | 0 | (OPJ_INT32)win_hl_x0, |
3014 | 0 | (OPJ_INT32)win_hl_x1); |
3015 | 0 | if (!opj_sparse_array_int32_write(sa, |
3016 | 0 | win_tr_x0, j, |
3017 | 0 | win_tr_x1, j + 1, |
3018 | 0 | h.mem + win_tr_x0, |
3019 | 0 | 1, 0, OPJ_TRUE)) { |
3020 | | /* FIXME event manager error callback */ |
3021 | 0 | opj_sparse_array_int32_free(sa); |
3022 | 0 | opj_aligned_free(h.mem); |
3023 | 0 | return OPJ_FALSE; |
3024 | 0 | } |
3025 | 0 | } |
3026 | 0 | } |
3027 | | |
3028 | 0 | for (i = win_tr_x0; i < win_tr_x1;) { |
3029 | 0 | OPJ_UINT32 nb_cols = opj_uint_min(4U, win_tr_x1 - i); |
3030 | 0 | opj_dwt_interleave_partial_v(v.mem, |
3031 | 0 | v.cas, |
3032 | 0 | sa, |
3033 | 0 | i, |
3034 | 0 | nb_cols, |
3035 | 0 | (OPJ_UINT32)v.sn, |
3036 | 0 | win_ll_y0, |
3037 | 0 | win_ll_y1, |
3038 | 0 | win_lh_y0, |
3039 | 0 | win_lh_y1); |
3040 | 0 | opj_dwt_decode_partial_1_parallel(v.mem, nb_cols, v.dn, v.sn, v.cas, |
3041 | 0 | (OPJ_INT32)win_ll_y0, |
3042 | 0 | (OPJ_INT32)win_ll_y1, |
3043 | 0 | (OPJ_INT32)win_lh_y0, |
3044 | 0 | (OPJ_INT32)win_lh_y1); |
3045 | 0 | if (!opj_sparse_array_int32_write(sa, |
3046 | 0 | i, win_tr_y0, |
3047 | 0 | i + nb_cols, win_tr_y1, |
3048 | 0 | v.mem + 4 * win_tr_y0, |
3049 | 0 | 1, 4, OPJ_TRUE)) { |
3050 | | /* FIXME event manager error callback */ |
3051 | 0 | opj_sparse_array_int32_free(sa); |
3052 | 0 | opj_aligned_free(h.mem); |
3053 | 0 | return OPJ_FALSE; |
3054 | 0 | } |
3055 | | |
3056 | 0 | i += nb_cols; |
3057 | 0 | } |
3058 | 0 | } |
3059 | 0 | opj_aligned_free(h.mem); |
3060 | |
|
3061 | 0 | { |
3062 | 0 | OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
3063 | 0 | tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
3064 | 0 | tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
3065 | 0 | tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
3066 | 0 | tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
3067 | 0 | tilec->data_win, |
3068 | 0 | 1, tr_max->win_x1 - tr_max->win_x0, |
3069 | 0 | OPJ_TRUE); |
3070 | 0 | assert(ret); |
3071 | 0 | OPJ_UNUSED(ret); |
3072 | 0 | } |
3073 | 0 | opj_sparse_array_int32_free(sa); |
3074 | 0 | return OPJ_TRUE; |
3075 | 0 | } |
3076 | | |
3077 | | static void opj_v8dwt_interleave_h(opj_v8dwt_t* OPJ_RESTRICT dwt, |
3078 | | OPJ_FLOAT32* OPJ_RESTRICT a, |
3079 | | OPJ_UINT32 width, |
3080 | | OPJ_UINT32 remaining_height) |
3081 | 3.00M | { |
3082 | 3.00M | OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(dwt->wavelet + dwt->cas); |
3083 | 3.00M | OPJ_UINT32 i, k; |
3084 | 3.00M | OPJ_UINT32 x0 = dwt->win_l_x0; |
3085 | 3.00M | OPJ_UINT32 x1 = dwt->win_l_x1; |
3086 | | |
3087 | 9.01M | for (k = 0; k < 2; ++k) { |
3088 | 6.01M | if (remaining_height >= NB_ELTS_V8 && ((OPJ_SIZE_T) a & 0x0f) == 0 && |
3089 | 6.01M | ((OPJ_SIZE_T) bi & 0x0f) == 0) { |
3090 | | /* Fast code path */ |
3091 | 486M | for (i = x0; i < x1; ++i) { |
3092 | 481M | OPJ_UINT32 j = i; |
3093 | 481M | OPJ_FLOAT32* OPJ_RESTRICT dst = bi + i * 2 * NB_ELTS_V8; |
3094 | 481M | dst[0] = a[j]; |
3095 | 481M | j += width; |
3096 | 481M | dst[1] = a[j]; |
3097 | 481M | j += width; |
3098 | 481M | dst[2] = a[j]; |
3099 | 481M | j += width; |
3100 | 481M | dst[3] = a[j]; |
3101 | 481M | j += width; |
3102 | 481M | dst[4] = a[j]; |
3103 | 481M | j += width; |
3104 | 481M | dst[5] = a[j]; |
3105 | 481M | j += width; |
3106 | 481M | dst[6] = a[j]; |
3107 | 481M | j += width; |
3108 | 481M | dst[7] = a[j]; |
3109 | 481M | } |
3110 | 4.77M | } else { |
3111 | | /* Slow code path */ |
3112 | 38.3M | for (i = x0; i < x1; ++i) { |
3113 | 37.1M | OPJ_UINT32 j = i; |
3114 | 37.1M | OPJ_FLOAT32* OPJ_RESTRICT dst = bi + i * 2 * NB_ELTS_V8; |
3115 | 37.1M | dst[0] = a[j]; |
3116 | 37.1M | j += width; |
3117 | 37.1M | if (remaining_height == 1) { |
3118 | 1.25M | continue; |
3119 | 1.25M | } |
3120 | 35.9M | dst[1] = a[j]; |
3121 | 35.9M | j += width; |
3122 | 35.9M | if (remaining_height == 2) { |
3123 | 842k | continue; |
3124 | 842k | } |
3125 | 35.0M | dst[2] = a[j]; |
3126 | 35.0M | j += width; |
3127 | 35.0M | if (remaining_height == 3) { |
3128 | 2.01M | continue; |
3129 | 2.01M | } |
3130 | 33.0M | dst[3] = a[j]; |
3131 | 33.0M | j += width; |
3132 | 33.0M | if (remaining_height == 4) { |
3133 | 1.29M | continue; |
3134 | 1.29M | } |
3135 | 31.7M | dst[4] = a[j]; |
3136 | 31.7M | j += width; |
3137 | 31.7M | if (remaining_height == 5) { |
3138 | 2.68M | continue; |
3139 | 2.68M | } |
3140 | 29.0M | dst[5] = a[j]; |
3141 | 29.0M | j += width; |
3142 | 29.0M | if (remaining_height == 6) { |
3143 | 809k | continue; |
3144 | 809k | } |
3145 | 28.2M | dst[6] = a[j]; |
3146 | 28.2M | j += width; |
3147 | 28.2M | if (remaining_height == 7) { |
3148 | 440k | continue; |
3149 | 440k | } |
3150 | 27.8M | dst[7] = a[j]; |
3151 | 27.8M | } |
3152 | 1.23M | } |
3153 | | |
3154 | 6.01M | bi = (OPJ_FLOAT32*)(dwt->wavelet + 1 - dwt->cas); |
3155 | 6.01M | a += dwt->sn; |
3156 | 6.01M | x0 = dwt->win_h_x0; |
3157 | 6.01M | x1 = dwt->win_h_x1; |
3158 | 6.01M | } |
3159 | 3.00M | } |
3160 | | |
3161 | | static void opj_v8dwt_interleave_partial_h(opj_v8dwt_t* dwt, |
3162 | | opj_sparse_array_int32_t* sa, |
3163 | | OPJ_UINT32 sa_line, |
3164 | | OPJ_UINT32 remaining_height) |
3165 | 0 | { |
3166 | 0 | OPJ_UINT32 i; |
3167 | 0 | for (i = 0; i < remaining_height; i++) { |
3168 | 0 | OPJ_BOOL ret; |
3169 | 0 | ret = opj_sparse_array_int32_read(sa, |
3170 | 0 | dwt->win_l_x0, sa_line + i, |
3171 | 0 | dwt->win_l_x1, sa_line + i + 1, |
3172 | | /* Nasty cast from float* to int32* */ |
3173 | 0 | (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i, |
3174 | 0 | 2 * NB_ELTS_V8, 0, OPJ_TRUE); |
3175 | 0 | assert(ret); |
3176 | 0 | ret = opj_sparse_array_int32_read(sa, |
3177 | 0 | (OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i, |
3178 | 0 | (OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1, |
3179 | | /* Nasty cast from float* to int32* */ |
3180 | 0 | (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i, |
3181 | 0 | 2 * NB_ELTS_V8, 0, OPJ_TRUE); |
3182 | 0 | assert(ret); |
3183 | 0 | OPJ_UNUSED(ret); |
3184 | 0 | } |
3185 | 0 | } |
3186 | | |
3187 | | static INLINE void opj_v8dwt_interleave_v(opj_v8dwt_t* OPJ_RESTRICT dwt, |
3188 | | OPJ_FLOAT32* OPJ_RESTRICT a, |
3189 | | OPJ_UINT32 width, |
3190 | | OPJ_UINT32 nb_elts_read) |
3191 | 2.78M | { |
3192 | 2.78M | opj_v8_t* OPJ_RESTRICT bi = dwt->wavelet + dwt->cas; |
3193 | 2.78M | OPJ_UINT32 i; |
3194 | | |
3195 | 262M | for (i = dwt->win_l_x0; i < dwt->win_l_x1; ++i) { |
3196 | 259M | memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width], |
3197 | 259M | (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32)); |
3198 | 259M | } |
3199 | | |
3200 | 2.78M | a += (OPJ_UINT32)dwt->sn * (OPJ_SIZE_T)width; |
3201 | 2.78M | bi = dwt->wavelet + 1 - dwt->cas; |
3202 | | |
3203 | 261M | for (i = dwt->win_h_x0; i < dwt->win_h_x1; ++i) { |
3204 | 258M | memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width], |
3205 | 258M | (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32)); |
3206 | 258M | } |
3207 | 2.78M | } |
3208 | | |
3209 | | static void opj_v8dwt_interleave_partial_v(opj_v8dwt_t* OPJ_RESTRICT dwt, |
3210 | | opj_sparse_array_int32_t* sa, |
3211 | | OPJ_UINT32 sa_col, |
3212 | | OPJ_UINT32 nb_elts_read) |
3213 | 0 | { |
3214 | 0 | OPJ_BOOL ret; |
3215 | 0 | ret = opj_sparse_array_int32_read(sa, |
3216 | 0 | sa_col, dwt->win_l_x0, |
3217 | 0 | sa_col + nb_elts_read, dwt->win_l_x1, |
3218 | 0 | (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0), |
3219 | 0 | 1, 2 * NB_ELTS_V8, OPJ_TRUE); |
3220 | 0 | assert(ret); |
3221 | 0 | ret = opj_sparse_array_int32_read(sa, |
3222 | 0 | sa_col, (OPJ_UINT32)dwt->sn + dwt->win_h_x0, |
3223 | 0 | sa_col + nb_elts_read, (OPJ_UINT32)dwt->sn + dwt->win_h_x1, |
3224 | 0 | (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0), |
3225 | 0 | 1, 2 * NB_ELTS_V8, OPJ_TRUE); |
3226 | 0 | assert(ret); |
3227 | 0 | OPJ_UNUSED(ret); |
3228 | 0 | } |
3229 | | |
3230 | | #ifdef __SSE__ |
3231 | | |
3232 | | static void opj_v8dwt_decode_step1_sse(opj_v8_t* w, |
3233 | | OPJ_UINT32 start, |
3234 | | OPJ_UINT32 end, |
3235 | | const __m128 c) |
3236 | 11.5M | { |
3237 | 11.5M | __m128* OPJ_RESTRICT vw = (__m128*) w; |
3238 | 11.5M | OPJ_UINT32 i = start; |
3239 | | /* To be adapted if NB_ELTS_V8 changes */ |
3240 | 11.5M | vw += 4 * start; |
3241 | | /* Note: attempt at loop unrolling x2 doesn't help */ |
3242 | 1.04G | for (; i < end; ++i, vw += 4) { |
3243 | 1.03G | vw[0] = _mm_mul_ps(vw[0], c); |
3244 | 1.03G | vw[1] = _mm_mul_ps(vw[1], c); |
3245 | 1.03G | } |
3246 | 11.5M | } |
3247 | | |
3248 | | static void opj_v8dwt_decode_step2_sse(opj_v8_t* l, opj_v8_t* w, |
3249 | | OPJ_UINT32 start, |
3250 | | OPJ_UINT32 end, |
3251 | | OPJ_UINT32 m, |
3252 | | __m128 c) |
3253 | 23.1M | { |
3254 | 23.1M | __m128* OPJ_RESTRICT vl = (__m128*) l; |
3255 | 23.1M | __m128* OPJ_RESTRICT vw = (__m128*) w; |
3256 | | /* To be adapted if NB_ELTS_V8 changes */ |
3257 | 23.1M | OPJ_UINT32 i; |
3258 | 23.1M | OPJ_UINT32 imax = opj_uint_min(end, m); |
3259 | 23.1M | if (start == 0) { |
3260 | 23.1M | if (imax >= 1) { |
3261 | 23.1M | vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vl[0], vw[0]), c)); |
3262 | 23.1M | vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vl[1], vw[1]), c)); |
3263 | 23.1M | vw += 4; |
3264 | 23.1M | start = 1; |
3265 | 23.1M | } |
3266 | 23.1M | } else { |
3267 | 0 | vw += start * 4; |
3268 | 0 | } |
3269 | | |
3270 | 23.1M | i = start; |
3271 | | /* Note: attempt at loop unrolling x2 doesn't help */ |
3272 | 2.06G | for (; i < imax; ++i) { |
3273 | 2.04G | vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vw[-4], vw[0]), c)); |
3274 | 2.04G | vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vw[-3], vw[1]), c)); |
3275 | 2.04G | vw += 4; |
3276 | 2.04G | } |
3277 | 23.1M | if (m < end) { |
3278 | 11.5M | assert(m + 1 == end); |
3279 | 11.5M | c = _mm_add_ps(c, c); |
3280 | 11.5M | vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(c, vw[-4])); |
3281 | 11.5M | vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(c, vw[-3])); |
3282 | 11.5M | } |
3283 | 23.1M | } |
3284 | | |
3285 | | #else |
3286 | | |
3287 | | static void opj_v8dwt_decode_step1(opj_v8_t* w, |
3288 | | OPJ_UINT32 start, |
3289 | | OPJ_UINT32 end, |
3290 | | const OPJ_FLOAT32 c) |
3291 | | { |
3292 | | OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w; |
3293 | | OPJ_UINT32 i; |
3294 | | /* To be adapted if NB_ELTS_V8 changes */ |
3295 | | for (i = start; i < end; ++i) { |
3296 | | fw[i * 2 * 8 ] = fw[i * 2 * 8 ] * c; |
3297 | | fw[i * 2 * 8 + 1] = fw[i * 2 * 8 + 1] * c; |
3298 | | fw[i * 2 * 8 + 2] = fw[i * 2 * 8 + 2] * c; |
3299 | | fw[i * 2 * 8 + 3] = fw[i * 2 * 8 + 3] * c; |
3300 | | fw[i * 2 * 8 + 4] = fw[i * 2 * 8 + 4] * c; |
3301 | | fw[i * 2 * 8 + 5] = fw[i * 2 * 8 + 5] * c; |
3302 | | fw[i * 2 * 8 + 6] = fw[i * 2 * 8 + 6] * c; |
3303 | | fw[i * 2 * 8 + 7] = fw[i * 2 * 8 + 7] * c; |
3304 | | } |
3305 | | } |
3306 | | |
3307 | | static void opj_v8dwt_decode_step2(opj_v8_t* l, opj_v8_t* w, |
3308 | | OPJ_UINT32 start, |
3309 | | OPJ_UINT32 end, |
3310 | | OPJ_UINT32 m, |
3311 | | OPJ_FLOAT32 c) |
3312 | | { |
3313 | | OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l; |
3314 | | OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w; |
3315 | | OPJ_UINT32 i; |
3316 | | OPJ_UINT32 imax = opj_uint_min(end, m); |
3317 | | if (start > 0) { |
3318 | | fw += 2 * NB_ELTS_V8 * start; |
3319 | | fl = fw - 2 * NB_ELTS_V8; |
3320 | | } |
3321 | | /* To be adapted if NB_ELTS_V8 changes */ |
3322 | | for (i = start; i < imax; ++i) { |
3323 | | fw[-8] = fw[-8] + ((fl[0] + fw[0]) * c); |
3324 | | fw[-7] = fw[-7] + ((fl[1] + fw[1]) * c); |
3325 | | fw[-6] = fw[-6] + ((fl[2] + fw[2]) * c); |
3326 | | fw[-5] = fw[-5] + ((fl[3] + fw[3]) * c); |
3327 | | fw[-4] = fw[-4] + ((fl[4] + fw[4]) * c); |
3328 | | fw[-3] = fw[-3] + ((fl[5] + fw[5]) * c); |
3329 | | fw[-2] = fw[-2] + ((fl[6] + fw[6]) * c); |
3330 | | fw[-1] = fw[-1] + ((fl[7] + fw[7]) * c); |
3331 | | fl = fw; |
3332 | | fw += 2 * NB_ELTS_V8; |
3333 | | } |
3334 | | if (m < end) { |
3335 | | assert(m + 1 == end); |
3336 | | c += c; |
3337 | | fw[-8] = fw[-8] + fl[0] * c; |
3338 | | fw[-7] = fw[-7] + fl[1] * c; |
3339 | | fw[-6] = fw[-6] + fl[2] * c; |
3340 | | fw[-5] = fw[-5] + fl[3] * c; |
3341 | | fw[-4] = fw[-4] + fl[4] * c; |
3342 | | fw[-3] = fw[-3] + fl[5] * c; |
3343 | | fw[-2] = fw[-2] + fl[6] * c; |
3344 | | fw[-1] = fw[-1] + fl[7] * c; |
3345 | | } |
3346 | | } |
3347 | | |
3348 | | #endif |
3349 | | |
3350 | | /* <summary> */ |
3351 | | /* Inverse 9-7 wavelet transform in 1-D. */ |
3352 | | /* </summary> */ |
3353 | | static void opj_v8dwt_decode(opj_v8dwt_t* OPJ_RESTRICT dwt) |
3354 | 5.78M | { |
3355 | 5.78M | OPJ_INT32 a, b; |
3356 | | /* BUG_WEIRD_TWO_INVK (look for this identifier in tcd.c) */ |
3357 | | /* Historic value for 2 / opj_invK */ |
3358 | | /* Normally, we should use invK, but if we do so, we have failures in the */ |
3359 | | /* conformance test, due to MSE and peak errors significantly higher than */ |
3360 | | /* accepted value */ |
3361 | | /* Due to using two_invK instead of invK, we have to compensate in tcd.c */ |
3362 | | /* the computation of the stepsize for the non LL subbands */ |
3363 | 5.78M | const float two_invK = 1.625732422f; |
3364 | 5.78M | if (dwt->cas == 0) { |
3365 | 5.78M | if (!((dwt->dn > 0) || (dwt->sn > 1))) { |
3366 | 0 | return; |
3367 | 0 | } |
3368 | 5.78M | a = 0; |
3369 | 5.78M | b = 1; |
3370 | 5.78M | } else { |
3371 | 372 | if (!((dwt->sn > 0) || (dwt->dn > 1))) { |
3372 | 0 | return; |
3373 | 0 | } |
3374 | 372 | a = 1; |
3375 | 372 | b = 0; |
3376 | 372 | } |
3377 | 5.78M | #ifdef __SSE__ |
3378 | 5.78M | opj_v8dwt_decode_step1_sse(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1, |
3379 | 5.78M | _mm_set1_ps(opj_K)); |
3380 | 5.78M | opj_v8dwt_decode_step1_sse(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1, |
3381 | 5.78M | _mm_set1_ps(two_invK)); |
3382 | 5.78M | opj_v8dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, |
3383 | 5.78M | dwt->win_l_x0, dwt->win_l_x1, |
3384 | 5.78M | (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
3385 | 5.78M | _mm_set1_ps(-opj_dwt_delta)); |
3386 | 5.78M | opj_v8dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, |
3387 | 5.78M | dwt->win_h_x0, dwt->win_h_x1, |
3388 | 5.78M | (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
3389 | 5.78M | _mm_set1_ps(-opj_dwt_gamma)); |
3390 | 5.78M | opj_v8dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, |
3391 | 5.78M | dwt->win_l_x0, dwt->win_l_x1, |
3392 | 5.78M | (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
3393 | 5.78M | _mm_set1_ps(-opj_dwt_beta)); |
3394 | 5.78M | opj_v8dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, |
3395 | 5.78M | dwt->win_h_x0, dwt->win_h_x1, |
3396 | 5.78M | (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
3397 | 5.78M | _mm_set1_ps(-opj_dwt_alpha)); |
3398 | | #else |
3399 | | opj_v8dwt_decode_step1(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1, |
3400 | | opj_K); |
3401 | | opj_v8dwt_decode_step1(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1, |
3402 | | two_invK); |
3403 | | opj_v8dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, |
3404 | | dwt->win_l_x0, dwt->win_l_x1, |
3405 | | (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
3406 | | -opj_dwt_delta); |
3407 | | opj_v8dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, |
3408 | | dwt->win_h_x0, dwt->win_h_x1, |
3409 | | (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
3410 | | -opj_dwt_gamma); |
3411 | | opj_v8dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, |
3412 | | dwt->win_l_x0, dwt->win_l_x1, |
3413 | | (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
3414 | | -opj_dwt_beta); |
3415 | | opj_v8dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, |
3416 | | dwt->win_h_x0, dwt->win_h_x1, |
3417 | | (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
3418 | | -opj_dwt_alpha); |
3419 | | #endif |
3420 | 5.78M | } |
3421 | | |
3422 | | typedef struct { |
3423 | | opj_v8dwt_t h; |
3424 | | OPJ_UINT32 rw; |
3425 | | OPJ_UINT32 w; |
3426 | | OPJ_FLOAT32 * OPJ_RESTRICT aj; |
3427 | | OPJ_UINT32 nb_rows; |
3428 | | } opj_dwt97_decode_h_job_t; |
3429 | | |
3430 | | static void opj_dwt97_decode_h_func(void* user_data, opj_tls_t* tls) |
3431 | 0 | { |
3432 | 0 | OPJ_UINT32 j; |
3433 | 0 | opj_dwt97_decode_h_job_t* job; |
3434 | 0 | OPJ_FLOAT32 * OPJ_RESTRICT aj; |
3435 | 0 | OPJ_UINT32 w; |
3436 | 0 | (void)tls; |
3437 | |
|
3438 | 0 | job = (opj_dwt97_decode_h_job_t*)user_data; |
3439 | 0 | w = job->w; |
3440 | |
|
3441 | 0 | assert((job->nb_rows % NB_ELTS_V8) == 0); |
3442 | |
|
3443 | 0 | aj = job->aj; |
3444 | 0 | for (j = 0; j + NB_ELTS_V8 <= job->nb_rows; j += NB_ELTS_V8) { |
3445 | 0 | OPJ_UINT32 k; |
3446 | 0 | opj_v8dwt_interleave_h(&job->h, aj, job->w, NB_ELTS_V8); |
3447 | 0 | opj_v8dwt_decode(&job->h); |
3448 | | |
3449 | | /* To be adapted if NB_ELTS_V8 changes */ |
3450 | 0 | for (k = 0; k < job->rw; k++) { |
3451 | 0 | aj[k ] = job->h.wavelet[k].f[0]; |
3452 | 0 | aj[k + (OPJ_SIZE_T)w ] = job->h.wavelet[k].f[1]; |
3453 | 0 | aj[k + (OPJ_SIZE_T)w * 2] = job->h.wavelet[k].f[2]; |
3454 | 0 | aj[k + (OPJ_SIZE_T)w * 3] = job->h.wavelet[k].f[3]; |
3455 | 0 | } |
3456 | 0 | for (k = 0; k < job->rw; k++) { |
3457 | 0 | aj[k + (OPJ_SIZE_T)w * 4] = job->h.wavelet[k].f[4]; |
3458 | 0 | aj[k + (OPJ_SIZE_T)w * 5] = job->h.wavelet[k].f[5]; |
3459 | 0 | aj[k + (OPJ_SIZE_T)w * 6] = job->h.wavelet[k].f[6]; |
3460 | 0 | aj[k + (OPJ_SIZE_T)w * 7] = job->h.wavelet[k].f[7]; |
3461 | 0 | } |
3462 | |
|
3463 | 0 | aj += w * NB_ELTS_V8; |
3464 | 0 | } |
3465 | |
|
3466 | 0 | opj_aligned_free(job->h.wavelet); |
3467 | 0 | opj_free(job); |
3468 | 0 | } |
3469 | | |
3470 | | |
3471 | | typedef struct { |
3472 | | opj_v8dwt_t v; |
3473 | | OPJ_UINT32 rh; |
3474 | | OPJ_UINT32 w; |
3475 | | OPJ_FLOAT32 * OPJ_RESTRICT aj; |
3476 | | OPJ_UINT32 nb_columns; |
3477 | | } opj_dwt97_decode_v_job_t; |
3478 | | |
3479 | | static void opj_dwt97_decode_v_func(void* user_data, opj_tls_t* tls) |
3480 | 0 | { |
3481 | 0 | OPJ_UINT32 j; |
3482 | 0 | opj_dwt97_decode_v_job_t* job; |
3483 | 0 | OPJ_FLOAT32 * OPJ_RESTRICT aj; |
3484 | 0 | (void)tls; |
3485 | |
|
3486 | 0 | job = (opj_dwt97_decode_v_job_t*)user_data; |
3487 | |
|
3488 | 0 | assert((job->nb_columns % NB_ELTS_V8) == 0); |
3489 | |
|
3490 | 0 | aj = job->aj; |
3491 | 0 | for (j = 0; j + NB_ELTS_V8 <= job->nb_columns; j += NB_ELTS_V8) { |
3492 | 0 | OPJ_UINT32 k; |
3493 | |
|
3494 | 0 | opj_v8dwt_interleave_v(&job->v, aj, job->w, NB_ELTS_V8); |
3495 | 0 | opj_v8dwt_decode(&job->v); |
3496 | |
|
3497 | 0 | for (k = 0; k < job->rh; ++k) { |
3498 | 0 | memcpy(&aj[k * (OPJ_SIZE_T)job->w], &job->v.wavelet[k], |
3499 | 0 | NB_ELTS_V8 * sizeof(OPJ_FLOAT32)); |
3500 | 0 | } |
3501 | 0 | aj += NB_ELTS_V8; |
3502 | 0 | } |
3503 | |
|
3504 | 0 | opj_aligned_free(job->v.wavelet); |
3505 | 0 | opj_free(job); |
3506 | 0 | } |
3507 | | |
3508 | | |
3509 | | /* <summary> */ |
3510 | | /* Inverse 9-7 wavelet transform in 2-D. */ |
3511 | | /* </summary> */ |
3512 | | static |
3513 | | OPJ_BOOL opj_dwt_decode_tile_97(opj_thread_pool_t* tp, |
3514 | | opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, |
3515 | | OPJ_UINT32 numres) |
3516 | 56.9k | { |
3517 | 56.9k | opj_v8dwt_t h; |
3518 | 56.9k | opj_v8dwt_t v; |
3519 | | |
3520 | 56.9k | opj_tcd_resolution_t* res = tilec->resolutions; |
3521 | | |
3522 | 56.9k | OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - |
3523 | 56.9k | res->x0); /* width of the resolution level computed */ |
3524 | 56.9k | OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - |
3525 | 56.9k | res->y0); /* height of the resolution level computed */ |
3526 | | |
3527 | 56.9k | OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - |
3528 | 56.9k | 1].x1 - |
3529 | 56.9k | tilec->resolutions[tilec->minimum_num_resolutions - 1].x0); |
3530 | | |
3531 | 56.9k | OPJ_SIZE_T l_data_size; |
3532 | 56.9k | const int num_threads = opj_thread_pool_get_thread_count(tp); |
3533 | | |
3534 | 56.9k | if (numres == 1) { |
3535 | 0 | return OPJ_TRUE; |
3536 | 0 | } |
3537 | | |
3538 | 56.9k | l_data_size = opj_dwt_max_resolution(res, numres); |
3539 | | /* overflow check */ |
3540 | 56.9k | if (l_data_size > (SIZE_MAX / sizeof(opj_v8_t))) { |
3541 | | /* FIXME event manager error callback */ |
3542 | 0 | return OPJ_FALSE; |
3543 | 0 | } |
3544 | 56.9k | h.wavelet = (opj_v8_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v8_t)); |
3545 | 56.9k | if (!h.wavelet) { |
3546 | | /* FIXME event manager error callback */ |
3547 | 0 | return OPJ_FALSE; |
3548 | 0 | } |
3549 | 56.9k | v.wavelet = h.wavelet; |
3550 | | |
3551 | 321k | while (--numres) { |
3552 | 265k | OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data; |
3553 | 265k | OPJ_UINT32 j; |
3554 | | |
3555 | 265k | h.sn = (OPJ_INT32)rw; |
3556 | 265k | v.sn = (OPJ_INT32)rh; |
3557 | | |
3558 | 265k | ++res; |
3559 | | |
3560 | 265k | rw = (OPJ_UINT32)(res->x1 - |
3561 | 265k | res->x0); /* width of the resolution level computed */ |
3562 | 265k | rh = (OPJ_UINT32)(res->y1 - |
3563 | 265k | res->y0); /* height of the resolution level computed */ |
3564 | | |
3565 | 265k | h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
3566 | 265k | h.cas = res->x0 % 2; |
3567 | | |
3568 | 265k | h.win_l_x0 = 0; |
3569 | 265k | h.win_l_x1 = (OPJ_UINT32)h.sn; |
3570 | 265k | h.win_h_x0 = 0; |
3571 | 265k | h.win_h_x1 = (OPJ_UINT32)h.dn; |
3572 | | |
3573 | 265k | if (num_threads <= 1 || rh < 2 * NB_ELTS_V8) { |
3574 | 3.14M | for (j = 0; j + (NB_ELTS_V8 - 1) < rh; j += NB_ELTS_V8) { |
3575 | 2.88M | OPJ_UINT32 k; |
3576 | 2.88M | opj_v8dwt_interleave_h(&h, aj, w, NB_ELTS_V8); |
3577 | 2.88M | opj_v8dwt_decode(&h); |
3578 | | |
3579 | | /* To be adapted if NB_ELTS_V8 changes */ |
3580 | 512M | for (k = 0; k < rw; k++) { |
3581 | 509M | aj[k ] = h.wavelet[k].f[0]; |
3582 | 509M | aj[k + (OPJ_SIZE_T)w ] = h.wavelet[k].f[1]; |
3583 | 509M | aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2]; |
3584 | 509M | aj[k + (OPJ_SIZE_T)w * 3] = h.wavelet[k].f[3]; |
3585 | 509M | } |
3586 | 512M | for (k = 0; k < rw; k++) { |
3587 | 509M | aj[k + (OPJ_SIZE_T)w * 4] = h.wavelet[k].f[4]; |
3588 | 509M | aj[k + (OPJ_SIZE_T)w * 5] = h.wavelet[k].f[5]; |
3589 | 509M | aj[k + (OPJ_SIZE_T)w * 6] = h.wavelet[k].f[6]; |
3590 | 509M | aj[k + (OPJ_SIZE_T)w * 7] = h.wavelet[k].f[7]; |
3591 | 509M | } |
3592 | | |
3593 | 2.88M | aj += w * NB_ELTS_V8; |
3594 | 2.88M | } |
3595 | 265k | } else { |
3596 | 0 | OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
3597 | 0 | OPJ_UINT32 step_j; |
3598 | |
|
3599 | 0 | if ((rh / NB_ELTS_V8) < num_jobs) { |
3600 | 0 | num_jobs = rh / NB_ELTS_V8; |
3601 | 0 | } |
3602 | 0 | step_j = ((rh / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8; |
3603 | 0 | for (j = 0; j < num_jobs; j++) { |
3604 | 0 | opj_dwt97_decode_h_job_t* job; |
3605 | |
|
3606 | 0 | job = (opj_dwt97_decode_h_job_t*) opj_malloc(sizeof(opj_dwt97_decode_h_job_t)); |
3607 | 0 | if (!job) { |
3608 | 0 | opj_thread_pool_wait_completion(tp, 0); |
3609 | 0 | opj_aligned_free(h.wavelet); |
3610 | 0 | return OPJ_FALSE; |
3611 | 0 | } |
3612 | 0 | job->h.wavelet = (opj_v8_t*)opj_aligned_malloc(l_data_size * sizeof(opj_v8_t)); |
3613 | 0 | if (!job->h.wavelet) { |
3614 | 0 | opj_thread_pool_wait_completion(tp, 0); |
3615 | 0 | opj_free(job); |
3616 | 0 | opj_aligned_free(h.wavelet); |
3617 | 0 | return OPJ_FALSE; |
3618 | 0 | } |
3619 | 0 | job->h.dn = h.dn; |
3620 | 0 | job->h.sn = h.sn; |
3621 | 0 | job->h.cas = h.cas; |
3622 | 0 | job->h.win_l_x0 = h.win_l_x0; |
3623 | 0 | job->h.win_l_x1 = h.win_l_x1; |
3624 | 0 | job->h.win_h_x0 = h.win_h_x0; |
3625 | 0 | job->h.win_h_x1 = h.win_h_x1; |
3626 | 0 | job->rw = rw; |
3627 | 0 | job->w = w; |
3628 | 0 | job->aj = aj; |
3629 | 0 | job->nb_rows = (j + 1 == num_jobs) ? (rh & (OPJ_UINT32)~ |
3630 | 0 | (NB_ELTS_V8 - 1)) - j * step_j : step_j; |
3631 | 0 | aj += w * job->nb_rows; |
3632 | 0 | opj_thread_pool_submit_job(tp, opj_dwt97_decode_h_func, job); |
3633 | 0 | } |
3634 | 0 | opj_thread_pool_wait_completion(tp, 0); |
3635 | 0 | j = rh & (OPJ_UINT32)~(NB_ELTS_V8 - 1); |
3636 | 0 | } |
3637 | | |
3638 | 265k | if (j < rh) { |
3639 | 124k | OPJ_UINT32 k; |
3640 | 124k | opj_v8dwt_interleave_h(&h, aj, w, rh - j); |
3641 | 124k | opj_v8dwt_decode(&h); |
3642 | 9.46M | for (k = 0; k < rw; k++) { |
3643 | 9.34M | OPJ_UINT32 l; |
3644 | 44.8M | for (l = 0; l < rh - j; l++) { |
3645 | 35.5M | aj[k + (OPJ_SIZE_T)w * l ] = h.wavelet[k].f[l]; |
3646 | 35.5M | } |
3647 | 9.34M | } |
3648 | 124k | } |
3649 | | |
3650 | 265k | v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
3651 | 265k | v.cas = res->y0 % 2; |
3652 | 265k | v.win_l_x0 = 0; |
3653 | 265k | v.win_l_x1 = (OPJ_UINT32)v.sn; |
3654 | 265k | v.win_h_x0 = 0; |
3655 | 265k | v.win_h_x1 = (OPJ_UINT32)v.dn; |
3656 | | |
3657 | 265k | aj = (OPJ_FLOAT32*) tilec->data; |
3658 | 265k | if (num_threads <= 1 || rw < 2 * NB_ELTS_V8) { |
3659 | 2.93M | for (j = rw; j > (NB_ELTS_V8 - 1); j -= NB_ELTS_V8) { |
3660 | 2.66M | OPJ_UINT32 k; |
3661 | | |
3662 | 2.66M | opj_v8dwt_interleave_v(&v, aj, w, NB_ELTS_V8); |
3663 | 2.66M | opj_v8dwt_decode(&v); |
3664 | | |
3665 | 512M | for (k = 0; k < rh; ++k) { |
3666 | 509M | memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], NB_ELTS_V8 * sizeof(OPJ_FLOAT32)); |
3667 | 509M | } |
3668 | 2.66M | aj += NB_ELTS_V8; |
3669 | 2.66M | } |
3670 | 265k | } else { |
3671 | | /* "bench_dwt -I" shows that scaling is poor, likely due to RAM |
3672 | | transfer being the limiting factor. So limit the number of |
3673 | | threads. |
3674 | | */ |
3675 | 0 | OPJ_UINT32 num_jobs = opj_uint_max((OPJ_UINT32)num_threads / 2, 2U); |
3676 | 0 | OPJ_UINT32 step_j; |
3677 | |
|
3678 | 0 | if ((rw / NB_ELTS_V8) < num_jobs) { |
3679 | 0 | num_jobs = rw / NB_ELTS_V8; |
3680 | 0 | } |
3681 | 0 | step_j = ((rw / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8; |
3682 | 0 | for (j = 0; j < num_jobs; j++) { |
3683 | 0 | opj_dwt97_decode_v_job_t* job; |
3684 | |
|
3685 | 0 | job = (opj_dwt97_decode_v_job_t*) opj_malloc(sizeof(opj_dwt97_decode_v_job_t)); |
3686 | 0 | if (!job) { |
3687 | 0 | opj_thread_pool_wait_completion(tp, 0); |
3688 | 0 | opj_aligned_free(h.wavelet); |
3689 | 0 | return OPJ_FALSE; |
3690 | 0 | } |
3691 | 0 | job->v.wavelet = (opj_v8_t*)opj_aligned_malloc(l_data_size * sizeof(opj_v8_t)); |
3692 | 0 | if (!job->v.wavelet) { |
3693 | 0 | opj_thread_pool_wait_completion(tp, 0); |
3694 | 0 | opj_free(job); |
3695 | 0 | opj_aligned_free(h.wavelet); |
3696 | 0 | return OPJ_FALSE; |
3697 | 0 | } |
3698 | 0 | job->v.dn = v.dn; |
3699 | 0 | job->v.sn = v.sn; |
3700 | 0 | job->v.cas = v.cas; |
3701 | 0 | job->v.win_l_x0 = v.win_l_x0; |
3702 | 0 | job->v.win_l_x1 = v.win_l_x1; |
3703 | 0 | job->v.win_h_x0 = v.win_h_x0; |
3704 | 0 | job->v.win_h_x1 = v.win_h_x1; |
3705 | 0 | job->rh = rh; |
3706 | 0 | job->w = w; |
3707 | 0 | job->aj = aj; |
3708 | 0 | job->nb_columns = (j + 1 == num_jobs) ? (rw & (OPJ_UINT32)~ |
3709 | 0 | (NB_ELTS_V8 - 1)) - j * step_j : step_j; |
3710 | 0 | aj += job->nb_columns; |
3711 | 0 | opj_thread_pool_submit_job(tp, opj_dwt97_decode_v_func, job); |
3712 | 0 | } |
3713 | 0 | opj_thread_pool_wait_completion(tp, 0); |
3714 | 0 | } |
3715 | | |
3716 | 265k | if (rw & (NB_ELTS_V8 - 1)) { |
3717 | 115k | OPJ_UINT32 k; |
3718 | | |
3719 | 115k | j = rw & (NB_ELTS_V8 - 1); |
3720 | | |
3721 | 115k | opj_v8dwt_interleave_v(&v, aj, w, j); |
3722 | 115k | opj_v8dwt_decode(&v); |
3723 | | |
3724 | 8.69M | for (k = 0; k < rh; ++k) { |
3725 | 8.57M | memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], |
3726 | 8.57M | (OPJ_SIZE_T)j * sizeof(OPJ_FLOAT32)); |
3727 | 8.57M | } |
3728 | 115k | } |
3729 | 265k | } |
3730 | | |
3731 | 56.9k | opj_aligned_free(h.wavelet); |
3732 | 56.9k | return OPJ_TRUE; |
3733 | 56.9k | } |
3734 | | |
3735 | | static |
3736 | | OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, |
3737 | | OPJ_UINT32 numres) |
3738 | 0 | { |
3739 | 0 | opj_sparse_array_int32_t* sa; |
3740 | 0 | opj_v8dwt_t h; |
3741 | 0 | opj_v8dwt_t v; |
3742 | 0 | OPJ_UINT32 resno; |
3743 | | /* This value matches the maximum left/right extension given in tables */ |
3744 | | /* F.2 and F.3 of the standard. Note: in opj_tcd_is_subband_area_of_interest() */ |
3745 | | /* we currently use 3. */ |
3746 | 0 | const OPJ_UINT32 filter_width = 4U; |
3747 | |
|
3748 | 0 | opj_tcd_resolution_t* tr = tilec->resolutions; |
3749 | 0 | opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
3750 | |
|
3751 | 0 | OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
3752 | 0 | tr->x0); /* width of the resolution level computed */ |
3753 | 0 | OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
3754 | 0 | tr->y0); /* height of the resolution level computed */ |
3755 | |
|
3756 | 0 | OPJ_SIZE_T l_data_size; |
3757 | | |
3758 | | /* Compute the intersection of the area of interest, expressed in tile coordinates */ |
3759 | | /* with the tile coordinates */ |
3760 | 0 | OPJ_UINT32 win_tcx0 = tilec->win_x0; |
3761 | 0 | OPJ_UINT32 win_tcy0 = tilec->win_y0; |
3762 | 0 | OPJ_UINT32 win_tcx1 = tilec->win_x1; |
3763 | 0 | OPJ_UINT32 win_tcy1 = tilec->win_y1; |
3764 | |
|
3765 | 0 | if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) { |
3766 | 0 | return OPJ_TRUE; |
3767 | 0 | } |
3768 | | |
3769 | 0 | sa = opj_dwt_init_sparse_array(tilec, numres); |
3770 | 0 | if (sa == NULL) { |
3771 | 0 | return OPJ_FALSE; |
3772 | 0 | } |
3773 | | |
3774 | 0 | if (numres == 1U) { |
3775 | 0 | OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
3776 | 0 | tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
3777 | 0 | tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
3778 | 0 | tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
3779 | 0 | tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
3780 | 0 | tilec->data_win, |
3781 | 0 | 1, tr_max->win_x1 - tr_max->win_x0, |
3782 | 0 | OPJ_TRUE); |
3783 | 0 | assert(ret); |
3784 | 0 | OPJ_UNUSED(ret); |
3785 | 0 | opj_sparse_array_int32_free(sa); |
3786 | 0 | return OPJ_TRUE; |
3787 | 0 | } |
3788 | | |
3789 | 0 | l_data_size = opj_dwt_max_resolution(tr, numres); |
3790 | | /* overflow check */ |
3791 | 0 | if (l_data_size > (SIZE_MAX / sizeof(opj_v8_t))) { |
3792 | | /* FIXME event manager error callback */ |
3793 | 0 | opj_sparse_array_int32_free(sa); |
3794 | 0 | return OPJ_FALSE; |
3795 | 0 | } |
3796 | 0 | h.wavelet = (opj_v8_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v8_t)); |
3797 | 0 | if (!h.wavelet) { |
3798 | | /* FIXME event manager error callback */ |
3799 | 0 | opj_sparse_array_int32_free(sa); |
3800 | 0 | return OPJ_FALSE; |
3801 | 0 | } |
3802 | 0 | v.wavelet = h.wavelet; |
3803 | |
|
3804 | 0 | for (resno = 1; resno < numres; resno ++) { |
3805 | 0 | OPJ_UINT32 j; |
3806 | | /* Window of interest subband-based coordinates */ |
3807 | 0 | OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1; |
3808 | 0 | OPJ_UINT32 win_hl_x0, win_hl_x1; |
3809 | 0 | OPJ_UINT32 win_lh_y0, win_lh_y1; |
3810 | | /* Window of interest tile-resolution-based coordinates */ |
3811 | 0 | OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1; |
3812 | | /* Tile-resolution subband-based coordinates */ |
3813 | 0 | OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0; |
3814 | |
|
3815 | 0 | ++tr; |
3816 | |
|
3817 | 0 | h.sn = (OPJ_INT32)rw; |
3818 | 0 | v.sn = (OPJ_INT32)rh; |
3819 | |
|
3820 | 0 | rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
3821 | 0 | rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
3822 | |
|
3823 | 0 | h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
3824 | 0 | h.cas = tr->x0 % 2; |
3825 | |
|
3826 | 0 | v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
3827 | 0 | v.cas = tr->y0 % 2; |
3828 | | |
3829 | | /* Get the subband coordinates for the window of interest */ |
3830 | | /* LL band */ |
3831 | 0 | opj_dwt_get_band_coordinates(tilec, resno, 0, |
3832 | 0 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
3833 | 0 | &win_ll_x0, &win_ll_y0, |
3834 | 0 | &win_ll_x1, &win_ll_y1); |
3835 | | |
3836 | | /* HL band */ |
3837 | 0 | opj_dwt_get_band_coordinates(tilec, resno, 1, |
3838 | 0 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
3839 | 0 | &win_hl_x0, NULL, &win_hl_x1, NULL); |
3840 | | |
3841 | | /* LH band */ |
3842 | 0 | opj_dwt_get_band_coordinates(tilec, resno, 2, |
3843 | 0 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
3844 | 0 | NULL, &win_lh_y0, NULL, &win_lh_y1); |
3845 | | |
3846 | | /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */ |
3847 | 0 | tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0; |
3848 | 0 | tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0; |
3849 | 0 | tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0; |
3850 | 0 | tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0; |
3851 | | |
3852 | | /* Subtract the origin of the bands for this tile, to the subwindow */ |
3853 | | /* of interest band coordinates, so as to get them relative to the */ |
3854 | | /* tile */ |
3855 | 0 | win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0); |
3856 | 0 | win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0); |
3857 | 0 | win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0); |
3858 | 0 | win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0); |
3859 | 0 | win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0); |
3860 | 0 | win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0); |
3861 | 0 | win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0); |
3862 | 0 | win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0); |
3863 | |
|
3864 | 0 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1); |
3865 | 0 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1); |
3866 | |
|
3867 | 0 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1); |
3868 | 0 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1); |
3869 | | |
3870 | | /* Compute the tile-resolution-based coordinates for the window of interest */ |
3871 | 0 | if (h.cas == 0) { |
3872 | 0 | win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1); |
3873 | 0 | win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw); |
3874 | 0 | } else { |
3875 | 0 | win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1); |
3876 | 0 | win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw); |
3877 | 0 | } |
3878 | |
|
3879 | 0 | if (v.cas == 0) { |
3880 | 0 | win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1); |
3881 | 0 | win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh); |
3882 | 0 | } else { |
3883 | 0 | win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1); |
3884 | 0 | win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh); |
3885 | 0 | } |
3886 | |
|
3887 | 0 | h.win_l_x0 = win_ll_x0; |
3888 | 0 | h.win_l_x1 = win_ll_x1; |
3889 | 0 | h.win_h_x0 = win_hl_x0; |
3890 | 0 | h.win_h_x1 = win_hl_x1; |
3891 | 0 | for (j = 0; j + (NB_ELTS_V8 - 1) < rh; j += NB_ELTS_V8) { |
3892 | 0 | if ((j + (NB_ELTS_V8 - 1) >= win_ll_y0 && j < win_ll_y1) || |
3893 | 0 | (j + (NB_ELTS_V8 - 1) >= win_lh_y0 + (OPJ_UINT32)v.sn && |
3894 | 0 | j < win_lh_y1 + (OPJ_UINT32)v.sn)) { |
3895 | 0 | opj_v8dwt_interleave_partial_h(&h, sa, j, opj_uint_min(NB_ELTS_V8, rh - j)); |
3896 | 0 | opj_v8dwt_decode(&h); |
3897 | 0 | if (!opj_sparse_array_int32_write(sa, |
3898 | 0 | win_tr_x0, j, |
3899 | 0 | win_tr_x1, j + NB_ELTS_V8, |
3900 | 0 | (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0], |
3901 | 0 | NB_ELTS_V8, 1, OPJ_TRUE)) { |
3902 | | /* FIXME event manager error callback */ |
3903 | 0 | opj_sparse_array_int32_free(sa); |
3904 | 0 | opj_aligned_free(h.wavelet); |
3905 | 0 | return OPJ_FALSE; |
3906 | 0 | } |
3907 | 0 | } |
3908 | 0 | } |
3909 | | |
3910 | 0 | if (j < rh && |
3911 | 0 | ((j + (NB_ELTS_V8 - 1) >= win_ll_y0 && j < win_ll_y1) || |
3912 | 0 | (j + (NB_ELTS_V8 - 1) >= win_lh_y0 + (OPJ_UINT32)v.sn && |
3913 | 0 | j < win_lh_y1 + (OPJ_UINT32)v.sn))) { |
3914 | 0 | opj_v8dwt_interleave_partial_h(&h, sa, j, rh - j); |
3915 | 0 | opj_v8dwt_decode(&h); |
3916 | 0 | if (!opj_sparse_array_int32_write(sa, |
3917 | 0 | win_tr_x0, j, |
3918 | 0 | win_tr_x1, rh, |
3919 | 0 | (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0], |
3920 | 0 | NB_ELTS_V8, 1, OPJ_TRUE)) { |
3921 | | /* FIXME event manager error callback */ |
3922 | 0 | opj_sparse_array_int32_free(sa); |
3923 | 0 | opj_aligned_free(h.wavelet); |
3924 | 0 | return OPJ_FALSE; |
3925 | 0 | } |
3926 | 0 | } |
3927 | | |
3928 | 0 | v.win_l_x0 = win_ll_y0; |
3929 | 0 | v.win_l_x1 = win_ll_y1; |
3930 | 0 | v.win_h_x0 = win_lh_y0; |
3931 | 0 | v.win_h_x1 = win_lh_y1; |
3932 | 0 | for (j = win_tr_x0; j < win_tr_x1; j += NB_ELTS_V8) { |
3933 | 0 | OPJ_UINT32 nb_elts = opj_uint_min(NB_ELTS_V8, win_tr_x1 - j); |
3934 | |
|
3935 | 0 | opj_v8dwt_interleave_partial_v(&v, sa, j, nb_elts); |
3936 | 0 | opj_v8dwt_decode(&v); |
3937 | |
|
3938 | 0 | if (!opj_sparse_array_int32_write(sa, |
3939 | 0 | j, win_tr_y0, |
3940 | 0 | j + nb_elts, win_tr_y1, |
3941 | 0 | (OPJ_INT32*)&h.wavelet[win_tr_y0].f[0], |
3942 | 0 | 1, NB_ELTS_V8, OPJ_TRUE)) { |
3943 | | /* FIXME event manager error callback */ |
3944 | 0 | opj_sparse_array_int32_free(sa); |
3945 | 0 | opj_aligned_free(h.wavelet); |
3946 | 0 | return OPJ_FALSE; |
3947 | 0 | } |
3948 | 0 | } |
3949 | 0 | } |
3950 | | |
3951 | 0 | { |
3952 | 0 | OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
3953 | 0 | tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
3954 | 0 | tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
3955 | 0 | tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
3956 | 0 | tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
3957 | 0 | tilec->data_win, |
3958 | 0 | 1, tr_max->win_x1 - tr_max->win_x0, |
3959 | 0 | OPJ_TRUE); |
3960 | 0 | assert(ret); |
3961 | 0 | OPJ_UNUSED(ret); |
3962 | 0 | } |
3963 | 0 | opj_sparse_array_int32_free(sa); |
3964 | |
|
3965 | 0 | opj_aligned_free(h.wavelet); |
3966 | 0 | return OPJ_TRUE; |
3967 | 0 | } |
3968 | | |
3969 | | |
3970 | | OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd, |
3971 | | opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, |
3972 | | OPJ_UINT32 numres) |
3973 | 56.9k | { |
3974 | 56.9k | if (p_tcd->whole_tile_decoding) { |
3975 | 56.9k | return opj_dwt_decode_tile_97(p_tcd->thread_pool, tilec, numres); |
3976 | 56.9k | } else { |
3977 | 0 | return opj_dwt_decode_partial_97(tilec, numres); |
3978 | 0 | } |
3979 | 56.9k | } |