Coverage Report

Created: 2025-11-16 07:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/base/gscie.c
Line
Count
Source
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* CIE color rendering cache management */
18
#include "math_.h"
19
#include "memory_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gsstruct.h"
23
#include "gsmatrix.h"   /* for gscolor2.h */
24
#include "gxcspace.h"   /* for gxcie.c */
25
#include "gscolor2.h"   /* for gs_set/currentcolorrendering */
26
#include "gxarith.h"
27
#include "gxcie.h"
28
#include "gxdevice.h"   /* for gxcmap.h */
29
#include "gxcmap.h"
30
#include "gzstate.h"
31
#include "gsicc.h"
32
33
/*
34
 * Define whether to optimize the CIE mapping process by combining steps.
35
 * This should only be disabled (commented out) for debugging.
36
 */
37
#define OPTIMIZE_CIE_MAPPING
38
39
/* Forward references */
40
static int cie_joint_caches_init(gx_cie_joint_caches *,
41
                                  const gs_cie_common *,
42
                                  gs_cie_render *);
43
static void cie_joint_caches_complete(gx_cie_joint_caches *,
44
                                       const gs_cie_common *,
45
                                       const gs_cie_abc *,
46
                                       const gs_cie_render *);
47
static void cie_cache_restrict(cie_cache_floats *, const gs_range *);
48
static void cie_invert3(const gs_matrix3 *, gs_matrix3 *);
49
static void cie_matrix_init(gs_matrix3 *);
50
51
/* Allocator structure types */
52
private_st_joint_caches();
53
extern_st(st_gs_gstate);
54
55
#define RESTRICTED_INDEX(v, n, itemp)\
56
0
  ((uint)(itemp = (int)(v)) >= (n) ?\
57
0
   (itemp < 0 ? 0 : (n) - 1) : itemp)
58
59
/* Define cache interpolation threshold values. */
60
#ifdef CIE_CACHE_INTERPOLATE
61
#  ifdef CIE_INTERPOLATE_THRESHOLD
62
192k
#    define CACHE_THRESHOLD CIE_INTERPOLATE_THRESHOLD
63
#  else
64
#    define CACHE_THRESHOLD 0 /* always interpolate */
65
#  endif
66
#else
67
#  define CACHE_THRESHOLD 1.0e6 /* never interpolate */
68
#endif
69
#ifdef CIE_RENDER_TABLE_INTERPOLATE
70
#  define RENDER_TABLE_THRESHOLD 0
71
#else
72
#  define RENDER_TABLE_THRESHOLD 1.0e6
73
#endif
74
75
/*
76
 * Determine whether a function is a linear transformation of the form
77
 * f(x) = scale * x + origin.
78
 */
79
static bool
80
cache_is_linear(cie_linear_params_t *params, const cie_cache_floats *pcf)
81
0
{
82
0
    double origin = pcf->values[0];
83
0
    double diff = pcf->values[countof(pcf->values) - 1] - origin;
84
0
    double scale = diff / (countof(pcf->values) - 1);
85
0
    int i;
86
0
    double test = origin + scale;
87
88
0
    for (i = 1; i < countof(pcf->values) - 1; ++i, test += scale)
89
0
        if (fabs(pcf->values[i] - test) >= 0.5 / countof(pcf->values))
90
0
            return (params->is_linear = false);
91
0
    params->origin = origin - pcf->params.base;
92
0
    params->scale =
93
0
        diff * pcf->params.factor / (countof(pcf->values) - 1);
94
0
    return (params->is_linear = true);
95
0
}
96
97
static void
98
cache_set_linear(cie_cache_floats *pcf)
99
578k
{
100
578k
        if (pcf->params.is_identity) {
101
578k
            if_debug1('c', "[c]is_linear("PRI_INTPTR") = true (is_identity)\n",
102
578k
                      (intptr_t)pcf);
103
578k
            pcf->params.linear.is_linear = true;
104
578k
            pcf->params.linear.origin = 0;
105
578k
            pcf->params.linear.scale = 1;
106
578k
        } else if (cache_is_linear(&pcf->params.linear, pcf)) {
107
0
            if (pcf->params.linear.origin == 0 &&
108
0
                fabs(pcf->params.linear.scale - 1) < 0.00001)
109
0
                pcf->params.is_identity = true;
110
0
            if_debug4('c',
111
0
                      "[c]is_linear("PRI_INTPTR") = true, origin = %g, scale = %g%s\n",
112
0
                      (intptr_t)pcf, pcf->params.linear.origin,
113
0
                      pcf->params.linear.scale,
114
0
                      (pcf->params.is_identity ? " (=> is_identity)" : ""));
115
0
        }
116
#ifdef DEBUG
117
        else
118
            if_debug1('c', "[c]linear("PRI_INTPTR") = false\n", (intptr_t)pcf);
119
#endif
120
578k
}
121
static void
122
cache3_set_linear(gx_cie_vector_cache3_t *pvc)
123
192k
{
124
192k
    cache_set_linear(&pvc->caches[0].floats);
125
192k
    cache_set_linear(&pvc->caches[1].floats);
126
192k
    cache_set_linear(&pvc->caches[2].floats);
127
192k
}
128
129
#ifdef DEBUG
130
static void
131
if_debug_vector3(const char *str, const gs_vector3 *vec)
132
{
133
    if_debug4('c', "%s[%g %g %g]\n", str, vec->u, vec->v, vec->w);
134
}
135
static void
136
if_debug_matrix3(const char *str, const gs_matrix3 *mat)
137
{
138
    if_debug10('c', "%s [%g %g %g] [%g %g %g] [%g %g %g]\n", str,
139
               mat->cu.u, mat->cu.v, mat->cu.w,
140
               mat->cv.u, mat->cv.v, mat->cv.w,
141
               mat->cw.u, mat->cw.v, mat->cw.w);
142
}
143
#else
144
1.92M
#  define if_debug_vector3(str, vec) DO_NOTHING
145
2.50M
#  define if_debug_matrix3(str, mat) DO_NOTHING
146
#endif
147
148
/* ------ Default values for CIE dictionary elements ------ */
149
150
/* Default transformation procedures. */
151
152
float
153
a_identity(double in, const gs_cie_a * pcie)
154
0
{
155
0
    return in;
156
0
}
157
static float
158
a_from_cache(double in, const gs_cie_a * pcie)
159
0
{
160
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeA.floats);
161
0
}
162
163
float
164
abc_identity(double in, const gs_cie_abc * pcie)
165
0
{
166
0
    return in;
167
0
}
168
static float
169
abc_from_cache_0(double in, const gs_cie_abc * pcie)
170
0
{
171
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[0].floats);
172
0
}
173
static float
174
abc_from_cache_1(double in, const gs_cie_abc * pcie)
175
0
{
176
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[1].floats);
177
0
}
178
static float
179
abc_from_cache_2(double in, const gs_cie_abc * pcie)
180
0
{
181
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[2].floats);
182
0
}
183
184
static float
185
def_identity(double in, const gs_cie_def * pcie)
186
0
{
187
0
    return in;
188
0
}
189
static float
190
def_from_cache_0(double in, const gs_cie_def * pcie)
191
0
{
192
0
    return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[0].floats);
193
0
}
194
static float
195
def_from_cache_1(double in, const gs_cie_def * pcie)
196
0
{
197
0
    return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[1].floats);
198
0
}
199
static float
200
def_from_cache_2(double in, const gs_cie_def * pcie)
201
0
{
202
0
    return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[2].floats);
203
0
}
204
205
static float
206
defg_identity(double in, const gs_cie_defg * pcie)
207
0
{
208
0
    return in;
209
0
}
210
static float
211
defg_from_cache_0(double in, const gs_cie_defg * pcie)
212
0
{
213
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[0].floats);
214
0
}
215
static float
216
defg_from_cache_1(double in, const gs_cie_defg * pcie)
217
0
{
218
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[1].floats);
219
0
}
220
static float
221
defg_from_cache_2(double in, const gs_cie_defg * pcie)
222
0
{
223
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[2].floats);
224
0
}
225
static float
226
defg_from_cache_3(double in, const gs_cie_defg * pcie)
227
0
{
228
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[3].floats);
229
0
}
230
231
float
232
common_identity(double in, const gs_cie_common * pcie)
233
0
{
234
0
    return in;
235
0
}
236
static float
237
lmn_from_cache_0(double in, const gs_cie_common * pcie)
238
0
{
239
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[0].floats);
240
0
}
241
static float
242
lmn_from_cache_1(double in, const gs_cie_common * pcie)
243
0
{
244
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[1].floats);
245
0
}
246
static float
247
lmn_from_cache_2(double in, const gs_cie_common * pcie)
248
0
{
249
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[2].floats);
250
0
}
251
252
/* Transformation procedures for accessing an already-loaded cache. */
253
254
float
255
gs_cie_cached_value(double in, const cie_cache_floats *pcache)
256
0
{
257
    /*
258
     * We need to get the same results when we sample an already-loaded
259
     * cache, so we need to round the index just a tiny bit.
260
     */
261
0
    int index =
262
0
        (int)((in - pcache->params.base) * pcache->params.factor + 0.0001);
263
264
0
    CIE_CLAMP_INDEX(index);
265
0
    return pcache->values[index];
266
0
}
267
268
/* Default vectors and matrices. */
269
270
const gs_range3 Range3_default = {
271
    { {0, 1}, {0, 1}, {0, 1} }
272
};
273
const gs_range4 Range4_default = {
274
    { {0, 1}, {0, 1}, {0, 1}, {0, 1} }
275
};
276
const gs_cie_defg_proc4 DecodeDEFG_default = {
277
    {defg_identity, defg_identity, defg_identity, defg_identity}
278
};
279
const gs_cie_defg_proc4 DecodeDEFG_from_cache = {
280
    {defg_from_cache_0, defg_from_cache_1, defg_from_cache_2, defg_from_cache_3}
281
};
282
const gs_cie_def_proc3 DecodeDEF_default = {
283
    {def_identity, def_identity, def_identity}
284
};
285
const gs_cie_def_proc3 DecodeDEF_from_cache = {
286
    {def_from_cache_0, def_from_cache_1, def_from_cache_2}
287
};
288
const gs_cie_abc_proc3 DecodeABC_default = {
289
    {abc_identity, abc_identity, abc_identity}
290
};
291
const gs_cie_abc_proc3 DecodeABC_from_cache = {
292
    {abc_from_cache_0, abc_from_cache_1, abc_from_cache_2}
293
};
294
const gs_cie_common_proc3 DecodeLMN_default = {
295
    {common_identity, common_identity, common_identity}
296
};
297
const gs_cie_common_proc3 DecodeLMN_from_cache = {
298
    {lmn_from_cache_0, lmn_from_cache_1, lmn_from_cache_2}
299
};
300
const gs_matrix3 Matrix3_default = {
301
    {1, 0, 0},
302
    {0, 1, 0},
303
    {0, 0, 1},
304
    1 /*true */
305
};
306
const gs_range RangeA_default = {0, 1};
307
const gs_cie_a_proc DecodeA_default = a_identity;
308
const gs_cie_a_proc DecodeA_from_cache = a_from_cache;
309
const gs_vector3 MatrixA_default = {1, 1, 1};
310
const gs_vector3 BlackPoint_default = {0, 0, 0};
311
312
/* Initialize a CIE color. */
313
/* This only happens on setcolorspace. */
314
void
315
gx_init_CIE(gs_client_color * pcc, const gs_color_space * pcs)
316
0
{
317
0
    gx_init_paint_4(pcc, pcs);
318
    /* (0...) may not be within the range of allowable values. */
319
0
    (*pcs->type->restrict_color)(pcc, pcs);
320
0
}
321
322
/* Restrict CIE colors. */
323
324
static inline void
325
cie_restrict(float *pv, const gs_range *range)
326
0
{
327
0
    if (*pv <= range->rmin)
328
0
        *pv = range->rmin;
329
0
    else if (*pv >= range->rmax)
330
0
        *pv = range->rmax;
331
0
}
332
333
void
334
gx_restrict_CIEDEFG(gs_client_color * pcc, const gs_color_space * pcs)
335
0
{
336
0
    const gs_cie_defg *pcie = pcs->params.defg;
337
338
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeDEFG.ranges[0]);
339
0
    cie_restrict(&pcc->paint.values[1], &pcie->RangeDEFG.ranges[1]);
340
0
    cie_restrict(&pcc->paint.values[2], &pcie->RangeDEFG.ranges[2]);
341
0
    cie_restrict(&pcc->paint.values[3], &pcie->RangeDEFG.ranges[3]);
342
0
}
343
void
344
gx_restrict_CIEDEF(gs_client_color * pcc, const gs_color_space * pcs)
345
0
{
346
0
    const gs_cie_def *pcie = pcs->params.def;
347
348
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeDEF.ranges[0]);
349
0
    cie_restrict(&pcc->paint.values[1], &pcie->RangeDEF.ranges[1]);
350
0
    cie_restrict(&pcc->paint.values[2], &pcie->RangeDEF.ranges[2]);
351
0
}
352
void
353
gx_restrict_CIEABC(gs_client_color * pcc, const gs_color_space * pcs)
354
0
{
355
0
    const gs_cie_abc *pcie = pcs->params.abc;
356
357
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeABC.ranges[0]);
358
0
    cie_restrict(&pcc->paint.values[1], &pcie->RangeABC.ranges[1]);
359
0
    cie_restrict(&pcc->paint.values[2], &pcie->RangeABC.ranges[2]);
360
0
}
361
void
362
gx_restrict_CIEA(gs_client_color * pcc, const gs_color_space * pcs)
363
0
{
364
0
    const gs_cie_a *pcie = pcs->params.a;
365
366
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeA);
367
0
}
368
369
/* ================ Table setup ================ */
370
371
/* ------ Install a CIE color space ------ */
372
373
static void cie_cache_mult(gx_cie_vector_cache *, const gs_vector3 *,
374
                            const cie_cache_floats *, double);
375
static bool cie_cache_mult3(gx_cie_vector_cache3_t *,
376
                             const gs_matrix3 *, double);
377
378
int
379
gx_install_cie_abc(gs_cie_abc *pcie, gs_gstate * pgs)
380
0
{
381
0
    if_debug_matrix3("[c]CIE MatrixABC =", &pcie->MatrixABC);
382
0
    cie_matrix_init(&pcie->MatrixABC);
383
0
    CIE_LOAD_CACHE_BODY(pcie->caches.DecodeABC.caches, pcie->RangeABC.ranges,
384
0
                        &pcie->DecodeABC, DecodeABC_default, pcie,
385
0
                        "DecodeABC");
386
0
    gx_cie_load_common_cache(&pcie->common, pgs);
387
0
    gs_cie_abc_complete(pcie);
388
0
    return gs_cie_cs_complete(pgs, true);
389
0
}
390
391
int
392
gx_install_CIEDEFG(gs_color_space * pcs, gs_gstate * pgs)
393
0
{
394
0
    gs_cie_defg *pcie = pcs->params.defg;
395
396
0
    CIE_LOAD_CACHE_BODY(pcie->caches_defg.DecodeDEFG, pcie->RangeDEFG.ranges,
397
0
                        &pcie->DecodeDEFG, DecodeDEFG_default, pcie,
398
0
                        "DecodeDEFG");
399
0
    return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
400
0
}
401
402
int
403
gx_install_CIEDEF(gs_color_space * pcs, gs_gstate * pgs)
404
0
{
405
0
    gs_cie_def *pcie = pcs->params.def;
406
407
0
    CIE_LOAD_CACHE_BODY(pcie->caches_def.DecodeDEF, pcie->RangeDEF.ranges,
408
0
                        &pcie->DecodeDEF, DecodeDEF_default, pcie,
409
0
                        "DecodeDEF");
410
0
    return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
411
0
}
412
413
int
414
gx_install_CIEABC(gs_color_space * pcs, gs_gstate * pgs)
415
0
{
416
0
    return gx_install_cie_abc(pcs->params.abc, pgs);
417
0
}
418
419
int
420
gx_install_CIEA(gs_color_space * pcs, gs_gstate * pgs)
421
0
{
422
0
    gs_cie_a *pcie = pcs->params.a;
423
0
    gs_sample_loop_params_t lp;
424
0
    int i;
425
426
0
    gs_cie_cache_init(&pcie->caches.DecodeA.floats.params, &lp,
427
0
                      &pcie->RangeA, "DecodeA");
428
0
    for (i = 0; i <= lp.N; ++i) {
429
0
        float in = SAMPLE_LOOP_VALUE(i, lp);
430
431
0
        pcie->caches.DecodeA.floats.values[i] = (*pcie->DecodeA)(in, pcie);
432
0
        if_debug3m('C', pgs->memory, "[C]DecodeA[%d] = %g => %g\n",
433
0
                   i, in, pcie->caches.DecodeA.floats.values[i]);
434
0
    }
435
0
    gx_cie_load_common_cache(&pcie->common, pgs);
436
0
    gs_cie_a_complete(pcie);
437
0
    return gs_cie_cs_complete(pgs, true);
438
0
}
439
440
/* Load the common caches when installing the color space. */
441
/* This routine is exported for the benefit of gsicc.c */
442
void
443
gx_cie_load_common_cache(gs_cie_common * pcie, gs_gstate * pgs)
444
0
{
445
0
    if_debug_matrix3("[c]CIE MatrixLMN =", &pcie->MatrixLMN);
446
0
    cie_matrix_init(&pcie->MatrixLMN);
447
0
    CIE_LOAD_CACHE_BODY(pcie->caches.DecodeLMN, pcie->RangeLMN.ranges,
448
0
                        &pcie->DecodeLMN, DecodeLMN_default, pcie,
449
0
                        "DecodeLMN");
450
0
}
451
452
/* Complete loading the common caches. */
453
/* This routine is exported for the benefit of gsicc.c */
454
void
455
gx_cie_common_complete(gs_cie_common *pcie)
456
0
{
457
0
    int i;
458
459
0
    for (i = 0; i < 3; ++i)
460
0
        cache_set_linear(&pcie->caches.DecodeLMN[i].floats);
461
0
}
462
463
/*
464
 * Restrict the DecodeDEF[G] cache according to RangeHIJ[K], and scale to
465
 * the dimensions of Table.
466
 */
467
static void
468
gs_cie_defx_scale(float *values, const gs_range *range, int dim)
469
0
{
470
0
    double scale = (dim - 1.0) / (range->rmax - range->rmin);
471
0
    int i;
472
473
0
    for (i = 0; i < gx_cie_cache_size; ++i) {
474
0
        float value = values[i];
475
476
0
        values[i] =
477
0
            (value <= range->rmin ? 0 :
478
0
             value >= range->rmax ? dim - 1 :
479
0
             (value - range->rmin) * scale);
480
0
    }
481
0
}
482
483
/* Complete loading a CIEBasedDEFG color space. */
484
/* This routine is NOT idempotent. */
485
void
486
gs_cie_defg_complete(gs_cie_defg * pcie)
487
0
{
488
0
    int j;
489
490
0
    for (j = 0; j < 4; ++j)
491
0
        gs_cie_defx_scale(pcie->caches_defg.DecodeDEFG[j].floats.values,
492
0
                          &pcie->RangeHIJK.ranges[j], pcie->Table.dims[j]);
493
0
    gs_cie_abc_complete((gs_cie_abc *)pcie);
494
0
}
495
496
/* Complete loading a CIEBasedDEF color space. */
497
/* This routine is NOT idempotent. */
498
void
499
gs_cie_def_complete(gs_cie_def * pcie)
500
0
{
501
0
    int j;
502
503
0
    for (j = 0; j < 3; ++j)
504
0
        gs_cie_defx_scale(pcie->caches_def.DecodeDEF[j].floats.values,
505
0
                          &pcie->RangeHIJ.ranges[j], pcie->Table.dims[j]);
506
0
    gs_cie_abc_complete((gs_cie_abc *)pcie);
507
0
}
508
509
/* Complete loading a CIEBasedABC color space. */
510
/* This routine is idempotent. */
511
void
512
gs_cie_abc_complete(gs_cie_abc * pcie)
513
0
{
514
0
    cache3_set_linear(&pcie->caches.DecodeABC);
515
0
    pcie->caches.skipABC =
516
0
        cie_cache_mult3(&pcie->caches.DecodeABC, &pcie->MatrixABC,
517
0
                        CACHE_THRESHOLD);
518
0
    gx_cie_common_complete((gs_cie_common *)pcie);
519
0
}
520
521
/* Complete loading a CIEBasedA color space. */
522
/* This routine is idempotent. */
523
void
524
gs_cie_a_complete(gs_cie_a * pcie)
525
0
{
526
0
    cie_cache_mult(&pcie->caches.DecodeA, &pcie->MatrixA,
527
0
                   &pcie->caches.DecodeA.floats,
528
0
                   CACHE_THRESHOLD);
529
0
    cache_set_linear(&pcie->caches.DecodeA.floats);
530
0
    gx_cie_common_complete((gs_cie_common *)pcie);
531
0
}
532
533
/*
534
 * Set the ranges where interpolation is required in a vector cache.
535
 * This procedure is idempotent.
536
 */
537
typedef struct cie_cache_range_temp_s {
538
    cie_cached_value prev;
539
    int imin, imax;
540
} cie_cache_range_temp_t;
541
static inline void
542
check_interpolation_required(cie_cache_range_temp_t *pccr,
543
                             cie_cached_value cur, int i, double threshold)
544
887M
{
545
887M
    cie_cached_value prev = pccr->prev;
546
547
887M
    if (cie_cached_abs(cur - prev) > threshold * min(cie_cached_abs(prev), cie_cached_abs(cur))) {
548
75.5M
        if (i - 1 < pccr->imin)
549
578k
            pccr->imin = i - 1;
550
75.5M
        if (i > pccr->imax)
551
75.5M
            pccr->imax = i;
552
75.5M
    }
553
887M
    pccr->prev = cur;
554
887M
}
555
static void
556
cie_cache_set_interpolation(gx_cie_vector_cache *pcache, double threshold)
557
578k
{
558
578k
    cie_cached_value base = pcache->vecs.params.base;
559
578k
    cie_cached_value factor = pcache->vecs.params.factor;
560
578k
    cie_cache_range_temp_t temp[3];
561
578k
    int i, j;
562
563
2.31M
    for (j = 0; j < 3; ++j)
564
1.73M
        temp[j].imin = gx_cie_cache_size, temp[j].imax = -1;
565
578k
    temp[0].prev = pcache->vecs.values[0].u;
566
578k
    temp[1].prev = pcache->vecs.values[0].v;
567
578k
    temp[2].prev = pcache->vecs.values[0].w;
568
569
296M
    for (i = 0; i < gx_cie_cache_size; ++i) {
570
295M
        check_interpolation_required(&temp[0], pcache->vecs.values[i].u, i,
571
295M
                                     threshold);
572
295M
        check_interpolation_required(&temp[1], pcache->vecs.values[i].v, i,
573
295M
                                     threshold);
574
295M
        check_interpolation_required(&temp[2], pcache->vecs.values[i].w, i,
575
295M
                                     threshold);
576
295M
    }
577
578
2.31M
    for (j = 0; j < 3; ++j) {
579
1.73M
        pcache->vecs.params.interpolation_ranges[j].rmin =
580
1.73M
            base + (cie_cached_value)((double)temp[j].imin / factor);
581
1.73M
        pcache->vecs.params.interpolation_ranges[j].rmax =
582
1.73M
            base + (cie_cached_value)((double)temp[j].imax / factor);
583
1.73M
        if_debug3('c', "[c]interpolation_ranges[%d] = %g, %g\n", j,
584
1.73M
                  cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmin),
585
1.73M
                  cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmax));
586
1.73M
    }
587
588
578k
}
589
590
/*
591
 * Convert a scalar cache to a vector cache by multiplying the scalar
592
 * values by a vector.  Also set the range where interpolation is needed.
593
 * This procedure is idempotent.
594
 */
595
static void
596
cie_cache_mult(gx_cie_vector_cache * pcache, const gs_vector3 * pvec,
597
               const cie_cache_floats * pcf, double threshold)
598
578k
{
599
578k
    float u = pvec->u, v = pvec->v, w = pvec->w;
600
578k
    int i;
601
602
578k
    pcache->vecs.params.base = float2cie_cached(pcf->params.base);
603
578k
    pcache->vecs.params.factor = float2cie_cached(pcf->params.factor);
604
578k
    pcache->vecs.params.limit =
605
578k
        float2cie_cached((gx_cie_cache_size - 1) / pcf->params.factor +
606
578k
                         pcf->params.base);
607
296M
    for (i = 0; i < gx_cie_cache_size; ++i) {
608
295M
        float f = pcf->values[i];
609
610
295M
        pcache->vecs.values[i].u = float2cie_cached(f * u);
611
295M
        pcache->vecs.values[i].v = float2cie_cached(f * v);
612
295M
        pcache->vecs.values[i].w = float2cie_cached(f * w);
613
295M
    }
614
578k
    cie_cache_set_interpolation(pcache, threshold);
615
578k
}
616
617
/*
618
 * Set the interpolation ranges in a 3-vector cache, based on the ranges in
619
 * the individual vector caches.  This procedure is idempotent.
620
 */
621
static void
622
cie_cache3_set_interpolation(gx_cie_vector_cache3_t * pvc)
623
192k
{
624
192k
    int j, k;
625
626
    /* Iterate over output components. */
627
770k
    for (j = 0; j < 3; ++j) {
628
        /* Iterate over sub-caches. */
629
578k
        cie_interpolation_range_t *p =
630
578k
                &pvc->caches[0].vecs.params.interpolation_ranges[j];
631
578k
        cie_cached_value rmin = p->rmin, rmax = p->rmax;
632
633
1.73M
        for (k = 1; k < 3; ++k) {
634
1.15M
            p = &pvc->caches[k].vecs.params.interpolation_ranges[j];
635
1.15M
            rmin = min(rmin, p->rmin), rmax = max(rmax, p->rmax);
636
1.15M
        }
637
578k
        pvc->interpolation_ranges[j].rmin = rmin;
638
578k
        pvc->interpolation_ranges[j].rmax = rmax;
639
578k
        if_debug3('c', "[c]Merged interpolation_ranges[%d] = %g, %g\n",
640
578k
                  j, rmin, rmax);
641
578k
    }
642
192k
}
643
644
/*
645
 * Convert 3 scalar caches to vector caches by multiplying by a matrix.
646
 * Return true iff the resulting cache is an identity transformation.
647
 * This procedure is idempotent.
648
 */
649
static bool
650
cie_cache_mult3(gx_cie_vector_cache3_t * pvc, const gs_matrix3 * pmat,
651
                double threshold)
652
192k
{
653
192k
    cie_cache_mult(&pvc->caches[0], &pmat->cu, &pvc->caches[0].floats, threshold);
654
192k
    cie_cache_mult(&pvc->caches[1], &pmat->cv, &pvc->caches[1].floats, threshold);
655
192k
    cie_cache_mult(&pvc->caches[2], &pmat->cw, &pvc->caches[2].floats, threshold);
656
192k
    cie_cache3_set_interpolation(pvc);
657
192k
    return pmat->is_identity & pvc->caches[0].floats.params.is_identity &
658
192k
        pvc->caches[1].floats.params.is_identity &
659
192k
        pvc->caches[2].floats.params.is_identity;
660
192k
}
661
662
/* ------ Install a rendering dictionary ------ */
663
664
bool
665
vector_equal(const gs_vector3 *p1, const gs_vector3 *p2)
666
0
{
667
0
    if (p1->u != p2->u)
668
0
        return false;
669
0
    if (p1->v != p2->v)
670
0
        return false;
671
0
    if (p1->w != p2->w)
672
0
        return false;
673
0
    return true;
674
0
}
675
676
bool
677
matrix_equal(const gs_matrix3 *p1, const gs_matrix3 *p2)
678
0
{
679
0
    if (p1->is_identity != p2->is_identity)
680
0
        return false;
681
0
    if (!vector_equal(&(p1->cu), &(p2->cu)))
682
0
        return false;
683
0
    if (!vector_equal(&(p1->cv), &(p2->cv)))
684
0
        return false;
685
0
    if (!vector_equal(&(p1->cw), &(p2->cw)))
686
0
        return false;
687
0
    return true;
688
0
}
689
690
static bool
691
transform_equal(const gs_cie_transform_proc3 *p1, const gs_cie_transform_proc3 *p2)
692
0
{
693
0
    if (p1->proc != p2->proc)
694
0
        return false;
695
0
    if (p1->proc_data.size != p2->proc_data.size)
696
0
        return false;
697
0
    if (memcmp(p1->proc_data.data, p2->proc_data.data, p1->proc_data.size) != 0)
698
0
        return false;
699
0
    if (p1->driver_name != p2->driver_name)
700
0
        return false;
701
0
    if (p1->proc_name != p2->proc_name)
702
0
        return false;
703
0
    return true;
704
0
}
705
706
bool
707
range_equal(const gs_range3 *p1, const gs_range3 *p2)
708
0
{
709
0
    int k;
710
711
0
    for (k = 0; k < 3; k++) {
712
0
        if (p1->ranges[k].rmax != p2->ranges[k].rmax)
713
0
            return false;
714
0
        if (p1->ranges[k].rmin != p2->ranges[k].rmin)
715
0
            return false;
716
0
    }
717
0
    return true;
718
0
}
719
720
/* setcolorrendering */
721
int
722
gs_setcolorrendering(gs_gstate * pgs, gs_cie_render * pcrd)
723
192k
{
724
192k
    int code = gs_cie_render_complete(pcrd);
725
192k
    const gs_cie_render *pcrd_old = pgs->cie_render;
726
192k
    bool joint_ok;
727
728
192k
    if (code < 0)
729
0
        return code;
730
192k
    if (pcrd_old != 0 && pcrd->id == pcrd_old->id)
731
0
        return 0;   /* detect needless reselecting */
732
192k
    joint_ok =
733
192k
        pcrd_old != 0 &&
734
0
        vector_equal(&pcrd->points.WhitePoint, &pcrd_old->points.WhitePoint) &&
735
0
        vector_equal(&pcrd->points.BlackPoint, &pcrd_old->points.BlackPoint) &&
736
0
        matrix_equal(&pcrd->MatrixPQR, &pcrd_old->MatrixPQR) &&
737
0
        range_equal(&pcrd->RangePQR, &pcrd_old->RangePQR) &&
738
0
        transform_equal(&pcrd->TransformPQR, &pcrd_old->TransformPQR);
739
192k
    rc_assign(pgs->cie_render, pcrd, "gs_setcolorrendering");
740
    /* Initialize the joint caches if needed. */
741
192k
    if (!joint_ok)
742
192k
        code = gs_cie_cs_complete(pgs, true);
743
192k
    gx_unset_dev_color(pgs);
744
192k
    return code;
745
192k
}
746
747
/* currentcolorrendering */
748
const gs_cie_render *
749
gs_currentcolorrendering(const gs_gstate * pgs)
750
0
{
751
0
    return pgs->cie_render;
752
0
}
753
754
/* Unshare (allocating if necessary) the joint caches. */
755
gx_cie_joint_caches *
756
gx_unshare_cie_caches(gs_gstate * pgs)
757
192k
{
758
192k
    gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
759
760
192k
    rc_unshare_struct(pgs->cie_joint_caches, gx_cie_joint_caches,
761
192k
                      &st_joint_caches, pgs->memory,
762
192k
                      return 0, "gx_unshare_cie_caches");
763
192k
    if (pgs->cie_joint_caches != pjc) {
764
192k
        pjc = pgs->cie_joint_caches;
765
192k
        pjc->cspace_id = pjc->render_id = gs_no_id;
766
192k
        pjc->id_status = pjc->status = CIE_JC_STATUS_BUILT;
767
192k
    }
768
192k
    return pjc;
769
192k
}
770
771
gx_cie_joint_caches *
772
gx_get_cie_caches_ref(gs_gstate * pgs, gs_memory_t * mem)
773
0
{
774
0
    gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
775
776
    /* Take a reference here, to allow for the one that
777
     * rc_unshare_struct might drop if it has to copy it.
778
     * Whatever happens we will have taken 1 net new
779
     * reference which we return to the caller. */
780
0
    rc_increment(pgs->cie_joint_caches);
781
0
    rc_unshare_struct(pjc, gx_cie_joint_caches,
782
0
                      &st_joint_caches, mem,
783
0
                      return NULL, "gx_unshare_cie_caches");
784
0
    return pjc;
785
0
}
786
787
/* Compute the parameters for loading a cache, setting base and factor. */
788
/* This procedure is idempotent. */
789
void
790
gs_cie_cache_init(cie_cache_params * pcache, gs_sample_loop_params_t * pslp,
791
                  const gs_range * domain, client_name_t cname)
792
1.15M
{
793
    /*
794
      We need to map the values in the range [domain->rmin..domain->rmax].
795
      However, if rmin < 0 < rmax and the function is non-linear, this can
796
      lead to anomalies at zero, which is the default value for CIE colors.
797
      The "correct" way to approach this is to run the mapping functions on
798
      demand, but we don't want to deal with the complexities of the
799
      callbacks this would involve (especially in the middle of rendering
800
      images); instead, we adjust the range so that zero maps precisely to a
801
      cache slot.  Define:
802
803
      A = domain->rmin;
804
      B = domain->rmax;
805
      N = gx_cie_cache_size - 1;
806
807
      R = B - A;
808
      h(v) = N * (v - A) / R;   // the index of v in the cache
809
      X = h(0).
810
811
      If X is not an integer, we can decrease A and/increase B to make it
812
      one.  Let A' and B' be the adjusted values of A and B respectively,
813
      and let K be the integer derived from X (either floor(X) or ceil(X)).
814
      Define
815
816
      f(K) = (K * B' + (N - K) * A') / N).
817
818
      We want f(K) = 0.  This occurs precisely when, for any real number
819
      C != 0,
820
821
      A' = -K * C;
822
      B' = (N - K) * C.
823
824
      In order to ensure A' <= A and B' >= B, we require
825
826
      C >= -A / K;
827
      C >= B / (N - K).
828
829
      Since A' and B' must be exactly representable as floats, we round C
830
      upward to ensure that it has no more than M mantissa bits, where
831
832
      M = ARCH_FLOAT_MANTISSA_BITS - ceil(log2(N)).
833
    */
834
1.15M
    float A = domain->rmin, B = domain->rmax;
835
1.15M
    double R = B - A, delta;
836
5.78M
#define NN (gx_cie_cache_size - 1) /* 'N' is a member name, see end of proc */
837
4.62M
#define N NN
838
1.15M
#define CEIL_LOG2_N CIE_LOG2_CACHE_SIZE
839
840
    /* Adjust the range if necessary. */
841
1.15M
    if (A < 0 && B >= 0) {
842
578k
        const double X = -N * A / R; /* know X > 0 */
843
        /* Choose K to minimize range expansion. */
844
578k
        const int K = (int)(A + B < 0 ? floor(X) : ceil(X)); /* know 0 < K < N */
845
578k
        const int M = ARCH_FLOAT_MANTISSA_BITS - CEIL_LOG2_N;
846
578k
        int cexp;
847
848
578k
        double Ca, Cb;
849
578k
        double C;
850
578k
        double cfrac;
851
852
578k
        if (K != 0)
853
578k
            Ca = -A / K;
854
0
        else
855
0
            Ca = 0;
856
857
578k
        if (N != K)
858
578k
            Cb = B / (N - K); /* know Ca, Cb > 0 */
859
0
        else
860
0
            Cb = 0;
861
862
578k
        C = max(Ca, Cb); /* know C > 0 */
863
578k
        cfrac = frexp(C, &cexp);
864
865
578k
        if_debug4('c', "[c]adjusting cache_init(%8g, %8g), X = %8g, K = %d:\n",
866
578k
                  A, B, X, K);
867
        /* Round C to no more than M significant bits.  See above. */
868
578k
        C = ldexp(ceil(ldexp(cfrac, M)), cexp - M);
869
        /* Finally, compute A' and B'. */
870
578k
        A = -K * C;
871
578k
        B = (N - K) * C;
872
578k
        if_debug2('c', "[c]  => %8g, %8g\n", A, B);
873
578k
        R = B - A;
874
578k
    }
875
1.15M
    delta = R / N;
876
1.15M
#ifdef CIE_CACHE_INTERPOLATE
877
1.15M
    pcache->base = A;   /* no rounding */
878
#else
879
    pcache->base = A - delta / 2; /* so lookup will round */
880
#endif
881
    /*
882
     * If size of the domain is zero, then use 1.0 as the scaling
883
     * factor.  This prevents divide by zero errors in later calculations.
884
     * This should only occurs with zero matrices.  It does occur with
885
     * Genoa test file 050-01.ps.
886
     */
887
1.15M
    pcache->factor = (any_abs(delta) < 1e-30 ? 1.0 : N / R);
888
1.15M
    if_debug4('c', "[c]cache %s "PRI_INTPTR" base=%g, factor=%g\n",
889
1.15M
              (const char *)cname, (intptr_t)pcache,
890
1.15M
              pcache->base, pcache->factor);
891
1.15M
    pslp->A = A;
892
1.15M
    pslp->B = B;
893
1.15M
#undef N
894
1.15M
    pslp->N = NN;
895
1.15M
#undef NN
896
1.15M
}
897
898
/* ------ Complete a rendering structure ------ */
899
900
/*
901
 * Compute the derived values in a CRD that don't involve the cached
902
 * procedure values.  This procedure is idempotent.
903
 */
904
static void cie_transform_range3(const gs_range3 *, const gs_matrix3 *,
905
                                  gs_range3 *);
906
int
907
gs_cie_render_init(gs_cie_render * pcrd)
908
192k
{
909
192k
    gs_matrix3 PQR_inverse;
910
911
192k
    if (pcrd->status >= CIE_RENDER_STATUS_INITED)
912
0
        return 0;   /* init already done */
913
192k
    if_debug_matrix3("[c]CRD MatrixLMN =", &pcrd->MatrixLMN);
914
192k
    cie_matrix_init(&pcrd->MatrixLMN);
915
192k
    if_debug_matrix3("[c]CRD MatrixABC =", &pcrd->MatrixABC);
916
192k
    cie_matrix_init(&pcrd->MatrixABC);
917
192k
    if_debug_matrix3("[c]CRD MatrixPQR =", &pcrd->MatrixPQR);
918
192k
    cie_matrix_init(&pcrd->MatrixPQR);
919
192k
    cie_invert3(&pcrd->MatrixPQR, &PQR_inverse);
920
192k
    cie_matrix_mult3(&pcrd->MatrixLMN, &PQR_inverse,
921
192k
                     &pcrd->MatrixPQR_inverse_LMN);
922
192k
    cie_transform_range3(&pcrd->RangePQR, &pcrd->MatrixPQR_inverse_LMN,
923
192k
                         &pcrd->DomainLMN);
924
192k
    cie_transform_range3(&pcrd->RangeLMN, &pcrd->MatrixABC,
925
192k
                         &pcrd->DomainABC);
926
192k
    cie_mult3(&pcrd->points.WhitePoint, &pcrd->MatrixPQR, &pcrd->wdpqr);
927
192k
    cie_mult3(&pcrd->points.BlackPoint, &pcrd->MatrixPQR, &pcrd->bdpqr);
928
192k
    pcrd->status = CIE_RENDER_STATUS_INITED;
929
192k
    return 0;
930
192k
}
931
932
/*
933
 * Sample the EncodeLMN, EncodeABC, and RenderTableT CRD procedures, and
934
 * load the caches.  This procedure is idempotent.
935
 */
936
int
937
gs_cie_render_sample(gs_cie_render * pcrd)
938
192k
{
939
192k
    int code;
940
941
192k
    if (pcrd->status >= CIE_RENDER_STATUS_SAMPLED)
942
0
        return 0;   /* sampling already done */
943
192k
    code = gs_cie_render_init(pcrd);
944
192k
    if (code < 0)
945
0
        return code;
946
192k
    CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeLMN.caches, pcrd->DomainLMN.ranges,
947
192k
                        &pcrd->EncodeLMN, Encode_default, pcrd, "EncodeLMN");
948
192k
    cache3_set_linear(&pcrd->caches.EncodeLMN);
949
192k
    CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeABC, pcrd->DomainABC.ranges,
950
192k
                        &pcrd->EncodeABC, Encode_default, pcrd, "EncodeABC");
951
192k
    if (pcrd->RenderTable.lookup.table != 0) {
952
0
        int i, j, m = pcrd->RenderTable.lookup.m;
953
0
        gs_sample_loop_params_t lp;
954
0
        bool is_identity = true;
955
956
0
        for (j = 0; j < m; j++) {
957
0
            gs_cie_cache_init(&pcrd->caches.RenderTableT[j].fracs.params,
958
0
                              &lp, &Range3_default.ranges[0],
959
0
                              "RenderTableT");
960
0
            is_identity &= pcrd->RenderTable.T.procs[j] ==
961
0
                RenderTableT_default.procs[j];
962
0
        }
963
0
        pcrd->caches.RenderTableT_is_identity = is_identity;
964
        /*
965
         * Unfortunately, we defined the first argument of the RenderTable
966
         * T procedures as being a byte, limiting the number of distinct
967
         * cache entries to 256 rather than gx_cie_cache_size.
968
         * We confine this decision to this loop, rather than propagating
969
         * it to the procedures that use the cached data, so that we can
970
         * change it more easily at some future time.
971
         */
972
0
        for (i = 0; i < gx_cie_cache_size; i++) {
973
0
#if gx_cie_log2_cache_size >= 8
974
0
            byte value = i >> (gx_cie_log2_cache_size - 8);
975
#else
976
            byte value = (i << (8 - gx_cie_log2_cache_size)) +
977
                (i >> (gx_cie_log2_cache_size * 2 - 8));
978
#endif
979
0
            for (j = 0; j < m; j++) {
980
0
                pcrd->caches.RenderTableT[j].fracs.values[i] =
981
0
                    (*pcrd->RenderTable.T.procs[j])(value, pcrd);
982
0
                if_debug3('C', "[C]RenderTableT[%d,%d] = %g\n",
983
0
                          i, j,
984
0
                          frac2float(pcrd->caches.RenderTableT[j].fracs.values[i]));
985
0
            }
986
0
        }
987
0
    }
988
192k
    pcrd->status = CIE_RENDER_STATUS_SAMPLED;
989
192k
    return 0;
990
192k
}
991
992
/* Transform a set of ranges. */
993
static void
994
cie_transform_range(const gs_range3 * in, double mu, double mv, double mw,
995
                    gs_range * out)
996
1.15M
{
997
1.15M
    float umin = mu * in->ranges[0].rmin, umax = mu * in->ranges[0].rmax;
998
1.15M
    float vmin = mv * in->ranges[1].rmin, vmax = mv * in->ranges[1].rmax;
999
1.15M
    float wmin = mw * in->ranges[2].rmin, wmax = mw * in->ranges[2].rmax;
1000
1.15M
    float temp;
1001
1002
1.15M
    if (umin > umax)
1003
385k
        temp = umin, umin = umax, umax = temp;
1004
1.15M
    if (vmin > vmax)
1005
385k
        temp = vmin, vmin = vmax, vmax = temp;
1006
1.15M
    if (wmin > wmax)
1007
385k
        temp = wmin, wmin = wmax, wmax = temp;
1008
1.15M
    out->rmin = umin + vmin + wmin;
1009
1.15M
    out->rmax = umax + vmax + wmax;
1010
1.15M
}
1011
static void
1012
cie_transform_range3(const gs_range3 * in, const gs_matrix3 * mat,
1013
                     gs_range3 * out)
1014
385k
{
1015
385k
    cie_transform_range(in, mat->cu.u, mat->cv.u, mat->cw.u,
1016
385k
                        &out->ranges[0]);
1017
385k
    cie_transform_range(in, mat->cu.v, mat->cv.v, mat->cw.v,
1018
385k
                        &out->ranges[1]);
1019
385k
    cie_transform_range(in, mat->cu.w, mat->cv.w, mat->cw.w,
1020
385k
                        &out->ranges[2]);
1021
385k
}
1022
1023
/*
1024
 * Finish preparing a CRD for installation, by restricting and/or
1025
 * transforming the cached procedure values.
1026
 * This procedure is idempotent.
1027
 */
1028
int
1029
gs_cie_render_complete(gs_cie_render * pcrd)
1030
192k
{
1031
192k
    int code;
1032
1033
192k
    if (pcrd->status >= CIE_RENDER_STATUS_COMPLETED)
1034
0
        return 0;   /* completion already done */
1035
192k
    code = gs_cie_render_sample(pcrd);
1036
192k
    if (code < 0)
1037
0
        return code;
1038
    /*
1039
     * Since range restriction happens immediately after
1040
     * the cache lookup, we can save a step by restricting
1041
     * the values in the cache entries.
1042
     *
1043
     * If there is no lookup table, we want the final ABC values
1044
     * to be fracs; if there is a table, we want them to be
1045
     * appropriately scaled ints.
1046
     */
1047
192k
    pcrd->MatrixABCEncode = pcrd->MatrixABC;
1048
192k
    {
1049
192k
        int c;
1050
192k
        double f;
1051
1052
770k
        for (c = 0; c < 3; c++) {
1053
578k
            gx_cie_float_fixed_cache *pcache = &pcrd->caches.EncodeABC[c];
1054
1055
578k
            cie_cache_restrict(&pcrd->caches.EncodeLMN.caches[c].floats,
1056
578k
                               &pcrd->RangeLMN.ranges[c]);
1057
578k
            cie_cache_restrict(&pcrd->caches.EncodeABC[c].floats,
1058
578k
                               &pcrd->RangeABC.ranges[c]);
1059
578k
            if (pcrd->RenderTable.lookup.table == 0) {
1060
578k
                cie_cache_restrict(&pcache->floats,
1061
578k
                                   &Range3_default.ranges[0]);
1062
578k
                gs_cie_cache_to_fracs(&pcache->floats, &pcache->fixeds.fracs);
1063
578k
                pcache->fixeds.fracs.params.is_identity = false;
1064
578k
            } else {
1065
0
                int i;
1066
0
                int n = pcrd->RenderTable.lookup.dims[c];
1067
1068
0
#ifdef CIE_RENDER_TABLE_INTERPOLATE
1069
0
#  define SCALED_INDEX(f, n, itemp)\
1070
0
     RESTRICTED_INDEX(f * (1 << _cie_interpolate_bits),\
1071
0
                      (n) << _cie_interpolate_bits, itemp)
1072
#else
1073
                int m = pcrd->RenderTable.lookup.m;
1074
                int k =
1075
                    (c == 0 ? 1 : c == 1 ?
1076
                     m * pcrd->RenderTable.lookup.dims[2] : m);
1077
#  define SCALED_INDEX(f, n, itemp)\
1078
     (RESTRICTED_INDEX(f, n, itemp) * k)
1079
#endif
1080
0
                const gs_range *prange = pcrd->RangeABC.ranges + c;
1081
0
                double scale = (n - 1) / (prange->rmax - prange->rmin);
1082
1083
0
                for (i = 0; i < gx_cie_cache_size; ++i) {
1084
0
                    float v =
1085
0
                        (pcache->floats.values[i] - prange->rmin) * scale
1086
#ifndef CIE_RENDER_TABLE_INTERPOLATE
1087
                        + 0.5
1088
#endif
1089
0
                        ;
1090
0
                    int itemp;
1091
1092
0
                    if_debug5('c',
1093
0
                              "[c]cache[%d][%d] = %g => %g => %d\n",
1094
0
                              c, i, pcache->floats.values[i], v,
1095
0
                              SCALED_INDEX(v, n, itemp));
1096
0
                    pcache->fixeds.ints.values[i] =
1097
0
                        SCALED_INDEX(v, n, itemp);
1098
0
                }
1099
0
                pcache->fixeds.ints.params = pcache->floats.params;
1100
0
                pcache->fixeds.ints.params.is_identity = false;
1101
0
#undef SCALED_INDEX
1102
0
            }
1103
578k
        }
1104
        /* Fold the scaling of the EncodeABC cache index */
1105
        /* into MatrixABC. */
1106
192k
#define MABC(i, t)\
1107
578k
  f = pcrd->caches.EncodeABC[i].floats.params.factor;\
1108
578k
  pcrd->MatrixABCEncode.cu.t *= f;\
1109
578k
  pcrd->MatrixABCEncode.cv.t *= f;\
1110
578k
  pcrd->MatrixABCEncode.cw.t *= f;\
1111
578k
  pcrd->EncodeABC_base[i] =\
1112
578k
    float2cie_cached(pcrd->caches.EncodeABC[i].floats.params.base * f)
1113
192k
        MABC(0, u);
1114
192k
        MABC(1, v);
1115
192k
        MABC(2, w);
1116
192k
#undef MABC
1117
192k
        pcrd->MatrixABCEncode.is_identity = 0;
1118
192k
    }
1119
192k
    cie_cache_mult3(&pcrd->caches.EncodeLMN, &pcrd->MatrixABCEncode,
1120
192k
                    CACHE_THRESHOLD);
1121
192k
    pcrd->status = CIE_RENDER_STATUS_COMPLETED;
1122
192k
    return 0;
1123
192k
}
1124
1125
/* Apply a range restriction to a cache. */
1126
static void
1127
cie_cache_restrict(cie_cache_floats * pcache, const gs_range * prange)
1128
1.73M
{
1129
1.73M
    int i;
1130
1131
889M
    for (i = 0; i < gx_cie_cache_size; i++) {
1132
887M
        float v = pcache->values[i];
1133
1134
887M
        if (v < prange->rmin)
1135
93.2M
            pcache->values[i] = prange->rmin;
1136
794M
        else if (v > prange->rmax)
1137
127M
            pcache->values[i] = prange->rmax;
1138
887M
    }
1139
1.73M
}
1140
1141
/* Convert a cache from floats to fracs. */
1142
/* Note that the two may be aliased. */
1143
void
1144
gs_cie_cache_to_fracs(const cie_cache_floats *pfloats, cie_cache_fracs *pfracs)
1145
578k
{
1146
578k
    int i;
1147
1148
    /* Loop from bottom to top so that we don't */
1149
    /* overwrite elements before they're used. */
1150
296M
    for (i = 0; i < gx_cie_cache_size; ++i)
1151
295M
        pfracs->values[i] = float2frac(pfloats->values[i]);
1152
578k
    pfracs->params = pfloats->params;
1153
578k
}
1154
1155
/* ------ Fill in the joint cache ------ */
1156
1157
/* If the current color space is a CIE space, or has a CIE base space, */
1158
/* return a pointer to the common part of the space; otherwise return 0. */
1159
static const gs_cie_common *
1160
cie_cs_common_abc(const gs_color_space *pcs_orig, const gs_cie_abc **ppabc)
1161
192k
{
1162
192k
    const gs_color_space *pcs = pcs_orig;
1163
1164
192k
    *ppabc = 0;
1165
192k
    do {
1166
192k
        switch (pcs->type->index) {
1167
0
        case gs_color_space_index_CIEDEF:
1168
0
            *ppabc = (const gs_cie_abc *)pcs->params.def;
1169
0
            return &pcs->params.def->common;
1170
0
        case gs_color_space_index_CIEDEFG:
1171
0
            *ppabc = (const gs_cie_abc *)pcs->params.defg;
1172
0
            return &pcs->params.defg->common;
1173
0
        case gs_color_space_index_CIEABC:
1174
0
            *ppabc = pcs->params.abc;
1175
0
            return &pcs->params.abc->common;
1176
0
        case gs_color_space_index_CIEA:
1177
0
            return &pcs->params.a->common;
1178
192k
        default:
1179
192k
            pcs = gs_cspace_base_space(pcs);
1180
192k
            break;
1181
192k
        }
1182
192k
    } while (pcs != 0);
1183
1184
192k
    return 0;
1185
192k
}
1186
const gs_cie_common *
1187
gs_cie_cs_common(const gs_gstate * pgs)
1188
192k
{
1189
192k
    const gs_cie_abc *ignore_pabc;
1190
1191
192k
    return cie_cs_common_abc(gs_currentcolorspace_inline(pgs), &ignore_pabc);
1192
192k
}
1193
1194
/*
1195
 * Mark the joint caches as needing completion.  This is done lazily,
1196
 * when a color is being mapped.  However, make sure the joint caches
1197
 * exist now.
1198
 */
1199
int
1200
gs_cie_cs_complete(gs_gstate * pgs, bool init)
1201
192k
{
1202
192k
    gx_cie_joint_caches *pjc = gx_unshare_cie_caches(pgs);
1203
1204
192k
    if (pjc == 0)
1205
0
        return_error(gs_error_VMerror);
1206
192k
    pjc->status = (init ? CIE_JC_STATUS_BUILT : CIE_JC_STATUS_INITED);
1207
192k
    return 0;
1208
192k
}
1209
/* Actually complete the joint caches. */
1210
int
1211
gs_cie_jc_complete(const gs_gstate *pgs, const gs_color_space *pcs)
1212
0
{
1213
0
    const gs_cie_abc *pabc;
1214
0
    const gs_cie_common *common = cie_cs_common_abc(pcs, &pabc);
1215
0
    gs_cie_render *pcrd = pgs->cie_render;
1216
0
    gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
1217
1218
0
    if (pjc->cspace_id == pcs->id &&
1219
0
        pjc->render_id == pcrd->id)
1220
0
        pjc->status = pjc->id_status;
1221
0
    switch (pjc->status) {
1222
0
    case CIE_JC_STATUS_BUILT: {
1223
0
        int code = cie_joint_caches_init(pjc, common, pcrd);
1224
1225
0
        if (code < 0)
1226
0
            return code;
1227
0
    }
1228
        /* falls through */
1229
0
    case CIE_JC_STATUS_INITED:
1230
0
        cie_joint_caches_complete(pjc, common, pabc, pcrd);
1231
0
        pjc->cspace_id = pcs->id;
1232
0
        pjc->render_id = pcrd->id;
1233
0
        pjc->id_status = pjc->status = CIE_JC_STATUS_COMPLETED;
1234
        /* falls through */
1235
0
    case CIE_JC_STATUS_COMPLETED:
1236
0
        break;
1237
0
    }
1238
0
    return 0;
1239
0
}
1240
1241
/*
1242
 * Compute the source and destination WhitePoint and BlackPoint for
1243
 * the TransformPQR procedure.
1244
 */
1245
int
1246
gs_cie_compute_points_sd(gx_cie_joint_caches *pjc,
1247
                         const gs_cie_common * pcie,
1248
                         const gs_cie_render * pcrd)
1249
0
{
1250
0
    gs_cie_wbsd *pwbsd = &pjc->points_sd;
1251
1252
0
    pwbsd->ws.xyz = pcie->points.WhitePoint;
1253
0
    cie_mult3(&pwbsd->ws.xyz, &pcrd->MatrixPQR, &pwbsd->ws.pqr);
1254
0
    pwbsd->bs.xyz = pcie->points.BlackPoint;
1255
0
    cie_mult3(&pwbsd->bs.xyz, &pcrd->MatrixPQR, &pwbsd->bs.pqr);
1256
0
    pwbsd->wd.xyz = pcrd->points.WhitePoint;
1257
0
    pwbsd->wd.pqr = pcrd->wdpqr;
1258
0
    pwbsd->bd.xyz = pcrd->points.BlackPoint;
1259
0
    pwbsd->bd.pqr = pcrd->bdpqr;
1260
0
    return 0;
1261
0
}
1262
1263
/*
1264
 * Sample the TransformPQR procedure for the joint caches.
1265
 * This routine is idempotent.
1266
 */
1267
static int
1268
cie_joint_caches_init(gx_cie_joint_caches * pjc,
1269
                      const gs_cie_common * pcie,
1270
                      gs_cie_render * pcrd)
1271
0
{
1272
0
    bool is_identity;
1273
0
    int j;
1274
1275
0
    gs_cie_compute_points_sd(pjc, pcie, pcrd);
1276
    /*
1277
     * If a client pre-loaded the cache, we can't adjust the range.
1278
     * ****** WRONG ******
1279
     */
1280
0
    if (pcrd->TransformPQR.proc == TransformPQR_from_cache.proc)
1281
0
        return 0;
1282
0
    is_identity = pcrd->TransformPQR.proc == TransformPQR_default.proc;
1283
0
    for (j = 0; j < 3; j++) {
1284
0
        int i;
1285
0
        gs_sample_loop_params_t lp;
1286
1287
0
        gs_cie_cache_init(&pjc->TransformPQR.caches[j].floats.params, &lp,
1288
0
                          &pcrd->RangePQR.ranges[j], "TransformPQR");
1289
0
        for (i = 0; i <= lp.N; ++i) {
1290
0
            float in = SAMPLE_LOOP_VALUE(i, lp);
1291
0
            float out;
1292
0
            int code = (*pcrd->TransformPQR.proc)(j, in, &pjc->points_sd,
1293
0
                                                  pcrd, &out);
1294
1295
0
            if (code < 0)
1296
0
                return code;
1297
0
            pjc->TransformPQR.caches[j].floats.values[i] = out;
1298
0
            if_debug4('C', "[C]TransformPQR[%d,%d] = %g => %g\n",
1299
0
                      j, i, in, out);
1300
0
        }
1301
0
        pjc->TransformPQR.caches[j].floats.params.is_identity = is_identity;
1302
0
    }
1303
0
    return 0;
1304
0
}
1305
1306
/*
1307
 * Complete the loading of the joint caches.
1308
 * This routine is idempotent.
1309
 */
1310
static void
1311
cie_joint_caches_complete(gx_cie_joint_caches * pjc,
1312
                          const gs_cie_common * pcie,
1313
                          const gs_cie_abc * pabc /* NULL if CIEA */,
1314
                          const gs_cie_render * pcrd)
1315
0
{
1316
0
    gs_matrix3 mat3, mat2;
1317
0
    gs_matrix3 MatrixLMN_PQR;
1318
0
    int j;
1319
1320
0
    pjc->remap_finish = gx_cie_real_remap_finish;
1321
1322
    /*
1323
     * We number the pipeline steps as follows:
1324
     *   1 - DecodeABC/MatrixABC
1325
     *   2 - DecodeLMN/MatrixLMN/MatrixPQR
1326
     *   3 - TransformPQR/MatrixPQR'/MatrixLMN
1327
     *   4 - EncodeLMN/MatrixABC
1328
     *   5 - EncodeABC, RenderTable (we don't do anything with this here)
1329
     * We work from back to front, combining steps where possible.
1330
     * Currently we only combine steps if a procedure is the identity
1331
     * transform, but we could do it whenever the procedure is linear.
1332
     * A project for another day....
1333
     */
1334
1335
        /* Step 4 */
1336
1337
0
#ifdef OPTIMIZE_CIE_MAPPING
1338
0
    if (pcrd->caches.EncodeLMN.caches[0].floats.params.is_identity &&
1339
0
        pcrd->caches.EncodeLMN.caches[1].floats.params.is_identity &&
1340
0
        pcrd->caches.EncodeLMN.caches[2].floats.params.is_identity
1341
0
        ) {
1342
        /* Fold step 4 into step 3. */
1343
0
        if_debug0('c', "[c]EncodeLMN is identity, folding MatrixABC(Encode) into MatrixPQR'+LMN.\n");
1344
0
        cie_matrix_mult3(&pcrd->MatrixABCEncode, &pcrd->MatrixPQR_inverse_LMN,
1345
0
                         &mat3);
1346
0
        pjc->skipEncodeLMN = true;
1347
0
    } else
1348
0
#endif /* OPTIMIZE_CIE_MAPPING */
1349
0
    {
1350
0
        if_debug0('c', "[c]EncodeLMN is not identity.\n");
1351
0
        mat3 = pcrd->MatrixPQR_inverse_LMN;
1352
0
        pjc->skipEncodeLMN = false;
1353
0
    }
1354
1355
        /* Step 3 */
1356
1357
0
    cache3_set_linear(&pjc->TransformPQR);
1358
0
    cie_matrix_mult3(&pcrd->MatrixPQR, &pcie->MatrixLMN,
1359
0
                     &MatrixLMN_PQR);
1360
1361
0
#ifdef OPTIMIZE_CIE_MAPPING
1362
0
    if (pjc->TransformPQR.caches[0].floats.params.is_identity &
1363
0
        pjc->TransformPQR.caches[1].floats.params.is_identity &
1364
0
        pjc->TransformPQR.caches[2].floats.params.is_identity
1365
0
        ) {
1366
        /* Fold step 3 into step 2. */
1367
0
        if_debug0('c', "[c]TransformPQR is identity, folding MatrixPQR'+LMN into MatrixLMN+PQR.\n");
1368
0
        cie_matrix_mult3(&mat3, &MatrixLMN_PQR, &mat2);
1369
0
        pjc->skipPQR = true;
1370
0
    } else
1371
0
#endif /* OPTIMIZE_CIE_MAPPING */
1372
0
    {
1373
0
        if_debug0('c', "[c]TransformPQR is not identity.\n");
1374
0
        mat2 = MatrixLMN_PQR;
1375
0
        for (j = 0; j < 3; j++) {
1376
0
            cie_cache_restrict(&pjc->TransformPQR.caches[j].floats,
1377
0
                               &pcrd->RangePQR.ranges[j]);
1378
0
        }
1379
0
        cie_cache_mult3(&pjc->TransformPQR, &mat3, CACHE_THRESHOLD);
1380
0
        pjc->skipPQR = false;
1381
0
    }
1382
1383
        /* Steps 2 & 1 */
1384
1385
0
#ifdef OPTIMIZE_CIE_MAPPING
1386
0
    if (pcie->caches.DecodeLMN[0].floats.params.is_identity &
1387
0
        pcie->caches.DecodeLMN[1].floats.params.is_identity &
1388
0
        pcie->caches.DecodeLMN[2].floats.params.is_identity
1389
0
        ) {
1390
0
        if_debug0('c', "[c]DecodeLMN is identity, folding MatrixLMN+PQR into MatrixABC.\n");
1391
0
        if (!pabc) {
1392
0
            pjc->skipDecodeLMN = mat2.is_identity;
1393
0
            pjc->skipDecodeABC = false;
1394
0
            if (!pjc->skipDecodeLMN) {
1395
0
                for (j = 0; j < 3; j++) {
1396
0
                    cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
1397
0
                                   &pcie->caches.DecodeLMN[j].floats,
1398
0
                                   CACHE_THRESHOLD);
1399
0
                }
1400
0
                cie_cache3_set_interpolation(&pjc->DecodeLMN);
1401
0
            }
1402
0
        } else {
1403
            /*
1404
             * Fold step 2 into step 1.  This is a little different because
1405
             * the data for step 1 are in the color space structure.
1406
             */
1407
0
            gs_matrix3 mat1;
1408
1409
0
            cie_matrix_mult3(&mat2, &pabc->MatrixABC, &mat1);
1410
0
            for (j = 0; j < 3; j++) {
1411
0
                cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat1.cu + j,
1412
0
                               &pabc->caches.DecodeABC.caches[j].floats,
1413
0
                               CACHE_THRESHOLD);
1414
0
            }
1415
0
            cie_cache3_set_interpolation(&pjc->DecodeLMN);
1416
0
            pjc->skipDecodeLMN = false;
1417
0
            pjc->skipDecodeABC = true;
1418
0
        }
1419
0
    } else
1420
0
#endif /* OPTIMIZE_CIE_MAPPING */
1421
0
    {
1422
0
        if_debug0('c', "[c]DecodeLMN is not identity.\n");
1423
0
        for (j = 0; j < 3; j++) {
1424
0
            cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
1425
0
                           &pcie->caches.DecodeLMN[j].floats,
1426
0
                           CACHE_THRESHOLD);
1427
0
        }
1428
0
        cie_cache3_set_interpolation(&pjc->DecodeLMN);
1429
0
        pjc->skipDecodeLMN = false;
1430
0
        pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
1431
0
    }
1432
1433
0
}
1434
1435
/*
1436
 * Initialize (just enough of) an gs_gstate so that "concretizing" colors
1437
 * using this gs_gstate will do only the CIE->XYZ mapping.  This is a
1438
 * semi-hack for the PDF writer.
1439
 */
1440
int
1441
gx_cie_to_xyz_alloc(gs_gstate **ppgs, const gs_color_space *pcs,
1442
                    gs_memory_t *mem)
1443
0
{
1444
    /*
1445
     * In addition to the gs_gstate itself, we need the joint caches.
1446
     */
1447
0
    gs_gstate *pgs =
1448
0
        gs_alloc_struct(mem, gs_gstate, &st_gs_gstate,
1449
0
                        "gx_cie_to_xyz_alloc(gs_gstate)");
1450
0
    gx_cie_joint_caches *pjc;
1451
0
    const gs_cie_abc *pabc;
1452
0
    const gs_cie_common *pcie = cie_cs_common_abc(pcs, &pabc);
1453
0
    int j;
1454
1455
0
    if (pgs == 0)
1456
0
        return_error(gs_error_VMerror);
1457
0
    memset(pgs, 0, sizeof(*pgs)); /* mostly paranoia */
1458
0
    pgs->memory = mem;
1459
0
    GS_STATE_INIT_VALUES(pgs, 1.0);
1460
0
    gs_gstate_initialize(pgs, mem);
1461
1462
0
    pjc = gs_alloc_struct(mem, gx_cie_joint_caches, &st_joint_caches,
1463
0
                          "gx_cie_to_xyz_free(joint caches)");
1464
0
    if (pjc == 0) {
1465
0
        gs_free_object(mem, pgs, "gx_cie_to_xyz_alloc(gs_gstate)");
1466
0
        return_error(gs_error_VMerror);
1467
0
    }
1468
0
    rc_init(pjc, mem, 1);
1469
1470
    /*
1471
     * Perform an abbreviated version of cie_joint_caches_complete.
1472
     * Don't bother with any optimizations.
1473
     */
1474
0
    for (j = 0; j < 3; j++) {
1475
0
        cie_cache_mult(&pjc->DecodeLMN.caches[j], &pcie->MatrixLMN.cu + j,
1476
0
                       &pcie->caches.DecodeLMN[j].floats,
1477
0
                       CACHE_THRESHOLD);
1478
0
    }
1479
0
    cie_cache3_set_interpolation(&pjc->DecodeLMN);
1480
0
    pjc->skipDecodeLMN = false;
1481
0
    pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
1482
    /* Mark the joint caches as completed. */
1483
0
    pjc->remap_finish = gx_cie_xyz_remap_finish;
1484
0
    pjc->cspace_id = pcs->id;
1485
0
    pjc->status = CIE_JC_STATUS_COMPLETED;
1486
0
    pgs->cie_joint_caches = pjc;
1487
0
    pgs->cie_to_xyz = true;
1488
0
    *ppgs = pgs;
1489
0
    return 0;
1490
0
}
1491
void
1492
gx_cie_to_xyz_free(gs_gstate *pgs)
1493
0
{
1494
0
    gs_memory_t *mem = pgs->memory;
1495
1496
0
    rc_decrement(pgs->cie_joint_caches,"gx_cie_to_xyz_free");
1497
1498
    /* Free up the ICC objects if created */    /* FIXME: does this need to be thread safe */
1499
0
    if (pgs->icc_link_cache != NULL) {
1500
0
        rc_decrement(pgs->icc_link_cache,"gx_cie_to_xyz_free");
1501
0
    }
1502
0
    if (pgs->icc_manager != NULL) {
1503
0
        rc_decrement(pgs->icc_manager,"gx_cie_to_xyz_free");
1504
0
    }
1505
0
    if (pgs->icc_profile_cache != NULL) {
1506
0
        rc_decrement(pgs->icc_profile_cache,"gx_cie_to_xyz_free");
1507
0
    }
1508
0
    gs_free_object(mem, pgs, "gx_cie_to_xyz_free(gs_gstate)");
1509
0
}
1510
1511
/* ================ Utilities ================ */
1512
1513
/* Multiply a vector by a matrix. */
1514
/* Note that we are computing M * V where v is a column vector. */
1515
void
1516
cie_mult3(const gs_vector3 * in, register const gs_matrix3 * mat,
1517
          gs_vector3 * out)
1518
963k
{
1519
963k
    if_debug_vector3("[c]mult", in);
1520
963k
    if_debug_matrix3("  *", mat);
1521
963k
    {
1522
963k
        float u = in->u, v = in->v, w = in->w;
1523
1524
963k
        out->u = (u * mat->cu.u) + (v * mat->cv.u) + (w * mat->cw.u);
1525
963k
        out->v = (u * mat->cu.v) + (v * mat->cv.v) + (w * mat->cw.v);
1526
963k
        out->w = (u * mat->cu.w) + (v * mat->cv.w) + (w * mat->cw.w);
1527
963k
    }
1528
963k
    if_debug_vector3("  =", out);
1529
963k
}
1530
1531
/*
1532
 * Multiply two matrices.  Note that the composition of the transformations
1533
 * M1 followed by M2 is M2 * M1, not M1 * M2.  (See gscie.h for details.)
1534
 */
1535
void
1536
cie_matrix_mult3(const gs_matrix3 *ma, const gs_matrix3 *mb, gs_matrix3 *mc)
1537
192k
{
1538
192k
    gs_matrix3 mprod;
1539
192k
    gs_matrix3 *mp = (mc == ma || mc == mb ? &mprod : mc);
1540
1541
192k
    if_debug_matrix3("[c]matrix_mult", ma);
1542
192k
    if_debug_matrix3("             *", mb);
1543
192k
    cie_mult3(&mb->cu, ma, &mp->cu);
1544
192k
    cie_mult3(&mb->cv, ma, &mp->cv);
1545
192k
    cie_mult3(&mb->cw, ma, &mp->cw);
1546
192k
    cie_matrix_init(mp);
1547
192k
    if_debug_matrix3("             =", mp);
1548
192k
    if (mp != mc)
1549
0
        *mc = *mp;
1550
192k
}
1551
1552
/*
1553
 * Transpose a 3x3 matrix. In and out can not be the same
1554
 */
1555
void
1556
cie_matrix_transpose3(const gs_matrix3 *in, gs_matrix3 *out)
1557
0
{
1558
0
    out->cu.u = in->cu.u;
1559
0
    out->cu.v = in->cv.u;
1560
0
    out->cu.w = in->cw.u;
1561
1562
0
    out->cv.u = in->cu.v;
1563
0
    out->cv.v = in->cv.v;
1564
0
    out->cv.w = in->cw.v;
1565
1566
0
    out->cw.u = in->cu.w;
1567
0
    out->cw.v = in->cv.w;
1568
0
    out->cw.w = in->cw.w;
1569
0
}
1570
1571
/* Invert a matrix. */
1572
/* The output must not be an alias for the input. */
1573
static void
1574
cie_invert3(const gs_matrix3 *in, gs_matrix3 *out)
1575
192k
{ /* This is a brute force algorithm; maybe there are better. */
1576
    /* We label the array elements */
1577
    /*   [ A B C ]   */
1578
    /*   [ D E F ]   */
1579
    /*   [ G H I ]   */
1580
1.15M
#define A cu.u
1581
1.15M
#define B cv.u
1582
1.15M
#define C cw.u
1583
963k
#define D cu.v
1584
963k
#define E cv.v
1585
963k
#define F cw.v
1586
963k
#define G cu.w
1587
963k
#define H cv.w
1588
963k
#define I cw.w
1589
192k
    double coA = in->E * in->I - in->F * in->H;
1590
192k
    double coB = in->F * in->G - in->D * in->I;
1591
192k
    double coC = in->D * in->H - in->E * in->G;
1592
192k
    double det = in->A * coA + in->B * coB + in->C * coC;
1593
1594
192k
    if_debug_matrix3("[c]invert", in);
1595
192k
    out->A = coA / det;
1596
192k
    out->D = coB / det;
1597
192k
    out->G = coC / det;
1598
192k
    out->B = (in->C * in->H - in->B * in->I) / det;
1599
192k
    out->E = (in->A * in->I - in->C * in->G) / det;
1600
192k
    out->H = (in->B * in->G - in->A * in->H) / det;
1601
192k
    out->C = (in->B * in->F - in->C * in->E) / det;
1602
192k
    out->F = (in->C * in->D - in->A * in->F) / det;
1603
192k
    out->I = (in->A * in->E - in->B * in->D) / det;
1604
192k
    if_debug_matrix3("        =", out);
1605
192k
#undef A
1606
192k
#undef B
1607
192k
#undef C
1608
192k
#undef D
1609
192k
#undef E
1610
192k
#undef F
1611
192k
#undef G
1612
192k
#undef H
1613
192k
#undef I
1614
192k
    out->is_identity = in->is_identity;
1615
192k
}
1616
1617
/* Set the is_identity flag that accelerates multiplication. */
1618
static void
1619
cie_matrix_init(register gs_matrix3 * mat)
1620
770k
{
1621
770k
    mat->is_identity =
1622
770k
        mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) &&
1623
192k
        mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) &&
1624
192k
        mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v);
1625
770k
}
1626
1627
bool
1628
gx_color_space_needs_cie_caches(const gs_color_space * pcs)
1629
0
{
1630
0
    switch (pcs->type->index) {
1631
0
        case gs_color_space_index_CIEDEFG:
1632
0
        case gs_color_space_index_CIEDEF:
1633
0
        case gs_color_space_index_CIEABC:
1634
0
        case gs_color_space_index_CIEA:
1635
0
            return true;
1636
0
        case gs_color_space_index_ICC:
1637
0
            return false;
1638
0
        case gs_color_space_index_DevicePixel:
1639
0
        case gs_color_space_index_DeviceN:
1640
0
        case gs_color_space_index_Separation:
1641
0
        case gs_color_space_index_Indexed:
1642
0
        case gs_color_space_index_Pattern:
1643
0
            return gx_color_space_needs_cie_caches(pcs->base_space);
1644
0
        default:
1645
0
            return false;
1646
0
    }
1647
0
}