Coverage Report

Created: 2025-11-16 07:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/base/gdevdflt.c
Line
Count
Source
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
/* Default device implementation */
17
#include "math_.h"
18
#include "memory_.h"
19
#include "gx.h"
20
#include "gsstruct.h"
21
#include "gxobj.h"
22
#include "gserrors.h"
23
#include "gsropt.h"
24
#include "gxcomp.h"
25
#include "gxdevice.h"
26
#include "gxdevsop.h"
27
#include "gdevp14.h"        /* Needed to patch up the procs after compositor creation */
28
#include "gstrans.h"        /* For gs_pdf14trans_t */
29
#include "gxgstate.h"       /* for gs_image_state_s */
30
31
32
/* defined in gsdpram.c */
33
int gx_default_get_param(gx_device *dev, char *Param, void *list);
34
35
/* ---------------- Default device procedures ---------------- */
36
37
/*
38
 * Set a color model polarity to be additive or subtractive. In either
39
 * case, indicate an error (and don't modify the polarity) if the current
40
 * setting differs from the desired and is not GX_CINFO_POLARITY_UNKNOWN.
41
 */
42
static void
43
set_cinfo_polarity(gx_device * dev, gx_color_polarity_t new_polarity)
44
23.8M
{
45
#ifdef DEBUG
46
    /* sanity check */
47
    if (new_polarity == GX_CINFO_POLARITY_UNKNOWN) {
48
        dmprintf(dev->memory, "set_cinfo_polarity: illegal operand\n");
49
        return;
50
    }
51
#endif
52
    /*
53
     * The meory devices assume that single color devices are gray.
54
     * This may not be true if SeparationOrder is specified.  Thus only
55
     * change the value if the current value is unknown.
56
     */
57
23.8M
    if (dev->color_info.polarity == GX_CINFO_POLARITY_UNKNOWN)
58
0
        dev->color_info.polarity = new_polarity;
59
23.8M
}
60
61
static gx_color_index
62
(*get_encode_color(gx_device *dev))(gx_device *, const gx_color_value *)
63
232M
{
64
232M
    dev_proc_encode_color(*encode_proc);
65
66
    /* use encode_color if it has been provided */
67
232M
    if ((encode_proc = dev_proc(dev, encode_color)) == 0) {
68
23.8M
        if (dev->color_info.num_components == 1                          &&
69
23.7M
            dev_proc(dev, map_rgb_color) != 0) {
70
15.7M
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
71
15.7M
            encode_proc = gx_backwards_compatible_gray_encode;
72
15.7M
        } else  if ( (dev->color_info.num_components == 3    )           &&
73
75.4k
             (encode_proc = dev_proc(dev, map_rgb_color)) != 0  )
74
75.4k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
75
8.00M
        else if ( dev->color_info.num_components == 4                    &&
76
0
                 (encode_proc = dev_proc(dev, map_cmyk_color)) != 0   )
77
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_SUBTRACTIVE);
78
23.8M
    }
79
80
    /*
81
     * If no encode_color procedure at this point, the color model had
82
     * better be monochrome (though not necessarily bi-level). In this
83
     * case, it is assumed to be additive, as that is consistent with
84
     * the pre-DeviceN code.
85
     *
86
     * If this is not the case, then the color model had better be known
87
     * to be separable and linear, for there is no other way to derive
88
     * an encoding. This is the case even for weakly linear and separable
89
     * color models with a known polarity.
90
     */
91
232M
    if (encode_proc == 0) {
92
8.00M
        if (dev->color_info.num_components == 1 && dev->color_info.depth != 0) {
93
8.00M
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
94
8.00M
            if (dev->color_info.max_gray == (1 << dev->color_info.depth) - 1)
95
8.00M
                encode_proc = gx_default_gray_fast_encode;
96
0
            else
97
0
                encode_proc = gx_default_gray_encode;
98
8.00M
            dev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
99
8.00M
        } else if (colors_are_separable_and_linear(&dev->color_info)) {
100
0
            gx_color_value  max_gray = dev->color_info.max_gray;
101
0
            gx_color_value  max_color = dev->color_info.max_color;
102
103
0
            if ( (max_gray & (max_gray + 1)) == 0  &&
104
0
                 (max_color & (max_color + 1)) == 0  )
105
                /* NB should be gx_default_fast_encode_color */
106
0
                encode_proc = gx_default_encode_color;
107
0
            else
108
0
                encode_proc = gx_default_encode_color;
109
0
        }
110
8.00M
    }
111
112
232M
    return encode_proc;
113
232M
}
114
115
/*
116
 * Determine if a color model has the properties of a DeviceRGB
117
 * color model. This procedure is, in all likelihood, high-grade
118
 * overkill, but since this is not a performance sensitive area
119
 * no harm is done.
120
 *
121
 * Since there is little benefit to checking the values 0, 1, or
122
 * 1/2, we use the values 1/4, 1/3, and 3/4 in their place. We
123
 * compare the results to see if the intensities match to within
124
 * a tolerance of .01, which is arbitrarily selected.
125
 */
126
127
static bool
128
is_like_DeviceRGB(gx_device * dev)
129
23.8M
{
130
23.8M
    frac                            cm_comp_fracs[3];
131
23.8M
    int                             i;
132
23.8M
    const gx_device                *cmdev;
133
23.8M
    const gx_cm_color_map_procs    *cmprocs;
134
135
23.8M
    if ( dev->color_info.num_components != 3                   ||
136
75.4k
         dev->color_info.polarity != GX_CINFO_POLARITY_ADDITIVE  )
137
23.7M
        return false;
138
139
75.4k
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
140
141
    /* check the values 1/4, 1/3, and 3/4 */
142
75.4k
    cmprocs->map_rgb(cmdev, 0, frac_1 / 4, frac_1 / 3, 3 * frac_1 / 4, cm_comp_fracs);
143
144
    /* verify results to .01 */
145
75.4k
    cm_comp_fracs[0] -= frac_1 / 4;
146
75.4k
    cm_comp_fracs[1] -= frac_1 / 3;
147
75.4k
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
148
75.4k
    for ( i = 0;
149
301k
           i < 3                            &&
150
226k
           -frac_1 / 100 < cm_comp_fracs[i] &&
151
226k
           cm_comp_fracs[i] < frac_1 / 100;
152
226k
          i++ )
153
226k
        ;
154
75.4k
    return i == 3;
155
23.8M
}
156
157
/*
158
 * Similar to is_like_DeviceRGB, but for DeviceCMYK.
159
 */
160
static bool
161
is_like_DeviceCMYK(gx_device * dev)
162
0
{
163
0
    frac                            cm_comp_fracs[4];
164
0
    int                             i;
165
0
    const gx_device                *cmdev;
166
0
    const gx_cm_color_map_procs    *cmprocs;
167
168
0
    if ( dev->color_info.num_components != 4                      ||
169
0
         dev->color_info.polarity != GX_CINFO_POLARITY_SUBTRACTIVE  )
170
0
        return false;
171
172
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
173
    /* check the values 1/4, 1/3, 3/4, and 1/8 */
174
175
0
    cmprocs->map_cmyk(cmdev,
176
0
                      frac_1 / 4,
177
0
                      frac_1 / 3,
178
0
                      3 * frac_1 / 4,
179
0
                      frac_1 / 8,
180
0
                      cm_comp_fracs);
181
182
    /* verify results to .01 */
183
0
    cm_comp_fracs[0] -= frac_1 / 4;
184
0
    cm_comp_fracs[1] -= frac_1 / 3;
185
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
186
0
    cm_comp_fracs[3] -= frac_1 / 8;
187
0
    for ( i = 0;
188
0
           i < 4                            &&
189
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
190
0
           cm_comp_fracs[i] < frac_1 / 100;
191
0
          i++ )
192
0
        ;
193
0
    return i == 4;
194
0
}
195
196
/*
197
 * Two default decode_color procedures to use for monochrome devices.
198
 * These will make use of the map_color_rgb routine, and use the first
199
 * component of the returned value or its inverse.
200
 */
201
static int
202
gx_default_1_add_decode_color(
203
    gx_device *     dev,
204
    gx_color_index  color,
205
    gx_color_value  cv[1] )
206
0
{
207
0
    gx_color_value  rgb[3];
208
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
209
210
0
    cv[0] = rgb[0];
211
0
    return code;
212
0
}
213
214
static int
215
gx_default_1_sub_decode_color(
216
    gx_device *     dev,
217
    gx_color_index  color,
218
    gx_color_value  cv[1] )
219
0
{
220
0
    gx_color_value  rgb[3];
221
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
222
223
0
    cv[0] = gx_max_color_value - rgb[0];
224
0
    return code;
225
0
}
226
227
/*
228
 * A default decode_color procedure for DeviceCMYK color models.
229
 *
230
 * There is no generally accurate way of decode a DeviceCMYK color using
231
 * the map_color_rgb method. Unfortunately, there are many older devices
232
 * employ the DeviceCMYK color model but don't provide a decode_color
233
 * method. The code below works on the assumption of full undercolor
234
 * removal and black generation. This may not be accurate, but is the
235
 * best that can be done in the general case without other information.
236
 */
237
static int
238
gx_default_cmyk_decode_color(
239
    gx_device *     dev,
240
    gx_color_index  color,
241
    gx_color_value  cv[4] )
242
0
{
243
    /* The device may have been determined to be 'separable'. */
244
0
    if (colors_are_separable_and_linear(&dev->color_info))
245
0
        return gx_default_decode_color(dev, color, cv);
246
0
    else {
247
0
        int i, code = dev_proc(dev, map_color_rgb)(dev, color, cv);
248
0
        gx_color_value min_val = gx_max_color_value;
249
250
0
        for (i = 0; i < 3; i++) {
251
0
            if ((cv[i] = gx_max_color_value - cv[i]) < min_val)
252
0
                min_val = cv[i];
253
0
        }
254
0
        for (i = 0; i < 3; i++)
255
0
            cv[i] -= min_val;
256
0
        cv[3] = min_val;
257
258
0
        return code;
259
0
    }
260
0
}
261
262
/*
263
 * Special case default color decode routine for a canonical 1-bit per
264
 * component DeviceCMYK color model.
265
 */
266
static int
267
gx_1bit_cmyk_decode_color(
268
    gx_device *     dev,
269
    gx_color_index  color,
270
    gx_color_value  cv[4] )
271
0
{
272
0
    cv[0] = ((color & 0x8) != 0 ? gx_max_color_value : 0);
273
0
    cv[1] = ((color & 0x4) != 0 ? gx_max_color_value : 0);
274
0
    cv[2] = ((color & 0x2) != 0 ? gx_max_color_value : 0);
275
0
    cv[3] = ((color & 0x1) != 0 ? gx_max_color_value : 0);
276
0
    return 0;
277
0
}
278
279
static int
280
(*get_decode_color(gx_device * dev))(gx_device *, gx_color_index, gx_color_value *)
281
232M
{
282
    /* if a method has already been provided, use it */
283
232M
    if (dev_proc(dev, decode_color) != 0)
284
208M
        return dev_proc(dev, decode_color);
285
286
    /*
287
     * If a map_color_rgb method has been provided, we may be able to use it.
288
     * Currently this will always be the case, as a default value will be
289
     * provided this method. While this default may not be correct, we are not
290
     * introducing any new errors by using it.
291
     */
292
23.8M
    if (dev_proc(dev, map_color_rgb) != 0) {
293
294
        /* if the device has a DeviceRGB color model, use map_color_rgb */
295
23.8M
        if (is_like_DeviceRGB(dev))
296
75.4k
            return dev_proc(dev, map_color_rgb);
297
298
        /* If separable ande linear then use default */
299
23.7M
        if (colors_are_separable_and_linear(&dev->color_info))
300
8.00M
            return &gx_default_decode_color;
301
302
        /* gray devices can be handled based on their polarity */
303
15.7M
        if ( dev->color_info.num_components == 1 &&
304
15.7M
             dev->color_info.gray_index == 0       )
305
15.7M
            return dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE
306
15.7M
                       ? &gx_default_1_add_decode_color
307
15.7M
                       : &gx_default_1_sub_decode_color;
308
309
        /*
310
         * There is no accurate way to decode colors for cmyk devices
311
         * using the map_color_rgb procedure. Unfortunately, this cases
312
         * arises with some frequency, so it is useful not to generate an
313
         * error in this case. The mechanism below assumes full undercolor
314
         * removal and black generation, which may not be accurate but are
315
         * the  best that can be done in the general case in the absence of
316
         * other information.
317
         *
318
         * As a hack to handle certain common devices, if the map_rgb_color
319
         * routine is cmyk_1bit_map_color_rgb, we provide a direct one-bit
320
         * decoder.
321
         */
322
0
        if (is_like_DeviceCMYK(dev)) {
323
0
            if (dev_proc(dev, map_color_rgb) == cmyk_1bit_map_color_rgb)
324
0
                return &gx_1bit_cmyk_decode_color;
325
0
            else
326
0
                return &gx_default_cmyk_decode_color;
327
0
        }
328
0
    }
329
330
    /*
331
     * The separable and linear case will already have been handled by
332
     * code in gx_device_fill_in_procs, so at this point we can only hope
333
     * the device doesn't use the decode_color method.
334
     */
335
0
    if (colors_are_separable_and_linear(&dev->color_info))
336
0
        return &gx_default_decode_color;
337
0
    else
338
0
        return &gx_error_decode_color;
339
0
}
340
341
/*
342
 * If a device has a linear and separable encode color function then
343
 * set up the comp_bits, comp_mask, and comp_shift fields.  Note:  This
344
 * routine assumes that the colorant shift factor decreases with the
345
 * component number.  See check_device_separable() for a general routine.
346
 */
347
void
348
set_linear_color_bits_mask_shift(gx_device * dev)
349
110k
{
350
110k
    int i;
351
110k
    byte gray_index = dev->color_info.gray_index;
352
110k
    gx_color_value max_gray = dev->color_info.max_gray;
353
110k
    gx_color_value max_color = dev->color_info.max_color;
354
110k
    int num_components = dev->color_info.num_components;
355
356
1.58M
#define comp_bits (dev->color_info.comp_bits)
357
791k
#define comp_mask (dev->color_info.comp_mask)
358
2.26M
#define comp_shift (dev->color_info.comp_shift)
359
110k
    comp_shift[num_components - 1] = 0;
360
791k
    for ( i = num_components - 1 - 1; i >= 0; i-- ) {
361
680k
        comp_shift[i] = comp_shift[i + 1] +
362
680k
            ( i == gray_index ? ilog2(max_gray + 1) : ilog2(max_color + 1) );
363
680k
    }
364
902k
    for ( i = 0; i < num_components; i++ ) {
365
791k
        comp_bits[i] = ( i == gray_index ?
366
71.9k
                         ilog2(max_gray + 1) :
367
791k
                         ilog2(max_color + 1) );
368
791k
        comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1)
369
791k
                                               << comp_shift[i];
370
791k
    }
371
110k
#undef comp_bits
372
110k
#undef comp_mask
373
110k
#undef comp_shift
374
110k
}
375
376
/* Determine if a number is a power of two.  Works only for integers. */
377
271M
#define is_power_of_two(x) ((((x) - 1) & (x)) == 0)
378
379
/* A brutish way to check if we are a HT device */
380
bool
381
device_is_contone(gx_device* pdev)
382
4.99M
{
383
4.99M
    if ((float)pdev->color_info.depth / (float)pdev->color_info.num_components >= 8)
384
729k
        return true;
385
4.26M
    return false;
386
4.99M
}
387
388
/*
389
 * This routine attempts to determine if a device's encode_color procedure
390
 * produces gx_color_index values which are 'separable'.  A 'separable' value
391
 * means two things.  Each colorant has a group of bits in the gx_color_index
392
 * value which is associated with the colorant.  These bits are separate.
393
 * I.e. no bit is associated with more than one colorant.  If a colorant has
394
 * a value of zero then the bits associated with that colorant are zero.
395
 * These criteria allows the graphics library to build gx_color_index values
396
 * from the colorant values and not using the encode_color routine. This is
397
 * useful and necessary for overprinting, halftoning more
398
 * than four colorants, and the fast shading logic.  However this information
399
 * is not setup by the default device macros.  Thus we attempt to derive this
400
 * information.
401
 *
402
 * This routine can be fooled.  However it usually errors on the side of
403
 * assuing that a device is not separable.  In this case it does not create
404
 * any new problems.  In theory it can be fooled into believing that a device
405
 * is separable when it is not.  However we do not know of any real cases that
406
 * will fool it.
407
 */
408
void
409
check_device_separable(gx_device * dev)
410
251M
{
411
251M
    int i, j;
412
251M
    gx_device_color_info * pinfo = &(dev->color_info);
413
251M
    int num_components = pinfo->num_components;
414
251M
    byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS];
415
251M
    byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS];
416
251M
    gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS];
417
251M
    gx_color_index color_index;
418
251M
    gx_color_index current_bits = 0;
419
251M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
420
421
    /* If this is already known then we do not need to do anything. */
422
251M
    if (pinfo->separable_and_linear != GX_CINFO_UNKNOWN_SEP_LIN)
423
145M
        return;
424
    /* If there is not an encode_color_routine then we cannot proceed. */
425
106M
    if (dev_proc(dev, encode_color) == NULL)
426
15.7M
        return;
427
    /*
428
     * If these values do not check then we should have an error.  However
429
     * we do not know what to do so we are simply exitting and hoping that
430
     * the device will clean up its values.
431
     */
432
90.5M
    if (pinfo->gray_index < num_components &&
433
90.4M
        (!pinfo->dither_grays || pinfo->dither_grays != (pinfo->max_gray + 1)))
434
0
            return;
435
90.5M
    if ((num_components > 1 || pinfo->gray_index != 0) &&
436
81.6k
        (!pinfo->dither_colors || pinfo->dither_colors != (pinfo->max_color + 1)))
437
0
        return;
438
    /*
439
     * If dither_grays or dither_colors is not a power of two then we assume
440
     * that the device is not separable.  In theory this not a requirement
441
     * but it has been true for all of the devices that we have seen so far.
442
     * This assumption also makes the logic in the next section easier.
443
     */
444
90.5M
    if (!is_power_of_two(pinfo->dither_grays)
445
90.5M
                    || !is_power_of_two(pinfo->dither_colors))
446
0
        return;
447
    /*
448
     * Use the encode_color routine to try to verify that the device is
449
     * separable and to determine the shift count, etc. for each colorant.
450
     */
451
90.5M
    color_index = dev_proc(dev, encode_color)(dev, colorants);
452
90.5M
    if (color_index != 0)
453
89.7M
        return;    /* Exit if zero colorants produce a non zero index */
454
1.61M
    for (i = 0; i < num_components; i++) {
455
        /* Check this colorant = max with all others = 0 */
456
2.27M
        for (j = 0; j < num_components; j++)
457
1.38M
            colorants[j] = 0;
458
890k
        colorants[i] = gx_max_color_value;
459
890k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
460
890k
        if (color_index == 0)  /* If no bits then we have a problem */
461
1
            return;
462
890k
        if (color_index & current_bits)  /* Check for overlapping bits */
463
0
            return;
464
890k
        current_bits |= color_index;
465
890k
        comp_mask[i] = color_index;
466
        /* Determine the shift count for the colorant */
467
2.85M
        for (j = 0; (color_index & 1) == 0 && color_index != 0; j++)
468
1.96M
            color_index >>= 1;
469
890k
        comp_shift[i] = j;
470
        /* Determine the bit count for the colorant */
471
3.66M
        for (j = 0; color_index != 0; j++) {
472
2.77M
            if ((color_index & 1) == 0) /* check for non-consecutive bits */
473
0
                return;
474
2.77M
            color_index >>= 1;
475
2.77M
        }
476
890k
        comp_bits[i] = j;
477
        /*
478
         * We could verify that the bit count matches the dither_grays or
479
         * dither_colors values, but this is not really required unless we
480
         * are halftoning.  Thus we are allowing for non equal colorant sizes.
481
         */
482
        /* Check for overlap with other colorant if they are all maxed */
483
2.27M
        for (j = 0; j < num_components; j++)
484
1.38M
            colorants[j] = gx_max_color_value;
485
890k
        colorants[i] = 0;
486
890k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
487
890k
        if (color_index & comp_mask[i])  /* Check for overlapping bits */
488
0
            return;
489
890k
    }
490
    /* If we get to here then the device is very likely to be separable. */
491
726k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN;
492
1.61M
    for (i = 0; i < num_components; i++) {
493
890k
        pinfo->comp_shift[i] = comp_shift[i];
494
890k
        pinfo->comp_bits[i] = comp_bits[i];
495
890k
        pinfo->comp_mask[i] = comp_mask[i];
496
890k
    }
497
    /*
498
     * The 'gray_index' value allows one colorant to have a different number
499
     * of shades from the remainder.  Since the default macros only guess at
500
     * an appropriate value, we are setting its value based upon the data that
501
     * we just determined.  Note:  In some cases the macros set max_gray to 0
502
     * and dither_grays to 1.  This is not valid so ignore this case.
503
     */
504
726k
    for (i = 0; i < num_components; i++) {
505
726k
        int dither = 1 << comp_bits[i];
506
507
726k
        if (pinfo->dither_grays != 1 && dither == pinfo->dither_grays) {
508
726k
            pinfo->gray_index = i;
509
726k
            break;
510
726k
        }
511
726k
    }
512
726k
}
513
#undef is_power_of_two
514
515
/*
516
 * This routine attempts to determine if a device's encode_color procedure
517
 * produces values that are in keeping with "the standard encoding".
518
 * i.e. that given by pdf14_encode_color.
519
 *
520
 * It works by first checking to see if we are separable_and_linear. If not
521
 * we cannot hope to be the standard encoding.
522
 *
523
 * Then, we check to see if we are a dev device - if so, we must be
524
 * compatible.
525
 *
526
 * Failing that it checks to see if the encoding uses the appropriate
527
 * bit ranges for each individual color.
528
 *
529
 * If those (quick) tests pass, then we try the slower test of checking
530
 * the encodings. We can do this far faster than an exhaustive check, by
531
 * relying on the separability and linearity - we only need to check 256
532
 * possible values.
533
 *
534
 * The one tricky section there is to avoid the special case for
535
 * gx_no_color_index_value (which can occur when we have a 32bit
536
 * gx_color_index type, and a 4 component device, such as cmyk).
537
 * We allow the encoding to be off in the lower bits for that case.
538
 */
539
void check_device_compatible_encoding(gx_device *dev)
540
191M
{
541
191M
    gx_device_color_info * pinfo = &(dev->color_info);
542
191M
    int num_components = pinfo->num_components;
543
191M
    gx_color_index mul, color_index;
544
191M
    int i, j;
545
191M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS];
546
191M
    bool deep = device_is_deep(dev);
547
548
191M
    if (pinfo->separable_and_linear == GX_CINFO_UNKNOWN_SEP_LIN)
549
45.0M
        check_device_separable(dev);
550
191M
    if (pinfo->separable_and_linear != GX_CINFO_SEP_LIN)
551
191M
        return;
552
553
76.7k
    if (dev_proc(dev, ret_devn_params)(dev) != NULL) {
554
        /* We know all devn devices are compatible. */
555
46.7k
        pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
556
46.7k
        return;
557
46.7k
    }
558
559
    /* Do the superficial quick checks */
560
95.5k
    for (i = 0; i < num_components; i++) {
561
65.5k
        int shift = (num_components-1-i)*(8<<deep);
562
65.5k
        if (pinfo->comp_shift[i] != shift)
563
0
            goto bad;
564
65.5k
        if (pinfo->comp_bits[i] != 8<<deep)
565
0
            goto bad;
566
65.5k
        if (pinfo->comp_mask[i] != ((gx_color_index)(deep ? 65535 : 255))<<shift)
567
0
            goto bad;
568
65.5k
    }
569
570
    /* OK, now we are going to be slower. */
571
29.9k
    mul = 0;
572
95.5k
    for (i = 0; i < num_components; i++) {
573
65.5k
        mul = (mul<<(8<<deep)) | 1;
574
65.5k
    }
575
    /* In the deep case, we don't exhaustively test */
576
7.67M
    for (i = 0; i < 255; i++) {
577
24.3M
        for (j = 0; j < num_components; j++)
578
16.7M
            colorants[j] = i*257;
579
7.64M
        color_index = dev_proc(dev, encode_color)(dev, colorants);
580
7.64M
        if (color_index != i*mul*(deep ? 257 : 1) && (i*mul*(deep ? 257 : 1) != gx_no_color_index_value))
581
0
            goto bad;
582
7.64M
    }
583
    /* If we reach here, then every value matched, except possibly the last one.
584
     * We'll allow that to differ just in the lowest bits. */
585
29.9k
    if ((color_index | mul) != 255*mul*(deep ? 257 : 1))
586
0
        goto bad;
587
588
29.9k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
589
29.9k
    return;
590
0
bad:
591
0
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_NON_STANDARD;
592
0
}
593
594
int gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth);
595
596
/* Fill in NULL procedures in a device procedure record. */
597
void
598
gx_device_fill_in_procs(register gx_device * dev)
599
232M
{
600
232M
    fill_dev_proc(dev, open_device, gx_default_open_device);
601
232M
    fill_dev_proc(dev, get_initial_matrix, gx_default_get_initial_matrix);
602
232M
    fill_dev_proc(dev, sync_output, gx_default_sync_output);
603
232M
    fill_dev_proc(dev, output_page, gx_default_output_page);
604
232M
    fill_dev_proc(dev, close_device, gx_default_close_device);
605
    /* see below for map_rgb_color */
606
232M
    fill_dev_proc(dev, map_color_rgb, gx_default_map_color_rgb);
607
    /* NOT fill_rectangle */
608
232M
    fill_dev_proc(dev, copy_mono, gx_default_copy_mono);
609
232M
    fill_dev_proc(dev, copy_color, gx_default_copy_color);
610
232M
    fill_dev_proc(dev, get_params, gx_default_get_params);
611
232M
    fill_dev_proc(dev, put_params, gx_default_put_params);
612
    /* see below for map_cmyk_color */
613
232M
    fill_dev_proc(dev, get_page_device, gx_default_get_page_device);
614
232M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
615
232M
    fill_dev_proc(dev, copy_alpha, gx_default_copy_alpha);
616
232M
    fill_dev_proc(dev, fill_path, gx_default_fill_path);
617
232M
    fill_dev_proc(dev, stroke_path, gx_default_stroke_path);
618
232M
    fill_dev_proc(dev, fill_mask, gx_default_fill_mask);
619
232M
    fill_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid);
620
232M
    fill_dev_proc(dev, fill_parallelogram, gx_default_fill_parallelogram);
621
232M
    fill_dev_proc(dev, fill_triangle, gx_default_fill_triangle);
622
232M
    fill_dev_proc(dev, draw_thin_line, gx_default_draw_thin_line);
623
232M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
624
232M
    fill_dev_proc(dev, strip_tile_rectangle, gx_default_strip_tile_rectangle);
625
232M
    fill_dev_proc(dev, strip_copy_rop2, gx_default_strip_copy_rop2);
626
232M
    fill_dev_proc(dev, strip_tile_rect_devn, gx_default_strip_tile_rect_devn);
627
232M
    fill_dev_proc(dev, get_clipping_box, gx_default_get_clipping_box);
628
232M
    fill_dev_proc(dev, begin_typed_image, gx_default_begin_typed_image);
629
232M
    fill_dev_proc(dev, get_bits_rectangle, gx_default_get_bits_rectangle);
630
232M
    fill_dev_proc(dev, composite, gx_default_composite);
631
232M
    fill_dev_proc(dev, get_hardware_params, gx_default_get_hardware_params);
632
232M
    fill_dev_proc(dev, text_begin, gx_default_text_begin);
633
634
232M
    set_dev_proc(dev, encode_color, get_encode_color(dev));
635
232M
    if (dev->color_info.num_components == 3)
636
58.6M
        set_dev_proc(dev, map_rgb_color, dev_proc(dev, encode_color));
637
232M
    if (dev->color_info.num_components == 4)
638
70.0M
        set_dev_proc(dev, map_cmyk_color, dev_proc(dev, encode_color));
639
640
232M
    if (colors_are_separable_and_linear(&dev->color_info)) {
641
69.3M
        fill_dev_proc(dev, encode_color, gx_default_encode_color);
642
69.3M
        fill_dev_proc(dev, map_cmyk_color, gx_default_encode_color);
643
69.3M
        fill_dev_proc(dev, map_rgb_color, gx_default_encode_color);
644
163M
    } else {
645
        /* if it isn't set now punt */
646
163M
        fill_dev_proc(dev, encode_color, gx_error_encode_color);
647
163M
        fill_dev_proc(dev, map_cmyk_color, gx_error_encode_color);
648
163M
        fill_dev_proc(dev, map_rgb_color, gx_error_encode_color);
649
163M
    }
650
651
    /*
652
     * Fill in the color mapping procedures and the component index
653
     * assignment procedure if they have not been provided by the client.
654
     *
655
     * Because it is difficult to provide default encoding procedures
656
     * that handle level inversion, this code needs to check both
657
     * the number of components and the polarity of color model.
658
     */
659
232M
    switch (dev->color_info.num_components) {
660
103M
    case 1:     /* DeviceGray or DeviceInvertGray */
661
        /*
662
         * If not gray then the device must provide the color
663
         * mapping procs.
664
         */
665
103M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
666
103M
            fill_dev_proc( dev,
667
103M
                       get_color_mapping_procs,
668
103M
                       gx_default_DevGray_get_color_mapping_procs );
669
103M
        } else
670
5.98k
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
671
103M
        fill_dev_proc( dev,
672
103M
                       get_color_comp_index,
673
103M
                       gx_default_DevGray_get_color_comp_index );
674
103M
        break;
675
676
58.6M
    case 3:
677
58.6M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
678
58.6M
            fill_dev_proc( dev,
679
58.6M
                       get_color_mapping_procs,
680
58.6M
                       gx_default_DevRGB_get_color_mapping_procs );
681
58.6M
            fill_dev_proc( dev,
682
58.6M
                       get_color_comp_index,
683
58.6M
                       gx_default_DevRGB_get_color_comp_index );
684
58.6M
        } else {
685
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
686
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
687
0
        }
688
58.6M
        break;
689
690
70.0M
    case 4:
691
70.0M
        fill_dev_proc(dev, get_color_mapping_procs, gx_default_DevCMYK_get_color_mapping_procs);
692
70.0M
        fill_dev_proc(dev, get_color_comp_index, gx_default_DevCMYK_get_color_comp_index);
693
70.0M
        break;
694
136k
    default:    /* Unknown color model - set error handlers */
695
136k
        if (dev_proc(dev, get_color_mapping_procs) == NULL) {
696
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
697
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
698
0
        }
699
232M
    }
700
701
232M
    set_dev_proc(dev, decode_color, get_decode_color(dev));
702
232M
    fill_dev_proc(dev, get_profile, gx_default_get_profile);
703
232M
    fill_dev_proc(dev, set_graphics_type_tag, gx_default_set_graphics_type_tag);
704
705
232M
    fill_dev_proc(dev, fill_rectangle_hl_color, gx_default_fill_rectangle_hl_color);
706
232M
    fill_dev_proc(dev, include_color_space, gx_default_include_color_space);
707
232M
    fill_dev_proc(dev, fill_linear_color_scanline, gx_default_fill_linear_color_scanline);
708
232M
    fill_dev_proc(dev, fill_linear_color_trapezoid, gx_default_fill_linear_color_trapezoid);
709
232M
    fill_dev_proc(dev, fill_linear_color_triangle, gx_default_fill_linear_color_triangle);
710
232M
    fill_dev_proc(dev, update_spot_equivalent_colors, gx_default_update_spot_equivalent_colors);
711
232M
    fill_dev_proc(dev, ret_devn_params, gx_default_ret_devn_params);
712
232M
    fill_dev_proc(dev, fillpage, gx_default_fillpage);
713
232M
    fill_dev_proc(dev, copy_alpha_hl_color, gx_default_no_copy_alpha_hl_color);
714
715
232M
    fill_dev_proc(dev, begin_transparency_group, gx_default_begin_transparency_group);
716
232M
    fill_dev_proc(dev, end_transparency_group, gx_default_end_transparency_group);
717
718
232M
    fill_dev_proc(dev, begin_transparency_mask, gx_default_begin_transparency_mask);
719
232M
    fill_dev_proc(dev, end_transparency_mask, gx_default_end_transparency_mask);
720
232M
    fill_dev_proc(dev, discard_transparency_layer, gx_default_discard_transparency_layer);
721
722
232M
    fill_dev_proc(dev, push_transparency_state, gx_default_push_transparency_state);
723
232M
    fill_dev_proc(dev, pop_transparency_state, gx_default_pop_transparency_state);
724
725
232M
    fill_dev_proc(dev, put_image, gx_default_put_image);
726
727
232M
    fill_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
728
232M
    fill_dev_proc(dev, copy_planes, gx_default_copy_planes);
729
232M
    fill_dev_proc(dev, process_page, gx_default_process_page);
730
232M
    fill_dev_proc(dev, transform_pixel_region, gx_default_transform_pixel_region);
731
232M
    fill_dev_proc(dev, fill_stroke_path, gx_default_fill_stroke_path);
732
232M
    fill_dev_proc(dev, lock_pattern, gx_default_lock_pattern);
733
232M
}
734
735
736
int
737
gx_default_open_device(gx_device * dev)
738
638k
{
739
    /* Initialize the separable status if not known. */
740
638k
    check_device_separable(dev);
741
638k
    return 0;
742
638k
}
743
744
/* Get the initial matrix for a device with inverted Y. */
745
/* This includes essentially all printers and displays. */
746
/* Supports LeadingEdge, but no margins or viewports */
747
void
748
gx_default_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
749
113M
{
750
    /* NB this device has no paper margins */
751
113M
    double fs_res = dev->HWResolution[0] / 72.0;
752
113M
    double ss_res = dev->HWResolution[1] / 72.0;
753
754
113M
    switch(dev->LeadingEdge & LEADINGEDGE_MASK) {
755
17
    case 1: /* 90 degrees */
756
17
        pmat->xx = 0;
757
17
        pmat->xy = -ss_res;
758
17
        pmat->yx = -fs_res;
759
17
        pmat->yy = 0;
760
17
        pmat->tx = (float)dev->width;
761
17
        pmat->ty = (float)dev->height;
762
17
        break;
763
0
    case 2: /* 180 degrees */
764
0
        pmat->xx = -fs_res;
765
0
        pmat->xy = 0;
766
0
        pmat->yx = 0;
767
0
        pmat->yy = ss_res;
768
0
        pmat->tx = (float)dev->width;
769
0
        pmat->ty = 0;
770
0
        break;
771
0
    case 3: /* 270 degrees */
772
0
        pmat->xx = 0;
773
0
        pmat->xy = ss_res;
774
0
        pmat->yx = fs_res;
775
0
        pmat->yy = 0;
776
0
        pmat->tx = 0;
777
0
        pmat->ty = 0;
778
0
        break;
779
0
    default:
780
113M
    case 0:
781
113M
        pmat->xx = fs_res;
782
113M
        pmat->xy = 0;
783
113M
        pmat->yx = 0;
784
113M
        pmat->yy = -ss_res;
785
113M
        pmat->tx = 0;
786
113M
        pmat->ty = (float)dev->height;
787
        /****** tx/y is WRONG for devices with ******/
788
        /****** arbitrary initial matrix ******/
789
113M
        break;
790
113M
    }
791
113M
}
792
/* Get the initial matrix for a device with upright Y. */
793
/* This includes just a few printers and window systems. */
794
void
795
gx_upright_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
796
4.07M
{
797
4.07M
    pmat->xx = dev->HWResolution[0] / 72.0; /* x_pixels_per_inch */
798
4.07M
    pmat->xy = 0;
799
4.07M
    pmat->yx = 0;
800
4.07M
    pmat->yy = dev->HWResolution[1] / 72.0; /* y_pixels_per_inch */
801
    /****** tx/y is WRONG for devices with ******/
802
    /****** arbitrary initial matrix ******/
803
4.07M
    pmat->tx = 0;
804
4.07M
    pmat->ty = 0;
805
4.07M
}
806
807
int
808
gx_default_sync_output(gx_device * dev) /* lgtm [cpp/useless-expression] */
809
1.52M
{
810
1.52M
    return 0;
811
1.52M
}
812
813
int
814
gx_default_output_page(gx_device * dev, int num_copies, int flush)
815
16
{
816
16
    int code = dev_proc(dev, sync_output)(dev);
817
818
16
    if (code >= 0)
819
16
        code = gx_finish_output_page(dev, num_copies, flush);
820
16
    return code;
821
16
}
822
823
int
824
gx_default_close_device(gx_device * dev)
825
1.27M
{
826
1.27M
    return 0;
827
1.27M
}
828
829
gx_device *
830
gx_default_get_page_device(gx_device * dev)
831
699k
{
832
699k
    return NULL;
833
699k
}
834
gx_device *
835
gx_page_device_get_page_device(gx_device * dev)
836
45.2M
{
837
45.2M
    return dev;
838
45.2M
}
839
840
int
841
gx_default_get_alpha_bits(gx_device * dev, graphics_object_type type)
842
129M
{
843
129M
    return (type == go_text ? dev->color_info.anti_alias.text_bits :
844
129M
            dev->color_info.anti_alias.graphics_bits);
845
129M
}
846
847
void
848
gx_default_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
849
92.5M
{
850
92.5M
    pbox->p.x = 0;
851
92.5M
    pbox->p.y = 0;
852
92.5M
    pbox->q.x = int2fixed(dev->width);
853
92.5M
    pbox->q.y = int2fixed(dev->height);
854
92.5M
}
855
void
856
gx_get_largest_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
857
801
{
858
801
    pbox->p.x = min_fixed;
859
801
    pbox->p.y = min_fixed;
860
801
    pbox->q.x = max_fixed;
861
801
    pbox->q.y = max_fixed;
862
801
}
863
864
int
865
gx_no_composite(gx_device * dev, gx_device ** pcdev,
866
                        const gs_composite_t * pcte,
867
                        gs_gstate * pgs, gs_memory_t * memory,
868
                        gx_device *cdev)
869
0
{
870
0
    return_error(gs_error_unknownerror);  /* not implemented */
871
0
}
872
int
873
gx_default_composite(gx_device * dev, gx_device ** pcdev,
874
                             const gs_composite_t * pcte,
875
                             gs_gstate * pgs, gs_memory_t * memory,
876
                             gx_device *cdev)
877
36.4M
{
878
36.4M
    return pcte->type->procs.create_default_compositor
879
36.4M
        (pcte, pcdev, dev, pgs, memory);
880
36.4M
}
881
int
882
gx_null_composite(gx_device * dev, gx_device ** pcdev,
883
                          const gs_composite_t * pcte,
884
                          gs_gstate * pgs, gs_memory_t * memory,
885
                          gx_device *cdev)
886
0
{
887
0
    *pcdev = dev;
888
0
    return 0;
889
0
}
890
891
/*
892
 * Default handler for creating a compositor device when writing the clist. */
893
int
894
gx_default_composite_clist_write_update(const gs_composite_t *pcte, gx_device * dev,
895
                gx_device ** pcdev, gs_gstate * pgs, gs_memory_t * mem)
896
1.61M
{
897
1.61M
    *pcdev = dev;   /* Do nothing -> return the same device */
898
1.61M
    return 0;
899
1.61M
}
900
901
/* Default handler for adjusting a compositor's CTM. */
902
int
903
gx_default_composite_adjust_ctm(gs_composite_t *pcte, int x0, int y0, gs_gstate *pgs)
904
292M
{
905
292M
    return 0;
906
292M
}
907
908
/*
909
 * Default check for closing compositor.
910
 */
911
gs_compositor_closing_state
912
gx_default_composite_is_closing(const gs_composite_t *this, gs_composite_t **pcte, gx_device *dev)
913
0
{
914
0
    return COMP_ENQUEUE;
915
0
}
916
917
/*
918
 * Default check whether a next operation is friendly to the compositor.
919
 */
920
bool
921
gx_default_composite_is_friendly(const gs_composite_t *this, byte cmd0, byte cmd1)
922
4.37M
{
923
4.37M
    return false;
924
4.37M
}
925
926
/*
927
 * Default handler for updating the clist device when reading a compositing
928
 * device.
929
 */
930
int
931
gx_default_composite_clist_read_update(gs_composite_t *pxcte, gx_device * cdev,
932
                gx_device * tdev, gs_gstate * pgs, gs_memory_t * mem)
933
292M
{
934
292M
    return 0;     /* Do nothing */
935
292M
}
936
937
/*
938
 * Default handler for get_cropping returns no cropping.
939
 */
940
int
941
gx_default_composite_get_cropping(const gs_composite_t *pxcte, int *ry, int *rheight,
942
                                  int cropping_min, int cropping_max)
943
1.61M
{
944
1.61M
    return 0;     /* No cropping. */
945
1.61M
}
946
947
int
948
gx_default_initialize_device(gx_device *dev)
949
0
{
950
0
    return 0;
951
0
}
952
953
int
954
gx_default_dev_spec_op(gx_device *pdev, int dev_spec_op, void *data, int size)
955
471M
{
956
471M
    switch(dev_spec_op) {
957
0
        case gxdso_form_begin:
958
0
        case gxdso_form_end:
959
42.9k
        case gxdso_pattern_can_accum:
960
42.9k
        case gxdso_pattern_start_accum:
961
42.9k
        case gxdso_pattern_finish_accum:
962
231k
        case gxdso_pattern_load:
963
5.44M
        case gxdso_pattern_shading_area:
964
6.81M
        case gxdso_pattern_is_cpath_accum:
965
6.81M
        case gxdso_pattern_handles_clip_path:
966
6.85M
        case gxdso_is_pdf14_device:
967
152M
        case gxdso_supports_devn:
968
152M
        case gxdso_supports_hlcolor:
969
153M
        case gxdso_supports_saved_pages:
970
153M
        case gxdso_needs_invariant_palette:
971
153M
        case gxdso_supports_iccpostrender:
972
155M
        case gxdso_supports_alpha:
973
155M
        case gxdso_pdf14_sep_device:
974
158M
        case gxdso_supports_pattern_transparency:
975
158M
        case gxdso_overprintsim_state:
976
158M
        case gxdso_skip_icc_component_validation:
977
158M
            return 0;
978
515
        case gxdso_pattern_shfill_doesnt_need_path:
979
515
            return (dev_proc(pdev, fill_path) == gx_default_fill_path);
980
44.2M
        case gxdso_is_std_cmyk_1bit:
981
44.2M
            return (dev_proc(pdev, map_cmyk_color) == cmyk_1bit_map_cmyk_color);
982
0
        case gxdso_interpolate_antidropout:
983
0
            return pdev->color_info.use_antidropout_downscaler;
984
1.95M
        case gxdso_interpolate_threshold:
985
1.95M
            if ((pdev->color_info.num_components == 1 &&
986
575k
                 pdev->color_info.max_gray < 15) ||
987
1.63M
                (pdev->color_info.num_components > 1 &&
988
1.38M
                 pdev->color_info.max_color < 15)) {
989
                /* If we are a limited color device (i.e. we are halftoning)
990
                 * then only interpolate if we are upscaling by at least 4 */
991
906k
                return 4;
992
906k
            }
993
1.05M
            return 0; /* Otherwise no change */
994
5.56M
        case gxdso_get_dev_param:
995
5.56M
            {
996
5.56M
                dev_param_req_t *request = (dev_param_req_t *)data;
997
5.56M
                return gx_default_get_param(pdev, request->Param, request->list);
998
1.95M
            }
999
3.00M
        case gxdso_current_output_device:
1000
3.00M
            {
1001
3.00M
                *(gx_device **)data = pdev;
1002
3.00M
                return 0;
1003
1.95M
            }
1004
44.5k
        case gxdso_copy_color_is_fast:
1005
44.5k
            return (dev_proc(pdev, copy_color) != gx_default_copy_color);
1006
1.03M
        case gxdso_is_encoding_direct:
1007
1.03M
            if (pdev->color_info.depth != 8 * pdev->color_info.num_components)
1008
0
                return 0;
1009
1.03M
            return (dev_proc(pdev, encode_color) == gx_default_encode_color ||
1010
1.03M
                    dev_proc(pdev, encode_color) == gx_default_rgb_map_rgb_color);
1011
        /* Just ignore information about events */
1012
0
        case gxdso_event_info:
1013
0
            return 0;
1014
21.7M
        case gxdso_overprint_active:
1015
21.7M
            return 0;
1016
471M
    }
1017
471M
    return_error(gs_error_undefined);
1018
471M
}
1019
1020
int
1021
gx_default_fill_rectangle_hl_color(gx_device *pdev,
1022
    const gs_fixed_rect *rect,
1023
    const gs_gstate *pgs, const gx_drawing_color *pdcolor,
1024
    const gx_clip_path *pcpath)
1025
6
{
1026
6
    return_error(gs_error_rangecheck);
1027
6
}
1028
1029
int
1030
gx_default_include_color_space(gx_device *pdev, gs_color_space *cspace,
1031
        const byte *res_name, int name_length)
1032
0
{
1033
0
    return 0;
1034
0
}
1035
1036
/*
1037
 * If a device wants to determine an equivalent color for its spot colors then
1038
 * it needs to implement this method.  See comments at the start of
1039
 * src/gsequivc.c.
1040
 */
1041
int
1042
gx_default_update_spot_equivalent_colors(gx_device *pdev, const gs_gstate * pgs, const gs_color_space *pcs)
1043
25.9k
{
1044
25.9k
    return 0;
1045
25.9k
}
1046
1047
/*
1048
 * If a device wants to determine implement support for spot colors then
1049
 * it needs to implement this method.
1050
 */
1051
gs_devn_params *
1052
gx_default_ret_devn_params(gx_device *pdev)
1053
180M
{
1054
180M
    return NULL;
1055
180M
}
1056
1057
int
1058
gx_default_process_page(gx_device *dev, gx_process_page_options_t *options)
1059
0
{
1060
0
    gs_int_rect rect;
1061
0
    int code = 0;
1062
0
    void *buffer = NULL;
1063
1064
    /* Possible future improvements in here could be given by us dividing the
1065
     * page up into n chunks, and spawning a thread per chunk to do the
1066
     * process_fn call on. n could be given by NumRenderingThreads. This
1067
     * would give us multi-core advantages even without clist. */
1068
0
    if (options->init_buffer_fn) {
1069
0
        code = options->init_buffer_fn(options->arg, dev, dev->memory, dev->width, dev->height, &buffer);
1070
0
        if (code < 0)
1071
0
            return code;
1072
0
    }
1073
1074
0
    rect.p.x = 0;
1075
0
    rect.p.y = 0;
1076
0
    rect.q.x = dev->width;
1077
0
    rect.q.y = dev->height;
1078
0
    if (options->process_fn)
1079
0
        code = options->process_fn(options->arg, dev, dev, &rect, buffer);
1080
0
    if (code >= 0 && options->output_fn)
1081
0
        code = options->output_fn(options->arg, dev, buffer);
1082
1083
0
    if (options->free_buffer_fn)
1084
0
        options->free_buffer_fn(options->arg, dev, dev->memory, buffer);
1085
1086
0
    return code;
1087
0
}
1088
1089
int
1090
gx_default_begin_transparency_group(gx_device *dev, const gs_transparency_group_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1091
0
{
1092
0
    return 0;
1093
0
}
1094
1095
int
1096
gx_default_end_transparency_group(gx_device *dev, gs_gstate *pgs)
1097
0
{
1098
0
    return 0;
1099
0
}
1100
1101
int
1102
gx_default_begin_transparency_mask(gx_device *dev, const gx_transparency_mask_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1103
0
{
1104
0
    return 0;
1105
0
}
1106
1107
int
1108
gx_default_end_transparency_mask(gx_device *dev, gs_gstate *pgs)
1109
0
{
1110
0
    return 0;
1111
0
}
1112
1113
int
1114
gx_default_discard_transparency_layer(gx_device *dev, gs_gstate *pgs)
1115
0
{
1116
0
    return 0;
1117
0
}
1118
1119
int
1120
gx_default_push_transparency_state(gx_device *dev, gs_gstate *pgs)
1121
0
{
1122
0
    return 0;
1123
0
}
1124
1125
int
1126
gx_default_pop_transparency_state(gx_device *dev, gs_gstate *pgs)
1127
0
{
1128
0
    return 0;
1129
0
}
1130
1131
int
1132
gx_default_put_image(gx_device *dev, gx_device *mdev, const byte **buffers, int num_chan, int x, int y, int width, int height, int row_stride, int alpha_plane_index, int tag_plane_index)
1133
73.8k
{
1134
73.8k
    return_error(gs_error_undefined);
1135
73.8k
}
1136
1137
int
1138
gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth)
1139
0
{
1140
0
    return_error(gs_error_undefined);
1141
0
}
1142
1143
int
1144
gx_default_copy_planes(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, int plane_height)
1145
0
{
1146
0
    return_error(gs_error_undefined);
1147
0
}
1148
1149
/* ---------------- Default per-instance procedures ---------------- */
1150
1151
int
1152
gx_default_install(gx_device * dev, gs_gstate * pgs)
1153
872k
{
1154
872k
    return 0;
1155
872k
}
1156
1157
int
1158
gx_default_begin_page(gx_device * dev, gs_gstate * pgs)
1159
1.13M
{
1160
1.13M
    return 0;
1161
1.13M
}
1162
1163
int
1164
gx_default_end_page(gx_device * dev, int reason, gs_gstate * pgs)
1165
1.34M
{
1166
1.34M
    return (reason != 2 ? 1 : 0);
1167
1.34M
}
1168
1169
void
1170
gx_default_set_graphics_type_tag(gx_device *dev, gs_graphics_type_tag_t graphics_type_tag)
1171
6.10M
{
1172
    /* set the tag but carefully preserve GS_DEVICE_ENCODES_TAGS */
1173
6.10M
    dev->graphics_type_tag = (dev->graphics_type_tag & GS_DEVICE_ENCODES_TAGS) | graphics_type_tag;
1174
6.10M
}
1175
1176
/* ---------------- Device subclassing procedures ---------------- */
1177
1178
/* Non-obvious code. The 'dest_procs' is the 'procs' memory occupied by the original device that we decided to subclass,
1179
 * 'src_procs' is the newly allocated piece of memory, to which we have already copied the content of the
1180
 * original device (including the procs), prototype is the device structure prototype for the subclassing device.
1181
 * Here we copy the methods from the prototype to the original device procs memory *but* if the original (src_procs)
1182
 * device had a NULL method, we make the new device procs have a NULL method too.
1183
 * The reason for ths is ugly, there are some places in the graphics library which explicitly check for
1184
 * a device having a NULL method and take different code paths depending on the result.
1185
 * Now in general we expect subclassing devices to implement *every* method, so if we didn't copy
1186
 * over NULL methods present in the original source device then the code path could be inappropriate for
1187
 * that underlying (now subclassed) device.
1188
 */
1189
/* November 10th 2017 Restored the original behaviour of the device methods, they should now never be NULL.
1190
 * Howwever, there are still places in the code which take different code paths if the device method is (now)
1191
 * the default device method, rather than a device-specific method.
1192
 * So instead of checking for NULL, we now need to check against the default implementation, and *NOT* copy the
1193
 * prototype (subclass device) method if the original device had the default implementation.
1194
 * I suspect a combination of forwarding and subclassing devices will not work properly for this reason.
1195
 */
1196
int gx_copy_device_procs(gx_device *dest, const gx_device *src, const gx_device *pprototype)
1197
41.4k
{
1198
41.4k
    gx_device prototype = *pprototype;
1199
1200
    /* In the new (as of 2021) world, the prototype does not contain
1201
     * device procs. We need to call the 'initialize_device_procs'
1202
     * function to properly populate the procs array. We can't write to
1203
     * the const prototype pointer we are passed in, so copy it to a
1204
     * local block, and initialize that instead, */
1205
41.4k
    prototype.initialize_device_procs(&prototype);
1206
    /* Fill in missing entries with the global defaults */
1207
41.4k
    gx_device_fill_in_procs(&prototype);
1208
1209
41.4k
    if (dest->initialize_device_procs == NULL)
1210
0
       dest->initialize_device_procs = prototype.initialize_device_procs;
1211
1212
41.4k
    set_dev_proc(dest, initialize_device, dev_proc(&prototype, initialize_device));
1213
41.4k
    set_dev_proc(dest, open_device, dev_proc(&prototype, open_device));
1214
41.4k
    set_dev_proc(dest, get_initial_matrix, dev_proc(&prototype, get_initial_matrix));
1215
41.4k
    set_dev_proc(dest, sync_output, dev_proc(&prototype, sync_output));
1216
41.4k
    set_dev_proc(dest, output_page, dev_proc(&prototype, output_page));
1217
41.4k
    set_dev_proc(dest, close_device, dev_proc(&prototype, close_device));
1218
41.4k
    set_dev_proc(dest, map_rgb_color, dev_proc(&prototype, map_rgb_color));
1219
41.4k
    set_dev_proc(dest, map_color_rgb, dev_proc(&prototype, map_color_rgb));
1220
41.4k
    set_dev_proc(dest, fill_rectangle, dev_proc(&prototype, fill_rectangle));
1221
41.4k
    set_dev_proc(dest, copy_mono, dev_proc(&prototype, copy_mono));
1222
41.4k
    set_dev_proc(dest, copy_color, dev_proc(&prototype, copy_color));
1223
41.4k
    set_dev_proc(dest, get_params, dev_proc(&prototype, get_params));
1224
41.4k
    set_dev_proc(dest, put_params, dev_proc(&prototype, put_params));
1225
41.4k
    set_dev_proc(dest, map_cmyk_color, dev_proc(&prototype, map_cmyk_color));
1226
41.4k
    set_dev_proc(dest, get_page_device, dev_proc(&prototype, get_page_device));
1227
41.4k
    set_dev_proc(dest, get_alpha_bits, dev_proc(&prototype, get_alpha_bits));
1228
41.4k
    set_dev_proc(dest, copy_alpha, dev_proc(&prototype, copy_alpha));
1229
41.4k
    set_dev_proc(dest, fill_path, dev_proc(&prototype, fill_path));
1230
41.4k
    set_dev_proc(dest, stroke_path, dev_proc(&prototype, stroke_path));
1231
41.4k
    set_dev_proc(dest, fill_trapezoid, dev_proc(&prototype, fill_trapezoid));
1232
41.4k
    set_dev_proc(dest, fill_parallelogram, dev_proc(&prototype, fill_parallelogram));
1233
41.4k
    set_dev_proc(dest, fill_triangle, dev_proc(&prototype, fill_triangle));
1234
41.4k
    set_dev_proc(dest, draw_thin_line, dev_proc(&prototype, draw_thin_line));
1235
41.4k
    set_dev_proc(dest, strip_tile_rectangle, dev_proc(&prototype, strip_tile_rectangle));
1236
41.4k
    set_dev_proc(dest, get_clipping_box, dev_proc(&prototype, get_clipping_box));
1237
41.4k
    set_dev_proc(dest, begin_typed_image, dev_proc(&prototype, begin_typed_image));
1238
41.4k
    set_dev_proc(dest, get_bits_rectangle, dev_proc(&prototype, get_bits_rectangle));
1239
41.4k
    set_dev_proc(dest, composite, dev_proc(&prototype, composite));
1240
41.4k
    set_dev_proc(dest, get_hardware_params, dev_proc(&prototype, get_hardware_params));
1241
41.4k
    set_dev_proc(dest, text_begin, dev_proc(&prototype, text_begin));
1242
41.4k
    set_dev_proc(dest, discard_transparency_layer, dev_proc(&prototype, discard_transparency_layer));
1243
41.4k
    set_dev_proc(dest, get_color_mapping_procs, dev_proc(&prototype, get_color_mapping_procs));
1244
41.4k
    set_dev_proc(dest, get_color_comp_index, dev_proc(&prototype, get_color_comp_index));
1245
41.4k
    set_dev_proc(dest, encode_color, dev_proc(&prototype, encode_color));
1246
41.4k
    set_dev_proc(dest, decode_color, dev_proc(&prototype, decode_color));
1247
41.4k
    set_dev_proc(dest, fill_rectangle_hl_color, dev_proc(&prototype, fill_rectangle_hl_color));
1248
41.4k
    set_dev_proc(dest, include_color_space, dev_proc(&prototype, include_color_space));
1249
41.4k
    set_dev_proc(dest, fill_linear_color_scanline, dev_proc(&prototype, fill_linear_color_scanline));
1250
41.4k
    set_dev_proc(dest, fill_linear_color_trapezoid, dev_proc(&prototype, fill_linear_color_trapezoid));
1251
41.4k
    set_dev_proc(dest, fill_linear_color_triangle, dev_proc(&prototype, fill_linear_color_triangle));
1252
41.4k
    set_dev_proc(dest, update_spot_equivalent_colors, dev_proc(&prototype, update_spot_equivalent_colors));
1253
41.4k
    set_dev_proc(dest, ret_devn_params, dev_proc(&prototype, ret_devn_params));
1254
41.4k
    set_dev_proc(dest, fillpage, dev_proc(&prototype, fillpage));
1255
41.4k
    set_dev_proc(dest, push_transparency_state, dev_proc(&prototype, push_transparency_state));
1256
41.4k
    set_dev_proc(dest, pop_transparency_state, dev_proc(&prototype, pop_transparency_state));
1257
41.4k
    set_dev_proc(dest, dev_spec_op, dev_proc(&prototype, dev_spec_op));
1258
41.4k
    set_dev_proc(dest, get_profile, dev_proc(&prototype, get_profile));
1259
41.4k
    set_dev_proc(dest, strip_copy_rop2, dev_proc(&prototype, strip_copy_rop2));
1260
41.4k
    set_dev_proc(dest, strip_tile_rect_devn, dev_proc(&prototype, strip_tile_rect_devn));
1261
41.4k
    set_dev_proc(dest, process_page, dev_proc(&prototype, process_page));
1262
41.4k
    set_dev_proc(dest, transform_pixel_region, dev_proc(&prototype, transform_pixel_region));
1263
41.4k
    set_dev_proc(dest, fill_stroke_path, dev_proc(&prototype, fill_stroke_path));
1264
41.4k
    set_dev_proc(dest, lock_pattern, dev_proc(&prototype, lock_pattern));
1265
1266
    /*
1267
     * We absolutely must set the 'set_graphics_type_tag' to the default subclass one
1268
     * even if the subclassed device is using the default. This is because the
1269
     * default implementation sets a flag in the device structure, and if we
1270
     * copy the default method, we'll end up setting the flag in the subclassing device
1271
     * instead of the subclassed device!
1272
     */
1273
41.4k
    set_dev_proc(dest, set_graphics_type_tag, dev_proc(&prototype, set_graphics_type_tag));
1274
1275
    /* These are the routines whose existence is checked against the default at
1276
     * some point in the code. The code path differs when the device implements a
1277
     * method other than the default, so the subclassing device needs to ensure that
1278
     * if the subclassed device has one of these methods set to the default, we
1279
     * do not overwrite the default method.
1280
     */
1281
41.4k
    if (dev_proc(src, fill_mask) != gx_default_fill_mask)
1282
25.9k
        set_dev_proc(dest, fill_mask, dev_proc(&prototype, fill_mask));
1283
41.4k
    if (dev_proc(src, begin_transparency_group) != gx_default_begin_transparency_group)
1284
0
        set_dev_proc(dest, begin_transparency_group, dev_proc(&prototype, begin_transparency_group));
1285
41.4k
    if (dev_proc(src, end_transparency_group) != gx_default_end_transparency_group)
1286
0
        set_dev_proc(dest, end_transparency_group, dev_proc(&prototype, end_transparency_group));
1287
41.4k
    if (dev_proc(src, put_image) != gx_default_put_image)
1288
0
        set_dev_proc(dest, put_image, dev_proc(&prototype, put_image));
1289
41.4k
    if (dev_proc(src, copy_planes) != gx_default_copy_planes)
1290
0
        set_dev_proc(dest, copy_planes, dev_proc(&prototype, copy_planes));
1291
41.4k
    if (dev_proc(src, copy_alpha_hl_color) != gx_default_no_copy_alpha_hl_color)
1292
0
        set_dev_proc(dest, copy_alpha_hl_color, dev_proc(&prototype, copy_alpha_hl_color));
1293
1294
41.4k
    return 0;
1295
41.4k
}
1296
1297
int gx_device_subclass(gx_device *dev_to_subclass, gx_device *new_prototype, unsigned int private_data_size)
1298
41.4k
{
1299
41.4k
    gx_device *child_dev;
1300
41.4k
    void *psubclass_data;
1301
41.4k
    gs_memory_struct_type_t *a_std = NULL, *b_std = NULL;
1302
41.4k
    int dynamic = dev_to_subclass->stype_is_dynamic;
1303
41.4k
    char *ptr, *ptr1;
1304
1305
    /* If this happens we are stuffed, as there is no way to get hold
1306
     * of the original device's stype structure, which means we cannot
1307
     * allocate a replacement structure. Abort if so.
1308
     * Also abort if the new_prototype device struct is too large.
1309
     */
1310
41.4k
    if (!dev_to_subclass->stype ||
1311
41.4k
        dev_to_subclass->stype->ssize < new_prototype->params_size)
1312
6
        return_error(gs_error_VMerror);
1313
1314
    /* We make a 'stype' structure for our new device, and copy the old stype into it
1315
     * This means our new device will always have the 'stype_is_dynamic' flag set
1316
     */
1317
41.4k
    a_std = (gs_memory_struct_type_t *)
1318
41.4k
        gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*a_std),
1319
41.4k
                                 "gs_device_subclass(stype)");
1320
41.4k
    if (!a_std)
1321
0
        return_error(gs_error_VMerror);
1322
41.4k
    *a_std = *dev_to_subclass->stype;
1323
41.4k
    a_std->ssize = dev_to_subclass->params_size;
1324
1325
41.4k
    if (!dynamic) {
1326
41.4k
        b_std = (gs_memory_struct_type_t *)
1327
41.4k
            gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*b_std),
1328
41.4k
                                     "gs_device_subclass(stype)");
1329
41.4k
        if (!b_std) {
1330
0
            gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1331
0
            return_error(gs_error_VMerror);
1332
0
        }
1333
41.4k
    }
1334
1335
    /* Allocate a device structure for the new child device */
1336
41.4k
    child_dev = gs_alloc_struct_immovable(dev_to_subclass->memory->stable_memory, gx_device, a_std,
1337
41.4k
                                        "gs_device_subclass(device)");
1338
41.4k
    if (child_dev == 0) {
1339
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1340
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1341
0
        return_error(gs_error_VMerror);
1342
0
    }
1343
1344
    /* Make sure all methods are filled in, note this won't work for a forwarding device
1345
     * so forwarding devices will have to be filled in before being subclassed. This doesn't fill
1346
     * in the fill_rectangle proc, that gets done in the ultimate device's open proc.
1347
     */
1348
41.4k
    gx_device_fill_in_procs(dev_to_subclass);
1349
41.4k
    memcpy(child_dev, dev_to_subclass, dev_to_subclass->stype->ssize);
1350
41.4k
    child_dev->stype = a_std;
1351
41.4k
    child_dev->stype_is_dynamic = 1;
1352
1353
    /* At this point, the only counted reference to the child is from its parent, and we need it to use the right allocator */
1354
41.4k
    rc_init(child_dev, dev_to_subclass->memory->stable_memory, 1);
1355
1356
41.4k
    psubclass_data = (void *)gs_alloc_bytes(dev_to_subclass->memory->non_gc_memory, private_data_size, "subclass memory for subclassing device");
1357
41.4k
    if (psubclass_data == 0){
1358
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1359
        /* We *don't* want to run the finalize routine. This would free the stype and
1360
         * properly handle the icc_struct and PageList, but for devices with a custom
1361
         * finalize (eg psdcmyk) it might also free memory it had allocated, and we're
1362
         * still pointing at that memory in the parent.
1363
         */
1364
0
        a_std->finalize = NULL;
1365
0
        gs_set_object_type(dev_to_subclass->memory->stable_memory, child_dev, a_std);
1366
0
        gs_free_object(dev_to_subclass->memory->stable_memory, child_dev, "free subclass memory for subclassing device");
1367
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1368
0
        return_error(gs_error_VMerror);
1369
0
    }
1370
41.4k
    memset(psubclass_data, 0x00, private_data_size);
1371
1372
41.4k
    gx_copy_device_procs(dev_to_subclass, child_dev, new_prototype);
1373
41.4k
    dev_to_subclass->finalize = new_prototype->finalize;
1374
41.4k
    dev_to_subclass->dname = new_prototype->dname;
1375
41.4k
    if (dev_to_subclass->icc_struct)
1376
41.4k
        rc_increment(dev_to_subclass->icc_struct);
1377
41.4k
    if (dev_to_subclass->PageList)
1378
41.4k
        rc_increment(dev_to_subclass->PageList);
1379
41.4k
    if (dev_to_subclass->NupControl)
1380
41.4k
        rc_increment(dev_to_subclass->NupControl);
1381
1382
41.4k
    dev_to_subclass->page_procs = new_prototype->page_procs;
1383
41.4k
    gx_subclass_fill_in_page_procs(dev_to_subclass);
1384
1385
    /* In case the new device we're creating has already been initialised, copy
1386
     * its additional data.
1387
     */
1388
41.4k
    ptr = ((char *)dev_to_subclass) + sizeof(gx_device);
1389
41.4k
    ptr1 = ((char *)new_prototype) + sizeof(gx_device);
1390
41.4k
    memcpy(ptr, ptr1, new_prototype->params_size - sizeof(gx_device));
1391
1392
    /* If the original device's stype structure was dynamically allocated, we need
1393
     * to 'fixup' the contents, it's procs need to point to the new device's procs
1394
     * for instance.
1395
     */
1396
41.4k
    if (dynamic) {
1397
0
        if (new_prototype->stype) {
1398
0
            b_std = (gs_memory_struct_type_t *)dev_to_subclass->stype;
1399
0
            *b_std = *new_prototype->stype;
1400
0
            b_std->ssize = a_std->ssize;
1401
0
            dev_to_subclass->stype_is_dynamic = 1;
1402
0
        } else {
1403
0
            gs_free_const_object(child_dev->memory->non_gc_memory, dev_to_subclass->stype,
1404
0
                             "unsubclass");
1405
0
            dev_to_subclass->stype = NULL;
1406
0
            b_std = (gs_memory_struct_type_t *)new_prototype->stype;
1407
0
            dev_to_subclass->stype_is_dynamic = 0;
1408
0
        }
1409
0
    }
1410
41.4k
    else {
1411
41.4k
        *b_std = *new_prototype->stype;
1412
41.4k
        b_std->ssize = a_std->ssize;
1413
41.4k
        dev_to_subclass->stype_is_dynamic = 1;
1414
41.4k
    }
1415
41.4k
    dev_to_subclass->stype = b_std;
1416
    /* We have to patch up the "type" parameters that the memory manage/garbage
1417
     * collector will use, as well.
1418
     */
1419
41.4k
    gs_set_object_type(child_dev->memory, dev_to_subclass, b_std);
1420
1421
41.4k
    dev_to_subclass->subclass_data = psubclass_data;
1422
41.4k
    dev_to_subclass->child = child_dev;
1423
41.4k
    if (child_dev->parent) {
1424
0
        dev_to_subclass->parent = child_dev->parent;
1425
0
        child_dev->parent->child = dev_to_subclass;
1426
0
    }
1427
41.4k
    if (child_dev->child) {
1428
0
        child_dev->child->parent = child_dev;
1429
0
    }
1430
41.4k
    child_dev->parent = dev_to_subclass;
1431
1432
41.4k
    return 0;
1433
41.4k
}
1434
1435
void gx_device_unsubclass(gx_device *dev)
1436
0
{
1437
0
    generic_subclass_data *psubclass_data;
1438
0
    gx_device *parent, *child;
1439
0
    gs_memory_struct_type_t *a_std = 0, *b_std = 0;
1440
0
    int dynamic, ref_count;
1441
0
    gs_memory_t *rcmem;
1442
1443
    /* This should not happen... */
1444
0
    if (!dev)
1445
0
        return;
1446
1447
0
    ref_count = dev->rc.ref_count;
1448
0
    rcmem = dev->rc.memory;
1449
1450
0
    child = dev->child;
1451
0
    psubclass_data = (generic_subclass_data *)dev->subclass_data;
1452
0
    parent = dev->parent;
1453
0
    dynamic = dev->stype_is_dynamic;
1454
1455
    /* We need to account for the fact that we are removing ourselves from
1456
     * the device chain after a clist device has been pushed, due to a
1457
     * compositor action. Since we patched the clist 'composite'
1458
     * method (and target device) when it was pushed.
1459
     * A point to note; we *don't* want to change the forwarding device's
1460
     * 'target', because when we copy the child up to replace 'this' device
1461
     * we do still want the forwarding device to point here. NB its the *child*
1462
     * device that goes away.
1463
     */
1464
0
    if (psubclass_data != NULL && psubclass_data->forwarding_dev != NULL && psubclass_data->saved_compositor_method)
1465
0
        psubclass_data->forwarding_dev->procs.composite = psubclass_data->saved_compositor_method;
1466
1467
    /* If ths device's stype is dynamically allocated, keep a copy of it
1468
     * in case we might need it.
1469
     */
1470
0
    if (dynamic) {
1471
0
        a_std = (gs_memory_struct_type_t *)dev->stype;
1472
0
        if (child)
1473
0
            *a_std = *child->stype;
1474
0
    }
1475
1476
    /* If ths device has any private storage, free it now */
1477
0
    if (psubclass_data)
1478
0
        gs_free_object(dev->memory->non_gc_memory, psubclass_data, "gx_device_unsubclass");
1479
1480
    /* Copy the child device into ths device's memory */
1481
0
    if (child) {
1482
0
        b_std = (gs_memory_struct_type_t *)dev->stype;
1483
0
        rc_decrement(dev->icc_struct, "unsubclass device");
1484
0
        rc_increment(child->icc_struct);
1485
0
        memcpy(dev, child, child->stype->ssize);
1486
        /* Patch back the 'stype' in the memory manager */
1487
0
        gs_set_object_type(child->memory, dev, b_std);
1488
1489
0
        dev->stype = b_std;
1490
        /* The reference count of the subclassing device may have been
1491
         * changed (eg graphics states pointing to it) after we subclassed
1492
         * the device. We need to ensure that we do not overwrite this
1493
         * when we copy back the subclassed device.
1494
         */
1495
0
        dev->rc.ref_count = ref_count;
1496
0
        dev->rc.memory = rcmem;
1497
1498
        /* If we have a chain of devices, make sure the chain beyond the
1499
         * device we're unsubclassing doesn't get broken, we need to
1500
         * detach the lower chain and reattach it at the new highest level.
1501
         */
1502
0
        if (child->child)
1503
0
            child->child->parent = dev;
1504
0
        child->parent->child = child->child;
1505
0
    }
1506
1507
    /* How can we have a subclass device with no child ? Simples; when we
1508
     * hit the end of job restore, the devices are not freed in device
1509
     * chain order. To make sure we don't end up following stale pointers,
1510
     * when a device is freed we remove it from the chain and update
1511
     * any dangling pointers to NULL. When we later free the remaining
1512
     * devices it's possible that their child pointer can then be NULL.
1513
     */
1514
0
    if (child) {
1515
        /* We cannot afford to free the child device if its stype is not
1516
         * dynamic because we can't 'null' the finalise routine, and we
1517
         * cannot permit the device to be finalised because we have copied
1518
         * it up one level, not discarded it. (This shouldn't happen! Child
1519
         * devices are always created with a dynamic stype.) If this ever
1520
         * happens garbage collecton will eventually clean up the memory.
1521
         */
1522
0
        if (child->stype_is_dynamic) {
1523
            /* Make sure that nothing will try to follow the device chain,
1524
             * just security here. */
1525
0
            child->parent = NULL;
1526
0
            child->child = NULL;
1527
1528
            /* We *don't* want to run the finalize routine. This would free
1529
             * the stype and properly handle the icc_struct and PageList,
1530
             * but for devices with a custom finalize (eg psdcmyk) it might
1531
             * also free memory it had allocated, and we're still pointing
1532
             * at that memory in the parent. The indirection through a
1533
             * variable is just to get rid of const warnings.
1534
             */
1535
0
            b_std = (gs_memory_struct_type_t *)child->stype;
1536
0
            gs_free_const_object(dev->memory->non_gc_memory, b_std, "gs_device_unsubclass(stype)");
1537
            /* Make this into a generic device */
1538
0
            child->stype = &st_device;
1539
0
            child->stype_is_dynamic = false;
1540
1541
            /* We can't simply discard the child device, because there may be references to it elsewhere,
1542
               but equally, we really don't want it doing anything, so set the procs so actions are just discarded.
1543
             */
1544
0
            gx_copy_device_procs(child, (gx_device *)&gs_null_device, (gx_device *)&gs_null_device);
1545
1546
            /* Having changed the stype, we need to make sure the memory
1547
             * manager uses it. It keeps a copy in its own data structure,
1548
             * and would use that copy, which would mean it would call the
1549
             * finalize routine that we just patched out.
1550
             */
1551
0
            gs_set_object_type(dev->memory->stable_memory, child, child->stype);
1552
0
            child->finalize = NULL;
1553
            /* Now (finally) free the child memory */
1554
0
            rc_decrement(child, "gx_device_unsubclass(device)");
1555
0
        }
1556
0
    }
1557
0
    dev->parent = parent;
1558
1559
    /* If this device has a dynamic stype, we wnt to keep using it, but we copied
1560
     * the stype pointer from the child when we copied the rest of the device. So
1561
     * we update the stype pointer with the saved pointer to this device's stype.
1562
     */
1563
0
    if (dynamic) {
1564
0
        dev->stype = a_std;
1565
0
        dev->stype_is_dynamic = 1;
1566
0
    } else {
1567
0
        dev->stype_is_dynamic = 0;
1568
0
    }
1569
0
}
1570
1571
int gx_update_from_subclass(gx_device *dev)
1572
225k
{
1573
225k
    if (!dev->child)
1574
0
        return 0;
1575
1576
225k
    memcpy(&dev->color_info, &dev->child->color_info, sizeof(gx_device_color_info));
1577
225k
    memcpy(&dev->cached_colors, &dev->child->cached_colors, sizeof(gx_device_cached_colors_t));
1578
225k
    dev->max_fill_band = dev->child->max_fill_band;
1579
225k
    dev->width = dev->child->width;
1580
225k
    dev->height = dev->child->height;
1581
225k
    dev->pad = dev->child->pad;
1582
225k
    dev->log2_align_mod = dev->child->log2_align_mod;
1583
225k
    dev->max_fill_band = dev->child->max_fill_band;
1584
225k
    dev->num_planar_planes = dev->child->num_planar_planes;
1585
225k
    dev->LeadingEdge = dev->child->LeadingEdge;
1586
225k
    memcpy(&dev->ImagingBBox, &dev->child->ImagingBBox, sizeof(dev->child->ImagingBBox));
1587
225k
    dev->ImagingBBox_set = dev->child->ImagingBBox_set;
1588
225k
    memcpy(&dev->MediaSize, &dev->child->MediaSize, sizeof(dev->child->MediaSize));
1589
225k
    memcpy(&dev->HWResolution, &dev->child->HWResolution, sizeof(dev->child->HWResolution));
1590
225k
    memcpy(&dev->Margins, &dev->child->Margins, sizeof(dev->child->Margins));
1591
225k
    memcpy(&dev->HWMargins, &dev->child->HWMargins, sizeof(dev->child->HWMargins));
1592
225k
    dev->FirstPage = dev->child->FirstPage;
1593
225k
    dev->LastPage = dev->child->LastPage;
1594
225k
    dev->PageCount = dev->child->PageCount;
1595
225k
    dev->ShowpageCount = dev->child->ShowpageCount;
1596
225k
    dev->NumCopies = dev->child->NumCopies;
1597
225k
    dev->NumCopies_set = dev->child->NumCopies_set;
1598
225k
    dev->IgnoreNumCopies = dev->child->IgnoreNumCopies;
1599
225k
    dev->UseCIEColor = dev->child->UseCIEColor;
1600
225k
    dev->LockSafetyParams= dev->child->LockSafetyParams;
1601
225k
    dev->band_offset_x = dev->child->band_offset_y;
1602
225k
    dev->sgr = dev->child->sgr;
1603
225k
    dev->MaxPatternBitmap = dev->child->MaxPatternBitmap;
1604
225k
    dev->page_uses_transparency = dev->child->page_uses_transparency;
1605
225k
    memcpy(&dev->space_params, &dev->child->space_params, sizeof(gdev_space_params));
1606
225k
    dev->graphics_type_tag = dev->child->graphics_type_tag;
1607
1608
225k
    return 0;
1609
225k
}
1610
1611
int gx_subclass_composite(gx_device *dev, gx_device **pcdev, const gs_composite_t *pcte,
1612
    gs_gstate *pgs, gs_memory_t *memory, gx_device *cdev)
1613
0
{
1614
0
    pdf14_clist_device *p14dev;
1615
0
    generic_subclass_data *psubclass_data;
1616
0
    int code = 0;
1617
1618
0
    p14dev = (pdf14_clist_device *)dev;
1619
0
    psubclass_data = (generic_subclass_data *)p14dev->target->subclass_data;
1620
1621
0
    set_dev_proc(dev, composite, psubclass_data->saved_compositor_method);
1622
1623
0
    if (gs_is_pdf14trans_compositor(pcte) != 0 && strncmp(dev->dname, "pdf14clist", 10) == 0) {
1624
0
        const gs_pdf14trans_t * pdf14pct = (const gs_pdf14trans_t *) pcte;
1625
1626
0
        switch (pdf14pct->params.pdf14_op) {
1627
0
            case PDF14_POP_DEVICE:
1628
0
                {
1629
0
                    pdf14_clist_device *p14dev = (pdf14_clist_device *)dev;
1630
0
                    gx_device *subclass_device;
1631
1632
0
                    p14dev->target->color_info = p14dev->saved_target_color_info;
1633
0
                    if (p14dev->target->child) {
1634
0
                        p14dev->target->child->color_info = p14dev->saved_target_color_info;
1635
1636
0
                        set_dev_proc(p14dev->target->child, encode_color, p14dev->saved_target_encode_color);
1637
0
                        set_dev_proc(p14dev->target->child, decode_color, p14dev->saved_target_decode_color);
1638
0
                        set_dev_proc(p14dev->target->child, get_color_mapping_procs, p14dev->saved_target_get_color_mapping_procs);
1639
0
                        set_dev_proc(p14dev->target->child, get_color_comp_index, p14dev->saved_target_get_color_comp_index);
1640
0
                    }
1641
1642
0
                    pgs->get_cmap_procs = p14dev->save_get_cmap_procs;
1643
0
                    gx_set_cmap_procs(pgs, p14dev->target);
1644
1645
0
                    subclass_device = p14dev->target;
1646
0
                    p14dev->target = p14dev->target->child;
1647
1648
0
                    code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1649
1650
0
                    p14dev->target = subclass_device;
1651
1652
                    /* We return 0, rather than 1, as we have not created
1653
                     * a new compositor that wraps dev. */
1654
0
                    if (code == 1)
1655
0
                        code = 0;
1656
0
                    return code;
1657
0
                }
1658
0
                break;
1659
0
            default:
1660
0
                code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1661
0
                break;
1662
0
        }
1663
0
    } else {
1664
0
        code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1665
0
    }
1666
0
    set_dev_proc(dev, composite, gx_subclass_composite);
1667
0
    return code;
1668
0
}
1669
1670
typedef enum
1671
{
1672
    transform_pixel_region_portrait,
1673
    transform_pixel_region_landscape,
1674
    transform_pixel_region_skew
1675
} transform_pixel_region_posture;
1676
1677
typedef struct gx_default_transform_pixel_region_state_s gx_default_transform_pixel_region_state_t;
1678
1679
typedef int (gx_default_transform_pixel_region_render_fn)(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs);
1680
1681
struct gx_default_transform_pixel_region_state_s
1682
{
1683
    gs_memory_t *mem;
1684
    gx_dda_fixed_point pixels;
1685
    gx_dda_fixed_point rows;
1686
    gs_int_rect clip;
1687
    int w;
1688
    int h;
1689
    int spp;
1690
    transform_pixel_region_posture posture;
1691
    gs_logical_operation_t lop;
1692
    byte *line;
1693
    gx_default_transform_pixel_region_render_fn *render;
1694
};
1695
1696
static void
1697
get_portrait_y_extent(gx_default_transform_pixel_region_state_t *state, int *iy, int *ih)
1698
2.13M
{
1699
2.13M
    fixed y0, y1;
1700
2.13M
    gx_dda_fixed row = state->rows.y;
1701
1702
2.13M
    y0 = dda_current(row);
1703
2.13M
    dda_next(row);
1704
2.13M
    y1 = dda_current(row);
1705
1706
2.13M
    if (y1 < y0) {
1707
19.7k
        fixed t = y1; y1 = y0; y0 = t;
1708
19.7k
    }
1709
1710
2.13M
    *iy = fixed2int_pixround_perfect(y0);
1711
2.13M
    *ih = fixed2int_pixround_perfect(y1) - *iy;
1712
2.13M
}
1713
1714
static void
1715
get_landscape_x_extent(gx_default_transform_pixel_region_state_t *state, int *ix, int *iw)
1716
676
{
1717
676
    fixed x0, x1;
1718
676
    gx_dda_fixed row = state->rows.x;
1719
1720
676
    x0 = dda_current(row);
1721
676
    dda_next(row);
1722
676
    x1 = dda_current(row);
1723
1724
676
    if (x1 < x0) {
1725
0
        fixed t = x1; x1 = x0; x0 = t;
1726
0
    }
1727
1728
676
    *ix = fixed2int_pixround_perfect(x0);
1729
676
    *iw = fixed2int_pixround_perfect(x1) - *ix;
1730
676
}
1731
1732
static void
1733
get_skew_extents(gx_default_transform_pixel_region_state_t *state, fixed *w, fixed *h)
1734
7.49k
{
1735
7.49k
    fixed x0, x1, y0, y1;
1736
7.49k
    gx_dda_fixed_point row = state->rows;
1737
1738
7.49k
    x0 = dda_current(row.x);
1739
7.49k
    y0 = dda_current(row.y);
1740
7.49k
    dda_next(row.x);
1741
7.49k
    dda_next(row.y);
1742
7.49k
    x1 = dda_current(row.x);
1743
7.49k
    y1 = dda_current(row.y);
1744
1745
7.49k
    *w = x1-x0;
1746
7.49k
    *h = y1-y0;
1747
7.49k
}
1748
1749
static int
1750
transform_pixel_region_render_portrait(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1751
1.03M
{
1752
1.03M
    gs_logical_operation_t lop = state->lop;
1753
1.03M
    gx_dda_fixed_point pnext;
1754
1.03M
    int vci, vdi;
1755
1.03M
    int irun;     /* int x/rrun */
1756
1.03M
    int w = state->w;
1757
1.03M
    int h = state->h;
1758
1.03M
    int spp = state->spp;
1759
1.03M
    const byte *data = buffer[0] + data_x * spp;
1760
1.03M
    const byte *bufend = NULL;
1761
1.03M
    int code = 0;
1762
1.03M
    const byte *run = NULL;
1763
1.03M
    int k;
1764
1.03M
    gx_color_value *conc = &cmapper->conc[0];
1765
1.03M
    int to_rects;
1766
1.03M
    gx_cmapper_fn *mapper = cmapper->set_color;
1767
1.03M
    int minx, maxx;
1768
1769
1.03M
    if (h == 0)
1770
0
        return 0;
1771
1772
    /* Clip on Y */
1773
1.03M
    get_portrait_y_extent(state, &vci, &vdi);
1774
1.03M
    if (vci < state->clip.p.y)
1775
23.0k
        vdi += vci - state->clip.p.y, vci = state->clip.p.y;
1776
1.03M
    if (vci+vdi > state->clip.q.y)
1777
10.7k
        vdi = state->clip.q.y - vci;
1778
1.03M
    if (vdi <= 0)
1779
537k
        return 0;
1780
1781
500k
    pnext = state->pixels;
1782
500k
    dda_translate(pnext.x,  (-fixed_epsilon));
1783
500k
    irun = fixed2int_var_rounded(dda_current(pnext.x));
1784
500k
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1785
500k
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1786
500k
    to_rects = (dev->color_info.depth != spp*8);
1787
500k
    if (to_rects == 0) {
1788
490k
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1789
446k
            to_rects = 1;
1790
490k
    }
1791
1792
500k
    minx = state->clip.p.x;
1793
500k
    maxx = state->clip.q.x;
1794
500k
    bufend = data + w * spp;
1795
500k
    if (to_rects) {
1796
16.9M
        while (data < bufend) {
1797
            /* Find the length of the next run. It will either end when we hit
1798
             * the end of the source data, or when the pixel data differs. */
1799
16.4M
            run = data + spp;
1800
184M
            while (1) {
1801
184M
                dda_next(pnext.x);
1802
184M
                if (run >= bufend)
1803
456k
                    break;
1804
184M
                if (memcmp(run, data, spp))
1805
16.0M
                    break;
1806
168M
                run += spp;
1807
168M
            }
1808
            /* So we have a run of pixels from data to run that are all the same. */
1809
            /* This needs to be sped up */
1810
32.9M
            for (k = 0; k < spp; k++) {
1811
16.4M
                conc[k] = gx_color_value_from_byte(data[k]);
1812
16.4M
            }
1813
16.4M
            mapper(cmapper);
1814
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1815
16.4M
            {
1816
16.4M
                int xi = irun;
1817
16.4M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1818
1819
16.4M
                if (wi < 0)
1820
4.64k
                    xi += wi, wi = -wi;
1821
16.4M
                if (xi < minx)
1822
38.2k
                    wi += xi - minx, xi = minx;
1823
16.4M
                if (xi + wi > maxx)
1824
41.3k
                    wi = maxx - xi;
1825
16.4M
                if (wi > 0)
1826
14.1M
                    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1827
16.4M
                                                        &cmapper->devc, dev, lop);
1828
16.4M
            }
1829
16.4M
            if (code < 0)
1830
0
                goto err;
1831
16.4M
            data = run;
1832
16.4M
        }
1833
456k
    } else {
1834
44.5k
        int pending_left = irun;
1835
44.5k
        int pending_right;
1836
44.5k
        byte *out;
1837
44.5k
        int depth = spp;
1838
44.5k
        if (state->line == NULL) {
1839
339
            state->line = gs_alloc_bytes(state->mem,
1840
339
                                         (size_t)dev->width * depth,
1841
339
                                         "image line");
1842
339
            if (state->line == NULL)
1843
0
                return gs_error_VMerror;
1844
339
        }
1845
44.5k
        out = state->line;
1846
1847
44.5k
        if (minx < 0)
1848
0
            minx = 0;
1849
44.5k
        if (maxx > dev->width)
1850
0
            maxx = dev->width;
1851
1852
44.5k
        if (pending_left < minx)
1853
214
            pending_left = minx;
1854
44.3k
        else if (pending_left > maxx)
1855
0
            pending_left = maxx;
1856
44.5k
        pending_right = pending_left;
1857
1858
4.79M
        while (data < bufend) {
1859
            /* Find the length of the next run. It will either end when we hit
1860
             * the end of the source data, or when the pixel data differs. */
1861
4.75M
            run = data + spp;
1862
24.1M
            while (1) {
1863
24.1M
                dda_next(pnext.x);
1864
24.1M
                if (run >= bufend)
1865
44.5k
                    break;
1866
24.1M
                if (memcmp(run, data, spp))
1867
4.70M
                    break;
1868
19.4M
                run += spp;
1869
19.4M
            }
1870
            /* So we have a run of pixels from data to run that are all the same. */
1871
            /* This needs to be sped up */
1872
9.50M
            for (k = 0; k < spp; k++) {
1873
4.75M
                conc[k] = gx_color_value_from_byte(data[k]);
1874
4.75M
            }
1875
4.75M
            mapper(cmapper);
1876
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1877
4.75M
            {
1878
4.75M
                int xi = irun;
1879
4.75M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1880
1881
4.75M
                if (wi < 0)
1882
166
                    xi += wi, wi = -wi;
1883
1884
4.75M
                if (xi < minx)
1885
380
                    wi += xi - minx, xi = minx;
1886
4.75M
                if (xi + wi > maxx)
1887
212k
                    wi = maxx - xi;
1888
1889
4.75M
                if (wi > 0) {
1890
4.30M
                    if (color_is_pure(&cmapper->devc)) {
1891
4.30M
                        gx_color_index color = cmapper->devc.colors.pure;
1892
4.30M
                        int xii = xi * spp;
1893
1894
4.30M
                        if (pending_left > xi)
1895
166
                            pending_left = xi;
1896
4.30M
                        else
1897
4.30M
                            pending_right = xi + wi;
1898
22.4M
                        do {
1899
                            /* Excuse the double shifts below, that's to stop the
1900
                             * C compiler complaining if the color index type is
1901
                             * 32 bits. */
1902
22.4M
                            switch(depth)
1903
22.4M
                            {
1904
0
                            case 8: out[xii++] = ((color>>28)>>28) & 0xff;
1905
0
                            case 7: out[xii++] = ((color>>24)>>24) & 0xff;
1906
0
                            case 6: out[xii++] = ((color>>24)>>16) & 0xff;
1907
0
                            case 5: out[xii++] = ((color>>24)>>8) & 0xff;
1908
0
                            case 4: out[xii++] = (color>>24) & 0xff;
1909
0
                            case 3: out[xii++] = (color>>16) & 0xff;
1910
0
                            case 2: out[xii++] = (color>>8) & 0xff;
1911
22.4M
                            case 1: out[xii++] = color & 0xff;
1912
22.4M
                            }
1913
22.4M
                        } while (--wi != 0);
1914
4.30M
                    } else {
1915
0
                        if (pending_left != pending_right) {
1916
0
                            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1917
0
                            if (code < 0)
1918
0
                                goto err;
1919
0
                        }
1920
0
                        pending_left = pending_right = xi + (pending_left > xi ? 0 : wi);
1921
0
                        code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1922
0
                                                            &cmapper->devc, dev, lop);
1923
0
                    }
1924
4.30M
                }
1925
4.75M
                if (code < 0)
1926
0
                    goto err;
1927
4.75M
            }
1928
4.75M
            data = run;
1929
4.75M
        }
1930
44.5k
        if (pending_left != pending_right) {
1931
44.5k
            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1932
44.5k
            if (code < 0)
1933
0
                goto err;
1934
44.5k
        }
1935
44.5k
    }
1936
500k
    return 1;
1937
    /* Save position if error, in case we resume. */
1938
0
err:
1939
0
    buffer[0] = run;
1940
0
    return code;
1941
500k
}
1942
1943
static int
1944
transform_pixel_region_render_landscape(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1945
338
{
1946
338
    gs_logical_operation_t lop = state->lop;
1947
338
    gx_dda_fixed_point pnext;
1948
338
    int vci, vdi;
1949
338
    int irun;     /* int x/rrun */
1950
338
    int w = state->w;
1951
338
    int h = state->h;
1952
338
    int spp = state->spp;
1953
338
    const byte *data = buffer[0] + data_x * spp;
1954
338
    const byte *bufend = NULL;
1955
338
    int code = 0;
1956
338
    const byte *run;
1957
338
    int k;
1958
338
    gx_color_value *conc = &cmapper->conc[0];
1959
338
    int to_rects;
1960
338
    gx_cmapper_fn *mapper = cmapper->set_color;
1961
338
    int miny, maxy;
1962
1963
338
    if (h == 0)
1964
0
        return 0;
1965
1966
    /* Clip on X */
1967
338
    get_landscape_x_extent(state, &vci, &vdi);
1968
338
    if (vci < state->clip.p.x)
1969
0
        vdi += vci - state->clip.p.x, vci = state->clip.p.x;
1970
338
    if (vci+vdi > state->clip.q.x)
1971
0
        vdi = state->clip.q.x - vci;
1972
338
    if (vdi <= 0)
1973
318
        return 0;
1974
1975
20
    pnext = state->pixels;
1976
20
    dda_translate(pnext.x,  (-fixed_epsilon));
1977
20
    irun = fixed2int_var_rounded(dda_current(pnext.y));
1978
20
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1979
20
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1980
20
    to_rects = (dev->color_info.depth != spp*8);
1981
20
    if (to_rects == 0) {
1982
10
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1983
0
            to_rects = 1;
1984
10
    }
1985
1986
20
    miny = state->clip.p.y;
1987
20
    maxy = state->clip.q.y;
1988
20
    bufend = data + w * spp;
1989
128
    while (data < bufend) {
1990
        /* Find the length of the next run. It will either end when we hit
1991
         * the end of the source data, or when the pixel data differs. */
1992
108
        run = data + spp;
1993
140
        while (1) {
1994
140
            dda_next(pnext.y);
1995
140
            if (run >= bufend)
1996
20
                break;
1997
120
            if (memcmp(run, data, spp))
1998
88
                break;
1999
32
            run += spp;
2000
32
        }
2001
        /* So we have a run of pixels from data to run that are all the same. */
2002
        /* This needs to be sped up */
2003
216
        for (k = 0; k < spp; k++) {
2004
108
            conc[k] = gx_color_value_from_byte(data[k]);
2005
108
        }
2006
108
        mapper(cmapper);
2007
        /* Fill the region between irun and fixed2int_var_rounded(pnext.y) */
2008
108
        {              /* 90 degree rotated rectangle */
2009
108
            int yi = irun;
2010
108
            int hi = (irun = fixed2int_var_rounded(dda_current(pnext.y))) - yi;
2011
2012
108
            if (hi < 0)
2013
54
                yi += hi, hi = -hi;
2014
108
            if (yi < miny)
2015
0
                hi += yi - miny, yi = miny;
2016
108
            if (yi + hi > maxy)
2017
54
                hi = maxy - yi;
2018
108
            if (hi > 0)
2019
0
                code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
2020
108
                                                    &cmapper->devc, dev, lop);
2021
108
        }
2022
108
        if (code < 0)
2023
0
            goto err;
2024
108
        data = run;
2025
108
    }
2026
20
    return 1;
2027
    /* Save position if error, in case we resume. */
2028
0
err:
2029
0
    buffer[0] = run;
2030
0
    return code;
2031
20
}
2032
2033
static int
2034
transform_pixel_region_render_skew(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2035
7.49k
{
2036
7.49k
    gs_logical_operation_t lop = state->lop;
2037
7.49k
    gx_dda_fixed_point pnext;
2038
7.49k
    fixed xprev, yprev;
2039
7.49k
    fixed pdyx, pdyy;   /* edge of parallelogram */
2040
7.49k
    int w = state->w;
2041
7.49k
    int h = state->h;
2042
7.49k
    int spp = state->spp;
2043
7.49k
    const byte *data = buffer[0] + data_x * spp;
2044
7.49k
    fixed xpos;     /* x ditto */
2045
7.49k
    fixed ypos;     /* y ditto */
2046
7.49k
    const byte *bufend = data + w * spp;
2047
7.49k
    int code = 0;
2048
7.49k
    int k;
2049
7.49k
    byte initial_run[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
2050
7.49k
    const byte *prev = &initial_run[0];
2051
7.49k
    gx_cmapper_fn *mapper = cmapper->set_color;
2052
7.49k
    gx_color_value *conc = &cmapper->conc[0];
2053
2054
7.49k
    if (h == 0)
2055
0
        return 0;
2056
7.49k
    pnext = state->pixels;
2057
7.49k
    get_skew_extents(state, &pdyx, &pdyy);
2058
7.49k
    dda_translate(pnext.x,  (-fixed_epsilon));
2059
7.49k
    xprev = dda_current(pnext.x);
2060
7.49k
    yprev = dda_current(pnext.y);
2061
7.49k
    if_debug4m('b', dev->memory, "[b]y=? data_x=%d w=%d xt=%f yt=%f\n",
2062
7.49k
               data_x, w, fixed2float(xprev), fixed2float(yprev));
2063
7.49k
    initial_run[0] = ~data[0];  /* Force intial setting */
2064
1.51M
    while (data < bufend) {
2065
1.50M
        dda_next(pnext.x);
2066
1.50M
        dda_next(pnext.y);
2067
1.50M
        xpos = dda_current(pnext.x);
2068
1.50M
        ypos = dda_current(pnext.y);
2069
2070
1.50M
        if (memcmp(prev, data, spp) != 0)
2071
665k
        {
2072
            /* This needs to be sped up */
2073
1.33M
            for (k = 0; k < spp; k++) {
2074
665k
                conc[k] = gx_color_value_from_byte(data[k]);
2075
665k
            }
2076
665k
            mapper(cmapper);
2077
665k
        }
2078
        /* Fill the region between */
2079
        /* xprev/yprev and xpos/ypos */
2080
        /* Parallelogram */
2081
1.50M
        code = (*dev_proc(dev, fill_parallelogram))
2082
1.50M
                    (dev, xprev, yprev, xpos - xprev, ypos - yprev, pdyx, pdyy,
2083
1.50M
                     &cmapper->devc, lop);
2084
1.50M
        xprev = xpos;
2085
1.50M
        yprev = ypos;
2086
1.50M
        if (code < 0)
2087
0
            goto err;
2088
1.50M
        prev = data;
2089
1.50M
        data += spp;
2090
1.50M
    }
2091
7.49k
    return 1;
2092
    /* Save position if error, in case we resume. */
2093
0
err:
2094
    /* Only set buffer[0] if we've managed to set prev to something valid. */
2095
0
    if (prev != &initial_run[0]) buffer[0] = prev;
2096
0
    return code;
2097
7.49k
}
2098
2099
static int
2100
gx_default_transform_pixel_region_begin(gx_device *dev, int w, int h, int spp,
2101
                             const gx_dda_fixed_point *pixels, const gx_dda_fixed_point *rows,
2102
                             const gs_int_rect *clip, gs_logical_operation_t lop,
2103
                             gx_default_transform_pixel_region_state_t **statep)
2104
33.6k
{
2105
33.6k
    gx_default_transform_pixel_region_state_t *state;
2106
33.6k
    gs_memory_t *mem = dev->memory->non_gc_memory;
2107
2108
33.6k
    *statep = state = (gx_default_transform_pixel_region_state_t *)gs_alloc_bytes(mem, sizeof(gx_default_transform_pixel_region_state_t), "gx_default_transform_pixel_region_state_t");
2109
33.6k
    if (state == NULL)
2110
0
        return gs_error_VMerror;
2111
33.6k
    state->mem = mem;
2112
33.6k
    state->rows = *rows;
2113
33.6k
    state->pixels = *pixels;
2114
33.6k
    state->clip = *clip;
2115
33.6k
    state->w = w;
2116
33.6k
    state->h = h;
2117
33.6k
    state->spp = spp;
2118
33.6k
    state->lop = lop;
2119
33.6k
    state->line = NULL;
2120
2121
    /* FIXME: Consider sheers here too. Probably happens rarely enough not to be worth it. */
2122
33.6k
    if (rows->x.step.dQ == 0 && rows->x.step.dR == 0 && pixels->y.step.dQ == 0 && pixels->y.step.dR == 0)
2123
33.5k
        state->posture = transform_pixel_region_portrait;
2124
118
    else if (rows->y.step.dQ == 0 && rows->y.step.dR == 0 && pixels->x.step.dQ == 0 && pixels->x.step.dR == 0)
2125
4
        state->posture = transform_pixel_region_landscape;
2126
114
    else
2127
114
        state->posture = transform_pixel_region_skew;
2128
2129
33.6k
    if (state->posture == transform_pixel_region_portrait)
2130
33.5k
        state->render = transform_pixel_region_render_portrait;
2131
118
    else if (state->posture == transform_pixel_region_landscape)
2132
4
        state->render = transform_pixel_region_render_landscape;
2133
114
    else
2134
114
        state->render = transform_pixel_region_render_skew;
2135
2136
33.6k
    return 0;
2137
33.6k
}
2138
2139
static void
2140
step_to_next_line(gx_default_transform_pixel_region_state_t *state)
2141
1.10M
{
2142
1.10M
    fixed x = dda_current(state->rows.x);
2143
1.10M
    fixed y = dda_current(state->rows.y);
2144
2145
1.10M
    dda_next(state->rows.x);
2146
1.10M
    dda_next(state->rows.y);
2147
1.10M
    x = dda_current(state->rows.x) - x;
2148
1.10M
    y = dda_current(state->rows.y) - y;
2149
1.10M
    dda_translate(state->pixels.x, x);
2150
1.10M
    dda_translate(state->pixels.y, y);
2151
1.10M
}
2152
2153
static int
2154
gx_default_transform_pixel_region_data_needed(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2155
1.10M
{
2156
1.10M
    if (state->posture == transform_pixel_region_portrait) {
2157
1.09M
        int iy, ih;
2158
2159
1.09M
        get_portrait_y_extent(state, &iy, &ih);
2160
2161
1.09M
        if (iy + ih < state->clip.p.y || iy >= state->clip.q.y) {
2162
            /* Skip this line. */
2163
56.9k
            step_to_next_line(state);
2164
56.9k
            return 0;
2165
56.9k
        }
2166
1.09M
    } else if (state->posture == transform_pixel_region_landscape) {
2167
338
        int ix, iw;
2168
2169
338
        get_landscape_x_extent(state, &ix, &iw);
2170
2171
338
        if (ix + iw < state->clip.p.x || ix >= state->clip.q.x) {
2172
            /* Skip this line. */
2173
0
            step_to_next_line(state);
2174
0
            return 0;
2175
0
        }
2176
338
    }
2177
2178
1.04M
    return 1;
2179
1.10M
}
2180
2181
static int
2182
gx_default_transform_pixel_region_process_data(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2183
1.04M
{
2184
1.04M
    int ret = state->render(dev, state, buffer, data_x, cmapper, pgs);
2185
2186
1.04M
    step_to_next_line(state);
2187
1.04M
    return ret;
2188
1.04M
}
2189
2190
static int
2191
gx_default_transform_pixel_region_end(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2192
33.6k
{
2193
33.6k
    if (state) {
2194
33.6k
        gs_free_object(state->mem, state->line, "image line");
2195
33.6k
        gs_free_object(state->mem, state, "gx_default_transform_pixel_region_state_t");
2196
33.6k
    }
2197
33.6k
    return 0;
2198
33.6k
}
2199
2200
int
2201
gx_default_transform_pixel_region(gx_device *dev,
2202
                       transform_pixel_region_reason reason,
2203
                       transform_pixel_region_data *data)
2204
2.21M
{
2205
2.21M
    gx_default_transform_pixel_region_state_t *state = (gx_default_transform_pixel_region_state_t *)data->state;
2206
2207
2.21M
    switch (reason)
2208
2.21M
    {
2209
33.6k
    case transform_pixel_region_begin:
2210
33.6k
        return gx_default_transform_pixel_region_begin(dev, data->u.init.w, data->u.init.h, data->u.init.spp, data->u.init.pixels, data->u.init.rows, data->u.init.clip, data->u.init.lop, (gx_default_transform_pixel_region_state_t **)&data->state);
2211
1.10M
    case transform_pixel_region_data_needed:
2212
1.10M
        return gx_default_transform_pixel_region_data_needed(dev, state);
2213
1.04M
    case transform_pixel_region_process_data:
2214
1.04M
        return gx_default_transform_pixel_region_process_data(dev, state, data->u.process_data.buffer, data->u.process_data.data_x, data->u.process_data.cmapper, data->u.process_data.pgs);
2215
33.6k
    case transform_pixel_region_end:
2216
33.6k
        data->state = NULL;
2217
33.6k
        return gx_default_transform_pixel_region_end(dev, state);
2218
0
    default:
2219
0
        return gs_error_unknownerror;
2220
2.21M
    }
2221
2.21M
}