Coverage Report

Created: 2025-11-16 07:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/base/gsfunc0.c
Line
Count
Source
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Implementation of FunctionType 0 (Sampled) Functions */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsfunc0.h"
22
#include "gsparam.h"
23
#include "gxfarith.h"
24
#include "gxfunc.h"
25
#include "stream.h"
26
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
27
28
#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
29
                                   Remove after the beta testing. */
30
358
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
31
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
32
626
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
33
                                   Remove after the beta testing. */
34
35
227k
#define MAX_FAST_COMPS 8
36
37
typedef struct gs_function_Sd_s {
38
    gs_function_head_t head;
39
    gs_function_Sd_params_t params;
40
} gs_function_Sd_t;
41
42
/* GC descriptor */
43
private_st_function_Sd();
44
static
45
150
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
46
60
{
47
60
    index -= 6;
48
60
    if (index < st_data_source_max_ptrs)
49
15
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
50
60
                          sizeof(pfn->params.DataSource), index);
51
45
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
52
60
}
53
60
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
54
150
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
55
150
ENUM_PTRS_END
56
static
57
15
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
58
15
{
59
15
    RELOC_PREFIX(st_function);
60
15
    RELOC_USING(st_data_source, &pfn->params.DataSource,
61
15
                sizeof(pfn->params.DataSource));
62
15
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
63
15
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
64
15
}
65
15
RELOC_PTRS_END
66
67
/* Define the maximum plausible number of inputs and outputs */
68
/* for a Sampled function. */
69
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS   /* Allow override with XCFLAGS */
70
70.7k
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
71
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
72
#else
73
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
74
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
75
#endif
76
77
/* Get one set of sample values. */
78
#define SETUP_SAMPLES(bps, nbytes)\
79
49.9M
        int n = pfn->params.n;\
80
49.9M
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
81
49.9M
        const byte *p;\
82
49.9M
        int i;\
83
49.9M
\
84
49.9M
        data_source_access(&pfn->params.DataSource, offset >> 3,\
85
49.9M
                           nbytes, buf, &p)
86
87
static int
88
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
89
0
{
90
0
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
91
0
    for (i = 0; i < n; ++i) {
92
0
        samples[i] = (*p >> (~offset & 7)) & 1;
93
0
        if (!(++offset & 7))
94
0
            p++;
95
0
    }
96
0
    return 0;
97
0
}
98
static int
99
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
100
0
{
101
0
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
102
0
    for (i = 0; i < n; ++i) {
103
0
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
104
0
        if (!((offset += 2) & 7))
105
0
            p++;
106
0
    }
107
0
    return 0;
108
0
}
109
static int
110
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
111
0
{
112
0
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
113
0
    for (i = 0; i < n; ++i) {
114
0
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
115
0
    }
116
0
    return 0;
117
0
}
118
static int
119
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
120
49.8M
{
121
49.8M
    SETUP_SAMPLES(8, n);
122
137M
    for (i = 0; i < n; ++i) {
123
87.1M
        samples[i] = *p++;
124
87.1M
    }
125
49.8M
    return 0;
126
49.8M
}
127
static int
128
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
129
0
{
130
0
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
131
0
    for (i = 0; i < n; ++i) {
132
0
        if (offset & 4)
133
0
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
134
0
        else
135
0
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
136
0
        offset ^= 4;
137
0
    }
138
0
    return 0;
139
0
}
140
static int
141
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
142
73.0k
{
143
73.0k
    SETUP_SAMPLES(16, n * 2);
144
146k
    for (i = 0; i < n; ++i) {
145
73.4k
        samples[i] = (*p << 8) + p[1];
146
73.4k
        p += 2;
147
73.4k
    }
148
73.0k
    return 0;
149
73.0k
}
150
static int
151
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
152
0
{
153
0
    SETUP_SAMPLES(24, n * 3);
154
0
    for (i = 0; i < n; ++i) {
155
0
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
156
0
        p += 3;
157
0
    }
158
0
    return 0;
159
0
}
160
static int
161
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
162
0
{
163
0
    SETUP_SAMPLES(32, n * 4);
164
0
    for (i = 0; i < n; ++i) {
165
0
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
166
0
        p += 4;
167
0
    }
168
0
    return 0;
169
0
}
170
171
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
172
                                       ulong offset, uint * samples) =
173
{
174
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
175
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
176
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
177
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
178
        fn_gets_32
179
};
180
181
/*
182
 * Compute a value by cubic interpolation.
183
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
184
 * The formula is derived from those presented in
185
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
186
 * (thanks to Raph Levien for the reference).
187
 */
188
static double
189
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
190
0
{
191
    /*
192
     * The parameter 'a' affects the contribution of the high-frequency
193
     * components.  The abovementioned source suggests a = -0.5.
194
     */
195
0
#define a (-0.5)
196
0
#define SQR(v) ((v) * (v))
197
0
#define CUBE(v) ((v) * (v) * (v))
198
0
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
199
0
    const double c =
200
0
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
201
0
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
202
0
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
203
0
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
204
205
0
    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
206
0
              f0, f1, f2, f3, x, c);
207
0
    return c;
208
0
#undef a
209
0
#undef SQR
210
0
#undef CUBE
211
0
}
212
213
/*
214
 * Compute a value by quadratic interpolation.
215
 * f[] = f(0), f(1), f(2); 0 < x < 1.
216
 *
217
 * We used to use a quadratic formula for this, derived from
218
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
219
 * match what we believe is Acrobat Reader's behavior.
220
 */
221
static inline double
222
interpolate_quadratic(double x, double f0, double f1, double f2)
223
0
{
224
0
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
225
0
}
226
227
/* Calculate a result by multicubic interpolation. */
228
static void
229
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
230
                     const int *iparts, const ulong *factors,
231
                     float *samples, ulong offset, int m)
232
0
{
233
0
    int j;
234
235
0
top:
236
0
    if (m == 0) {
237
0
        uint sdata[max_Sd_n];
238
239
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
240
0
        for (j = pfn->params.n - 1; j >= 0; --j)
241
0
            samples[j] = (float)sdata[j];
242
0
    } else {
243
0
        float fpart = *fparts++;
244
0
        int ipart = *iparts++;
245
0
        ulong delta = *factors++;
246
0
        int size = pfn->params.Size[pfn->params.m - m];
247
0
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
248
249
0
        --m;
250
0
        if (is_fzero(fpart))
251
0
            goto top;
252
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
253
0
                             offset, m);
254
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
255
0
                             offset + delta, m);
256
        /* Ensure we don't try to access out of bounds. */
257
        /*
258
         * If size == 1, the only possible value for ipart and fpart is
259
         * 0, so we've already handled this case.
260
         */
261
0
        if (size == 2) { /* ipart = 0 */
262
            /* Use linear interpolation. */
263
0
            for (j = pfn->params.n - 1; j >= 0; --j)
264
0
                samples[j] += (samples1[j] - samples[j]) * fpart;
265
0
            return;
266
0
        }
267
0
        if (ipart == 0) {
268
            /* Use quadratic interpolation. */
269
0
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
270
0
                                 samples2, offset + delta * 2, m);
271
0
            for (j = pfn->params.n - 1; j >= 0; --j)
272
0
                samples[j] =
273
0
                    interpolate_quadratic(fpart, samples[j],
274
0
                                          samples1[j], samples2[j]);
275
0
            return;
276
0
        }
277
        /* At this point we know ipart > 0, size >= 3. */
278
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
279
0
                             offset - delta, m);
280
0
        if (ipart == size - 2) {
281
            /* Use quadratic interpolation. */
282
0
            for (j = pfn->params.n - 1; j >= 0; --j)
283
0
                samples[j] =
284
0
                    interpolate_quadratic(1 - fpart, samples1[j],
285
0
                                          samples[j], samplesm1[j]);
286
0
            return;
287
0
        }
288
        /* Now we know 0 < ipart < size - 2, size > 3. */
289
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
290
0
                             samples2, offset + delta * 2, m);
291
0
        for (j = pfn->params.n - 1; j >= 0; --j)
292
0
            samples[j] =
293
0
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
294
0
                                  samples1[j], samples2[j]);
295
0
    }
296
0
}
297
298
/* Calculate a result by multilinear interpolation. */
299
static void
300
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
301
                 const ulong *factors, float *samples, ulong offset, int m)
302
15.9M
{
303
15.9M
    int j;
304
305
16.3M
top:
306
16.3M
    if (m == 0) {
307
10.7M
        uint sdata[max_Sd_n];
308
309
10.7M
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
310
37.5M
        for (j = pfn->params.n - 1; j >= 0; --j)
311
26.7M
            samples[j] = (float)sdata[j];
312
10.7M
    } else {
313
5.59M
        float fpart = *fparts++;
314
5.59M
        float samples1[max_Sd_n];
315
316
5.59M
        if (is_fzero(fpart)) {
317
430k
            ++factors;
318
430k
            --m;
319
430k
            goto top;
320
430k
        }
321
5.16M
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
322
5.16M
                              offset, m - 1);
323
5.16M
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
324
5.16M
                              offset + *factors, m - 1);
325
18.0M
        for (j = pfn->params.n - 1; j >= 0; --j)
326
12.9M
            samples[j] += (samples1[j] - samples[j]) * fpart;
327
5.16M
    }
328
16.3M
}
329
330
static inline double
331
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
332
74.3M
{
333
74.3M
    float d0, d1, r0, r1;
334
74.3M
    double value;
335
74.3M
    int bps = pfn->params.BitsPerSample;
336
    /* x86 machines have problems with shifts if bps >= 32 */
337
74.3M
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
338
339
74.3M
    if (pfn->params.Range)
340
74.3M
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
341
0
    else
342
0
        r0 = 0, r1 = (float)max_samp;
343
74.3M
    if (pfn->params.Decode)
344
44.2M
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
345
30.1M
    else
346
30.1M
        d0 = r0, d1 = r1;
347
348
74.3M
    value = sample * (d1 - d0) / max_samp + d0;
349
74.3M
    if (value < r0)
350
0
        value = r0;
351
74.3M
    else if (value > r1)
352
0
        value = r1;
353
74.3M
    return value;
354
74.3M
}
355
356
/* Evaluate a Sampled function. */
357
/* A generic algorithm with a recursion by dimentions. */
358
static int
359
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
360
5.59M
{
361
5.59M
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
362
5.59M
    int bps = pfn->params.BitsPerSample;
363
5.59M
    ulong offset = 0;
364
5.59M
    int i;
365
5.59M
    float encoded[max_Sd_m];
366
5.59M
    int iparts[max_Sd_m]; /* only needed for cubic interpolation */
367
5.59M
    ulong factors[max_Sd_m];
368
5.59M
    float samples[max_Sd_n];
369
370
    /* Encode the input values. */
371
372
11.1M
    for (i = 0; i < pfn->params.m; ++i) {
373
5.59M
        float d0 = pfn->params.Domain[2 * i],
374
5.59M
            d1 = pfn->params.Domain[2 * i + 1];
375
5.59M
        float arg = in[i], enc;
376
377
5.59M
        if (arg < d0)
378
45
            arg = d0;
379
5.59M
        else if (arg > d1)
380
20
            arg = d1;
381
5.59M
        if (pfn->params.Encode) {
382
4.10M
            float e0 = pfn->params.Encode[2 * i];
383
4.10M
            float e1 = pfn->params.Encode[2 * i + 1];
384
385
4.10M
            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
386
4.10M
            if (enc < 0)
387
0
                encoded[i] = 0;
388
4.10M
            else if (enc >= pfn->params.Size[i] - 1)
389
126k
                encoded[i] = (float)pfn->params.Size[i] - 1;
390
3.97M
            else
391
3.97M
                encoded[i] = enc;
392
4.10M
        } else {
393
            /* arg is guaranteed to be in bounds, ergo so is enc */
394
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
395
1.49M
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
396
1.49M
        }
397
5.59M
    }
398
399
    /* Look up and interpolate the output values. */
400
401
5.59M
    {
402
5.59M
        ulong factor = (ulong)bps * pfn->params.n;
403
404
11.1M
        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
405
5.59M
            int ipart = (int)encoded[i];
406
407
5.59M
            offset += (factors[i] = factor) * ipart;
408
5.59M
            iparts[i] = ipart;  /* only needed for cubic interpolation */
409
5.59M
            encoded[i] -= ipart;
410
5.59M
        }
411
5.59M
    }
412
5.59M
    if (pfn->params.Order == 3)
413
0
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
414
0
                             offset, pfn->params.m);
415
5.59M
    else
416
5.59M
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
417
5.59M
                              pfn->params.m);
418
419
    /* Encode the output values. */
420
421
19.4M
    for (i = 0; i < pfn->params.n; ++i)
422
13.8M
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
423
424
5.59M
    return 0;
425
5.59M
}
426
427
static const double double_stub = 1e90;
428
429
static inline void
430
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
431
            const int pole_step_minor)
432
0
{   /* The following is poles of the polinomial,
433
       which represents interpolate_cubic in [1,2]. */
434
0
    const double a = -0.5;
435
436
0
    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
437
0
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
438
0
}
439
440
static void
441
fn_make_poles(double *p, const int pole_step, int power, int bias)
442
0
{
443
0
    const int pole_step_minor = pole_step / 3;
444
0
    switch(power) {
445
0
        case 1: /* A linear 3d power curve. */
446
            /* bias must be 0. */
447
0
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
448
0
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
449
0
            break;
450
0
        case 2:
451
            /* bias may be be 0 or 1. */
452
            /* Duplicate the beginning or the ending pole (the old code compatible). */
453
0
            fn_make_cubic_poles(p + pole_step * bias,
454
0
                    p[pole_step * 0], p[pole_step * bias],
455
0
                    p[pole_step * (1 + bias)], p[pole_step * 2],
456
0
                    pole_step_minor);
457
0
            break;
458
0
        case 3:
459
            /* bias must be 1. */
460
0
            fn_make_cubic_poles(p + pole_step * bias,
461
0
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
462
0
                    pole_step_minor);
463
0
            break;
464
0
        default: /* Must not happen. */
465
0
           DO_NOTHING;
466
0
    }
467
0
}
468
469
/* Evaluate a Sampled function.
470
   A cubic interpolation with a pole cache.
471
   Allows a fast check for extreme suspection. */
472
/* This implementation is a particular case of 1 dimension.
473
   maybe we'll use as an optimisation of the generic case,
474
   so keep it for a while. */
475
static int
476
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
477
0
{
478
0
    float d0 = pfn->params.Domain[2 * 0];
479
0
    float d1 = pfn->params.Domain[2 * 0 + 1];
480
0
    const int pole_step_minor = pfn->params.n;
481
0
    const int pole_step = 3 * pole_step_minor;
482
0
    int i0; /* A cell index. */
483
0
    int ib, ie, i, k;
484
0
    double *p, t0, t1, tt;
485
0
486
0
    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
487
0
    i0 = (int)floor(tt);
488
0
    ib = max(i0 - 1, 0);
489
0
    ie = min(pfn->params.Size[0], i0 + 3);
490
0
    for (i = ib; i < ie; i++) {
491
0
        if (pfn->params.pole[i * pole_step] == double_stub) {
492
0
            uint sdata[max_Sd_n];
493
0
            int bps = pfn->params.BitsPerSample;
494
0
495
0
            p = &pfn->params.pole[i * pole_step];
496
0
            fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
497
0
            for (k = 0; k < pfn->params.n; k++, p++)
498
0
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
499
0
        }
500
0
    }
501
0
    p = &pfn->params.pole[i0 * pole_step];
502
0
    t0 = tt - i0;
503
0
    if (t0 == 0) {
504
0
        for (k = 0; k < pfn->params.n; k++, p++)
505
0
            out[k] = *p;
506
0
    } else {
507
0
        if (p[1 * pole_step_minor] == double_stub) {
508
0
            for (k = 0; k < pfn->params.n; k++)
509
0
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
510
0
                        ie - ib - 1, i0 - ib);
511
0
        }
512
0
        t1 = 1 - t0;
513
0
        for (k = 0; k < pfn->params.n; k++, p++) {
514
0
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
515
0
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
516
0
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
517
0
                       p[3 * pole_step_minor] * t0 * t0 * t0;
518
0
            if (y < pfn->params.Range[0])
519
0
                y = pfn->params.Range[0];
520
0
            if (y > pfn->params.Range[1])
521
0
                y = pfn->params.Range[1];
522
0
            out[k] = y;
523
0
        }
524
0
    }
525
0
    return 0;
526
0
}
527
528
static inline void
529
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
530
179
{
531
179
    int i;
532
533
358
    for (i = 0; i < pfn->params.m; i++) {
534
179
        float xi = in[i];
535
179
        float d0 = pfn->params.Domain[2 * i + 0];
536
179
        float d1 = pfn->params.Domain[2 * i + 1];
537
179
        double t;
538
539
179
        if (xi < d0)
540
0
            xi = d0;
541
179
        if (xi > d1)
542
0
            xi = d1;
543
179
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
544
179
        I[i] = (int)floor(t);
545
179
        T[i] = t - I[i];
546
179
    }
547
179
}
548
549
static inline void
550
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
551
179
{
552
179
    *Ii = I[ii];
553
179
    if (T[ii] != 0) {
554
0
        *ib = max(*Ii - 1, 0);
555
0
        *ie = min(pfn->params.Size[ii], *Ii + 3);
556
179
    } else {
557
179
        *ib = *Ii;
558
179
        *ie = *Ii + 1;
559
179
    }
560
179
}
561
562
static inline int
563
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
564
39.1M
{
565
39.1M
    uint sdata[max_Sd_n];
566
39.1M
    int k, code;
567
568
39.1M
    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
569
39.1M
    if (code < 0)
570
0
        return code;
571
99.6M
    for (k = 0; k < pfn->params.n; k++)
572
60.4M
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
573
39.1M
    return 0;
574
39.1M
}
575
576
static inline int
577
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
578
134
{
579
134
    if (*(pfn->params.pole + a_offset) == double_stub) {
580
134
        uint sdata[max_Sd_n];
581
134
        int k, code;
582
583
134
        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
584
134
        if (code < 0)
585
0
            return code;
586
670
        for (k = 0; k < pfn->params.n; k++)
587
536
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
588
134
    }
589
134
    return 0;
590
134
}
591
592
static inline void
593
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
594
0
{
595
0
    int k;
596
597
0
    for (k = 0; k < pfn->params.n; k++)
598
0
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
599
0
}
600
601
static inline void
602
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
603
        int offset, int pole_step, int power, int bias, int ii)
604
0
{
605
0
    if (ii < 0)
606
0
        interpolate_vector(pfn, offset, pole_step, power, bias);
607
0
    else {
608
0
        int s = pfn->params.array_step[ii];
609
0
        int Ii = I[ii];
610
611
0
        if (T[ii] == 0) {
612
0
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
613
0
        } else {
614
0
            int l;
615
616
0
            for (l = 0; l < 4; l++)
617
0
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
618
0
        }
619
0
    }
620
0
}
621
622
static inline bool
623
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
624
179
{
625
    /* Check an inner pole of the cell. */
626
179
    int i, o = 0;
627
628
358
    for (i = ii; i >= 0; i--) {
629
179
        o += I[i] * pfn->params.array_step[i];
630
179
        if (T[i] != 0)
631
0
            o += pfn->params.array_step[i] / 3;
632
179
    }
633
179
    if (*(pfn->params.pole + a_offset + o) != double_stub)
634
45
        return true;
635
134
    return false;
636
179
}
637
638
/* Creates a tensor of Bezier coefficients by node interpolation. */
639
static inline int
640
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
641
                            int a_offset, int s_offset, int ii)
642
313
{
643
    /* Well, this function isn't obvious. Trying to explain what it does.
644
645
       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
646
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
647
       We represent the multicubic function with a tensor of Besier poles,
648
       and the size of the tensor is 4x4x....x4. Note that the corners
649
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.
650
651
       We organize the 'pole' array so that a tensor of a cell
652
       occupies the cell, and tensors for neighbour cells have a common hyperplane.
653
654
       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
655
       It defines 3 cells n0...n1, n1...n2, n2...n3.
656
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
657
       We choose a cubic approximation, in which tangents at nodes n1, n2
658
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
659
       (Well, this doesn't give a the minimal curvity, but likely it is
660
       what Adobe implementations do, see the bug 687352,
661
       and we agree that it's some reasonable).
662
663
       Then we have :
664
665
       q11 = n0
666
       q12 = (n0/2 + 3*n1 - n2/2)/3;
667
       q11 = (n1/2 + 3*n2 - n3/2)/3;
668
       q13 = n2
669
670
       When the source node array have an insufficient nomber of nodes
671
       along a dimension to determine tangents a cell
672
       (this happens near the array boundaries),
673
       we simply duplicate ending nodes. This solution is done
674
       for the compatibility to the old code, and definitely
675
       there exists a better one. Likely Adobe does the same.
676
677
       For a 2-dimensional case we apply the 1-dimentional case through
678
       the first dimension, and then construct a surface by varying the
679
       second coordinate as a parameter. It gives a bicubic surface,
680
       and the result doesn't depend on the order of coordinates
681
       (I proved the latter with Matematica 3.0).
682
       Then we know that an interpolation by one coordinate and
683
       a differentiation by another coordinate are interchangeble operators.
684
       Due to that poles of the interpolated function are same as
685
       interpolated poles of the function (well, we didn't spend time
686
       for a strong proof, but this fact was confirmed with testing the
687
       implementation with POLE_CACHE_DEBUG).
688
689
       Then we apply the 2-dimentional considerations recursively
690
       to all dimensions. This is exactly what the function does.
691
692
     */
693
313
    int code;
694
695
313
    if (ii < 0) {
696
134
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
697
134
            code = load_vector(pfn, a_offset, s_offset);
698
134
            if (code < 0)
699
0
                return code;
700
134
        }
701
179
    } else {
702
179
        int Ii, ib, ie, i;
703
179
        int sa = pfn->params.array_step[ii];
704
179
        int ss = pfn->params.stream_step[ii];
705
706
179
        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
707
179
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
708
268
            for (i = ib; i < ie; i++) {
709
134
                code = make_interpolation_tensor(pfn, I, T,
710
134
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
711
134
                if (code < 0)
712
0
                    return code;
713
134
            }
714
134
            if (T[ii] != 0)
715
0
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
716
0
                                Ii - ib, ii - 1);
717
134
        }
718
179
    }
719
313
    return 0;
720
313
}
721
722
/* Creates a subarray of samples. */
723
static inline int
724
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
725
                            int *I, double *T,
726
                            int a_offset, int s_offset, int ii)
727
0
{
728
0
    int code;
729
730
0
    if (ii < 0) {
731
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
732
0
            code = load_vector(pfn, a_offset, s_offset);
733
0
            if (code < 0)
734
0
                return code;
735
0
        }
736
0
        if (pfn->params.Order == 3) {
737
0
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
738
0
            if (code < 0)
739
0
                return code;
740
0
        }
741
0
    } else {
742
0
        int i;
743
0
        int i0 = (int)floor(T0[ii]);
744
0
        int i1 = (int)ceil(T1[ii]);
745
0
        int sa = pfn->params.array_step[ii];
746
0
        int ss = pfn->params.stream_step[ii];
747
748
0
        if (i0 < 0 || i0 >= pfn->params.Size[ii])
749
0
            return_error(gs_error_unregistered); /* Must not happen. */
750
0
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
0
        I[ii] = i0;
753
0
        T[ii] = (i1 > i0 ? 1 : 0);
754
0
        for (i = i0; i <= i1; i++) {
755
0
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
756
0
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
757
0
            if (code < 0)
758
0
                return code;
759
0
        }
760
0
    }
761
0
    return 0;
762
0
}
763
764
static inline int
765
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
766
358
{
767
358
    int s = pfn->params.array_step[ii], k, l, code;
768
769
358
    if (ii < 0) {
770
895
        for (k = 0; k < pfn->params.n; k++)
771
716
            y[k] = *(pfn->params.pole + offset + k);
772
179
    } else if (T[ii] == 0) {
773
179
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
774
179
    } else {
775
0
        double t0 = T[ii], t1 = 1 - t0;
776
0
        double p[4][max_Sd_n];
777
778
0
        for (l = 0; l < 4; l++) {
779
0
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
780
0
            if (code < 0)
781
0
                return code;
782
0
        }
783
0
        for (k = 0; k < pfn->params.n; k++)
784
0
            y[k] = p[0][k] * t1 * t1 * t1 +
785
0
                   p[1][k] * t1 * t1 * t0 * 3 +
786
0
                   p[2][k] * t1 * t0 * t0 * 3 +
787
0
           p[3][k] * t0 * t0 * t0;
788
0
    }
789
179
    return 0;
790
358
}
791
792
/* Evaluate a Sampled function. */
793
/* A cubic interpolation with pole cache. */
794
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
795
static int
796
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
797
179
{
798
179
    double T[max_Sd_m], y[max_Sd_n];
799
179
    int I[max_Sd_m], k, code;
800
801
179
    decode_argument(pfn, in, T, I);
802
179
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
803
179
    if (code < 0)
804
0
        return code;
805
179
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
806
895
    for (k = 0; k < pfn->params.n; k++) {
807
716
        double yk = y[k];
808
809
716
        if (yk < pfn->params.Range[k * 2 + 0])
810
0
            yk = pfn->params.Range[k * 2 + 0];
811
716
        if (yk > pfn->params.Range[k * 2 + 1])
812
0
            yk = pfn->params.Range[k * 2 + 1];
813
716
        out[k] = yk;
814
716
    }
815
179
    return 0;
816
179
}
817
818
/* Evaluate a Sampled function. */
819
static int
820
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
821
5.59M
{
822
5.59M
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
823
5.59M
    int code;
824
825
5.59M
    if (pfn->params.Order == 3) {
826
179
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
827
179
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
828
0
        else
829
0
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
830
# if POLE_CACHE_DEBUG
831
        {   float y[max_Sd_n];
832
            int k, code1;
833
834
            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
835
            if (code != code1)
836
                return_error(gs_error_unregistered); /* Must not happen. */
837
            for (k = 0; k < pfn->params.n; k++) {
838
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
839
                    return_error(gs_error_unregistered); /* Must not happen. */
840
            }
841
        }
842
# endif
843
179
    } else
844
5.59M
        code = fn_Sd_evaluate_general(pfn_common, in, out);
845
5.59M
    return code;
846
5.59M
}
847
848
/* Map a function subdomain to the sample index subdomain. */
849
static inline int
850
get_scaled_range(const gs_function_Sd_t *const pfn,
851
                   const float *lower, const float *upper,
852
                   int i, float *pw0, float *pw1)
853
89.0k
{
854
89.0k
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
855
89.0k
    float v0 = lower[i], v1 = upper[i];
856
89.0k
    float e0, e1, w0, w1, w;
857
89.0k
    const float small_noise = (float)1e-6;
858
859
89.0k
    if (v0 < d0 || v0 > d1)
860
18
        return_error(gs_error_rangecheck);
861
89.0k
    if (pfn->params.Encode)
862
58.7k
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
863
30.3k
    else
864
30.3k
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
865
89.0k
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
866
89.0k
    if (w0 < 0)
867
0
        w0 = 0;
868
89.0k
    else if (w0 >= pfn->params.Size[i] - 1)
869
19.1k
        w0 = (float)pfn->params.Size[i] - 1;
870
89.0k
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
871
89.0k
    if (w1 < 0)
872
0
        w1 = 0;
873
89.0k
    else if (w1 >= pfn->params.Size[i] - 1)
874
32.5k
        w1 = (float)pfn->params.Size[i] - 1;
875
89.0k
    if (w0 > w1) {
876
3.68k
        w = w0; w0 = w1; w1 = w;
877
3.68k
    }
878
89.0k
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
879
156
        w0 = (floor(w0) + 1);
880
89.0k
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
881
53.6k
        w1 = floor(w1);
882
89.0k
    if (w0 > w1)
883
94
        w0 = w1;
884
89.0k
    *pw0 = w0;
885
89.0k
    *pw1 = w1;
886
89.0k
    return 0;
887
89.0k
}
888
889
/* Copy a tensor to a differently indexed pole array. */
890
static int
891
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
892
                int ii, double *pole, int p_offset, int pole_step)
893
0
{
894
0
    int i, ei, sa, code;
895
0
    int order = pfn->params.Order;
896
897
0
    if (pole_step <= 0)
898
0
        return_error(gs_error_limitcheck); /* Too small buffer. */
899
0
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
900
0
    sa = pfn->params.array_step[ii];
901
0
    if (ii == 0) {
902
0
        for (i = 0; i < ei; i++)
903
0
            *(pole + p_offset + i * pole_step) =
904
0
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
905
0
    } else {
906
0
        for (i = 0; i < ei; i++) {
907
0
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
908
0
                            pole, p_offset + i * pole_step, pole_step / 4);
909
0
            if (code < 0)
910
0
                return code;
911
0
        }
912
0
    }
913
0
    return 0;
914
0
}
915
916
static inline void
917
subcurve(double *pole, int pole_step, double t0, double t1)
918
0
{
919
    /* Generated with subcurve.nb using Mathematica 3.0. */
920
0
    double q0 = pole[pole_step * 0];
921
0
    double q1 = pole[pole_step * 1];
922
0
    double q2 = pole[pole_step * 2];
923
0
    double q3 = pole[pole_step * 3];
924
0
    double t01 = t0 - 1, t11 = t1 - 1;
925
0
    double small = 1e-13;
926
927
0
#define Power2(a) (a) * (a)
928
0
#define Power3(a) (a) * (a) * (a)
929
0
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
930
0
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
931
0
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
932
0
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
933
0
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
934
0
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
935
0
                            3*q1*Power2(t11)) - q0*Power3(t11);
936
0
#undef Power2
937
0
#undef Power3
938
0
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
939
0
        pole[pole_step * 1] = pole[pole_step * 0];
940
0
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
941
0
        pole[pole_step * 2] = pole[pole_step * 3];
942
0
}
943
944
static inline void
945
subline(double *pole, int pole_step, double t0, double t1)
946
0
{
947
0
    double q0 = pole[pole_step * 0];
948
0
    double q1 = pole[pole_step * 1];
949
950
0
    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
951
0
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
952
0
}
953
954
static void
955
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
956
                int p_offset, int pole_step, int pole_step_i, int order)
957
0
{
958
0
    if (ii < 0) {
959
0
        if (order == 3)
960
0
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
961
0
        else
962
0
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
963
0
    } else if (i == ii) {
964
0
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
965
0
    } else {
966
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
967
968
0
        for (j = 0; j < ei; j++)
969
0
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
970
0
                            pole_step / 4, pole_step_i, order);
971
0
    }
972
0
}
973
974
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
975
curve_monotonity(double *pole, int pole_step)
976
0
{
977
0
    double p0 = pole[pole_step * 0];
978
0
    double p1 = pole[pole_step * 1];
979
0
    double p2 = pole[pole_step * 2];
980
0
    double p3 = pole[pole_step * 3];
981
982
0
    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
983
0
        return 0;
984
0
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
985
0
        return 1;
986
0
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
987
0
        return 2;
988
    /* Maybe not monotonic.
989
       Don't want to solve quadratic equations, so return "don't know".
990
       This case should be rare.
991
     */
992
0
    return 3;
993
0
}
994
995
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
996
line_monotonity(double *pole, int pole_step)
997
0
{
998
0
    double p0 = pole[pole_step * 0];
999
0
    double p1 = pole[pole_step * 1];
1000
1001
0
    if (p1 - p0 > 1e-13)
1002
0
        return 1;
1003
0
    if (p0 - p1 > 1e-13)
1004
0
        return 2;
1005
0
    return 0;
1006
0
}
1007
1008
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
1009
                    2 - decreesing, 0 - constant, 1 - increasing.
1010
                    The number of guides is order+1. */
1011
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
1012
                int p_offset, int pole_step, int pole_step_i, int order)
1013
0
{
1014
0
    if (ii < 0) {
1015
0
        if (order == 3)
1016
0
            return curve_monotonity(pole + p_offset, pole_step_i);
1017
0
        else
1018
0
            return line_monotonity(pole + p_offset, pole_step_i);
1019
0
    } else if (i0 == ii) {
1020
        /* Delay the dimension till the end, and adjust pole_step. */
1021
0
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
1022
0
                            pole_step / 4, pole_step, order);
1023
0
    } else {
1024
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
1025
1026
0
        for (j = 0; j < ei; j++) {
1027
0
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
1028
0
                            pole_step/ 4, pole_step_i, order);
1029
0
            m |= mm << (j * 3);
1030
0
            if (mm == 3) {
1031
                /* If one guide is not monotonic, the dimension is not monotonic.
1032
                   Can return early. */
1033
0
                break;
1034
0
            }
1035
0
        }
1036
0
        return m;
1037
0
    }
1038
0
}
1039
1040
static inline int
1041
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
1042
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
1043
                    2 - decreesing, 0 - constant, 1 - increasing.
1044
                    The number of guides is order+1. */)
1045
0
{
1046
0
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
1047
                 More arguments need a bigger buffer, but the rest of code is same. */
1048
0
    int i, code, ii = pfn->params.m - 1;
1049
0
    double TT0[3], TT1[3];
1050
1051
0
    *mask = 0;
1052
0
    if (ii >= 3) {
1053
         /* Unimplemented. We don't know practical cases,
1054
            because currently it is only called while decomposing a shading.  */
1055
0
        return_error(gs_error_limitcheck);
1056
0
    }
1057
0
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
1058
0
    if (code < 0)
1059
0
        return code;
1060
0
    for (i = ii; i >= 0; i--) {
1061
0
        TT0[i] = 0;
1062
0
        if (T0[i] != T1[i]) {
1063
0
            if (T0[i] != 0 || T1[i] != 1)
1064
0
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
1065
0
            TT1[i] = 1;
1066
0
        } else
1067
0
            TT1[i] = 0;
1068
0
    }
1069
0
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
1070
0
                        count_of(pole) / 4, 1, pfn->params.Order);
1071
0
    return 0;
1072
0
}
1073
1074
static int /* error code */
1075
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1076
        int *I, double *S0, double *S1, int ii, int i0, int k,
1077
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
1078
                      The number of guides is order+1. */)
1079
0
{
1080
0
    if (ii == -1) {
1081
        /* fixme : could cache the cell monotonity against redundant evaluation. */
1082
0
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
1083
0
    } else {
1084
0
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
1085
0
        int j, code;
1086
0
        int bi = (int)floor(T0[i1]);
1087
0
        int ei = (int)floor(T1[i1]);
1088
0
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
1089
1090
0
        if (floor(T1[i1]) == T1[i1])
1091
0
            ei --;
1092
0
        m = 0;
1093
0
        for (j = bi; j <= ei; j++) {
1094
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
1095
0
            I[i1] = j;
1096
0
            S0[i1] = max(T0[i1] - j, 0);
1097
0
            S1[i1] = min(T1[i1] - j, 1);
1098
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
1099
0
            if (code < 0)
1100
0
                return code;
1101
0
            m |= mm;
1102
0
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
1103
0
                break;
1104
0
        }
1105
0
        if (ii == 0) {
1106
            /* Detect non-monotonic guides. */
1107
0
            m = m & (m >> 1);
1108
0
        }
1109
0
        *mask = m;
1110
0
        return 0;
1111
0
    }
1112
0
}
1113
1114
static inline int /* error code */
1115
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1116
         int *I, double *S0, double *S1,
1117
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1118
                      0 - monotonic. */)
1119
0
{
1120
0
    uint m, mm = 0;
1121
0
    int i, code;
1122
1123
0
    for (i = 0; i < pfn->params.m; i++) {
1124
0
        if (T0[i] != T1[i]) {
1125
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
1126
0
            if (code < 0)
1127
0
                return code;
1128
0
            if (m)
1129
0
                mm |= 1 << i;
1130
0
        }
1131
0
    }
1132
0
    *mask = mm;
1133
0
    return 0;
1134
0
}
1135
1136
static int /* 3 bits per result : 3 - non-monotonic or don't know,
1137
               2 - decreesing, 0 - constant, 1 - increasing,
1138
               <0 - error. */
1139
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
1140
                                const double *V0, const double *V1)
1141
78.2M
{
1142
78.2M
    if (i1 - i0 <= 1) {
1143
39.1M
        int code = 0, i;
1144
1145
99.4M
        for (i = 0; i < pfn->params.n; i++) {
1146
60.3M
            if (V0[i] < V1[i])
1147
3.89M
                code |= 1 << (i * 3);
1148
56.4M
            else if (V0[i] > V1[i])
1149
3.79M
                code |= 2 << (i * 3);
1150
60.3M
        }
1151
39.1M
        return code;
1152
39.1M
    } else {
1153
39.0M
        double VV[MAX_FAST_COMPS];
1154
39.0M
        int ii = (i0 + i1) / 2, code, cod1;
1155
1156
39.0M
        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
1157
39.0M
        if (code < 0)
1158
0
            return code;
1159
39.0M
        if (code & (code >> 1))
1160
0
            return code; /* Not monotonic by some component of the result. */
1161
39.0M
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
1162
39.0M
        if (code < 0)
1163
0
            return code;
1164
39.0M
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
1165
39.0M
        if (cod1 < 0)
1166
0
            return cod1;
1167
39.0M
        return code | cod1;
1168
39.0M
    }
1169
78.2M
}
1170
1171
static int
1172
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
1173
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
1174
89.0k
{
1175
89.0k
    int i0 = (int)floor(T0);
1176
89.0k
    int i1 = (int)ceil(T1), code;
1177
89.0k
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
1178
1179
89.0k
    if (i1 - i0 > 1) {
1180
48.0k
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
1181
48.0k
        if (code < 0)
1182
0
            return code;
1183
48.0k
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
1184
48.0k
        if (code < 0)
1185
0
            return code;
1186
48.0k
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
1187
48.0k
        if (code < 0)
1188
0
            return code;
1189
48.0k
        if (code & (code >> 1)) {
1190
19.9k
            *mask = 1;
1191
19.9k
            return 0;
1192
19.9k
        }
1193
48.0k
    }
1194
69.0k
    *mask = 0;
1195
69.0k
    return 1;
1196
89.0k
}
1197
1198
0
#define DEBUG_Sd_1arg 0
1199
1200
/* Test whether a Sampled function is monotonic. */
1201
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
1202
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
1203
                   const float *lower, const float *upper,
1204
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1205
                      0 - monotonic. */)
1206
89.0k
{
1207
89.0k
    int i, code, ii = pfn->params.m - 1;
1208
89.0k
    int I[4];
1209
89.0k
    double T0[count_of(I)], T1[count_of(I)];
1210
89.0k
    double S0[count_of(I)], S1[count_of(I)];
1211
89.0k
    uint m, mm, m1;
1212
#   if DEBUG_Sd_1arg
1213
    int code1, mask1;
1214
#   endif
1215
1216
89.0k
    if (ii >= count_of(T0)) {
1217
         /* Unimplemented. We don't know practical cases,
1218
            because currently it is only called while decomposing a shading.  */
1219
0
        return_error(gs_error_limitcheck);
1220
0
    }
1221
178k
    for (i = 0; i <= ii; i++) {
1222
89.0k
        float w0, w1;
1223
1224
89.0k
        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
1225
89.0k
        if (code < 0)
1226
18
            return code;
1227
89.0k
        T0[i] = w0;
1228
89.0k
        T1[i] = w1;
1229
89.0k
    }
1230
89.0k
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
1231
89.0k
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
1232
89.0k
# if !DEBUG_Sd_1arg
1233
89.0k
            return code;
1234
# else
1235
            mask1 = *mask;
1236
            code1 = code;
1237
# endif
1238
89.0k
    }
1239
0
    m1 = (1 << pfn->params.m )- 1;
1240
0
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
1241
0
    if (code < 0)
1242
0
        return code;
1243
0
    mm = 0;
1244
0
    for (i = 0; i < pfn->params.n; i++) {
1245
0
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
1246
0
        if (code < 0)
1247
0
            return code;
1248
0
        mm |= m;
1249
0
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
1250
0
            break;
1251
0
    }
1252
#   if DEBUG_Sd_1arg
1253
        if (mask1 != mm)
1254
            return_error(gs_error_unregistered);
1255
        if (code1 != !mm)
1256
            return_error(gs_error_unregistered);
1257
#   endif
1258
0
    *mask = mm;
1259
0
    return !mm;
1260
0
}
1261
1262
/* Test whether a Sampled function is monotonic. */
1263
/* 1 = monotonic, 0 = don't know, <0 = error. */
1264
static int
1265
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
1266
                   const float *lower, const float *upper, uint *mask)
1267
89.0k
{
1268
89.0k
    const gs_function_Sd_t *const pfn =
1269
89.0k
        (const gs_function_Sd_t *)pfn_common;
1270
1271
89.0k
    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
1272
89.0k
}
1273
1274
/* Return Sampled function information. */
1275
static void
1276
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
1277
65.8k
{
1278
65.8k
    const gs_function_Sd_t *const pfn =
1279
65.8k
        (const gs_function_Sd_t *)pfn_common;
1280
65.8k
    long size;
1281
65.8k
    int i;
1282
1283
65.8k
    gs_function_get_info_default(pfn_common, pfi);
1284
65.8k
    pfi->DataSource = &pfn->params.DataSource;
1285
132k
    for (i = 0, size = 1; i < pfn->params.m; ++i)
1286
67.1k
        size *= pfn->params.Size[i];
1287
65.8k
    pfi->data_size =
1288
65.8k
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
1289
65.8k
}
1290
1291
/* Write Sampled function parameters on a parameter list. */
1292
static int
1293
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
1294
29.2k
{
1295
29.2k
    const gs_function_Sd_t *const pfn =
1296
29.2k
        (const gs_function_Sd_t *)pfn_common;
1297
29.2k
    int ecode = fn_common_get_params(pfn_common, plist);
1298
29.2k
    int code;
1299
1300
29.2k
    if (pfn->params.Order != 1) {
1301
20
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
1302
0
            ecode = code;
1303
20
    }
1304
29.2k
    if ((code = param_write_int(plist, "BitsPerSample",
1305
29.2k
                                &pfn->params.BitsPerSample)) < 0)
1306
0
        ecode = code;
1307
29.2k
    if (pfn->params.Encode) {
1308
1.41k
        if ((code = param_write_float_values(plist, "Encode",
1309
1.41k
                                             pfn->params.Encode,
1310
1.41k
                                             2 * pfn->params.m, false)) < 0)
1311
0
            ecode = code;
1312
1.41k
    }
1313
29.2k
    if (pfn->params.Decode) {
1314
10.7k
        if ((code = param_write_float_values(plist, "Decode",
1315
10.7k
                                             pfn->params.Decode,
1316
10.7k
                                             2 * pfn->params.n, false)) < 0)
1317
0
            ecode = code;
1318
10.7k
    }
1319
29.2k
    if (pfn->params.Size) {
1320
29.2k
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
1321
29.2k
                                           pfn->params.m, false)) < 0)
1322
0
            ecode = code;
1323
29.2k
    }
1324
29.2k
    return ecode;
1325
29.2k
}
1326
1327
/* Make a scaled copy of a Sampled function. */
1328
static int
1329
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
1330
                  const gs_range_t *pranges, gs_memory_t *mem)
1331
0
{
1332
0
    gs_function_Sd_t *psfn =
1333
0
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1334
0
                        "fn_Sd_make_scaled");
1335
0
    int code;
1336
1337
0
    if (psfn == 0)
1338
0
        return_error(gs_error_VMerror);
1339
0
    psfn->params = pfn->params;
1340
0
    psfn->params.Encode = 0;    /* in case of failure */
1341
0
    psfn->params.Decode = 0;
1342
0
    psfn->params.Size =
1343
0
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
1344
0
    if ((code = (psfn->params.Size == 0 ?
1345
0
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
1346
0
        (code = fn_common_scale((gs_function_t *)psfn,
1347
0
                                (const gs_function_t *)pfn,
1348
0
                                pranges, mem)) < 0 ||
1349
0
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
1350
0
                               pfn->params.m, NULL, mem)) < 0 ||
1351
0
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
1352
0
                               pfn->params.n, pranges, mem)) < 0) {
1353
0
        gs_function_free((gs_function_t *)psfn, true, mem);
1354
0
    } else
1355
0
        *ppsfn = psfn;
1356
0
    return code;
1357
0
}
1358
1359
/* Free the parameters of a Sampled function. */
1360
void
1361
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
1362
54.9k
{
1363
54.9k
    gs_free_const_object(mem, params->Size, "Size");
1364
54.9k
    params->Size = NULL;
1365
54.9k
    gs_free_const_object(mem, params->Decode, "Decode");
1366
54.9k
    params->Decode = NULL;
1367
54.9k
    gs_free_const_object(mem, params->Encode, "Encode");
1368
54.9k
    params->Encode = NULL;
1369
54.9k
    fn_common_free_params((gs_function_params_t *) params, mem);
1370
54.9k
    if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
1371
49.9k
        s_close_filters(&params->DataSource.data.strm, params->DataSource.data.strm->strm);
1372
49.9k
        params->DataSource.data.strm = NULL;
1373
49.9k
    }
1374
54.9k
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
1375
54.9k
    params->pole = NULL;
1376
54.9k
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
1377
54.9k
    params->array_step = NULL;
1378
54.9k
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
1379
54.9k
    params->stream_step = NULL;
1380
54.9k
}
1381
1382
/* aA helper for gs_function_Sd_serialize. */
1383
static int serialize_array(const float *a, int half_size, stream *s)
1384
73.0k
{
1385
73.0k
    uint n;
1386
73.0k
    const float dummy[2] = {0, 0};
1387
73.0k
    int i, code;
1388
1389
73.0k
    if (a != NULL)
1390
37.2k
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
1391
125k
    for (i = 0; i < half_size; i++) {
1392
89.6k
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
1393
89.6k
        if (code < 0)
1394
0
            return code;
1395
89.6k
    }
1396
35.8k
    return 0;
1397
35.8k
}
1398
1399
/* Serialize. */
1400
static int
1401
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
1402
36.5k
{
1403
36.5k
    uint n;
1404
36.5k
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
1405
36.5k
    gs_function_info_t info;
1406
36.5k
    int code = fn_common_serialize(pfn, s);
1407
36.5k
    ulong pos;
1408
36.5k
    uint count;
1409
36.5k
    byte buf[100];
1410
36.5k
    const byte *ptr;
1411
1412
36.5k
    if (code < 0)
1413
0
        return code;
1414
36.5k
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
1415
36.5k
    if (code < 0)
1416
0
        return code;
1417
36.5k
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
1418
36.5k
    if (code < 0)
1419
0
        return code;
1420
36.5k
    code = serialize_array(p->Encode, p->m, s);
1421
36.5k
    if (code < 0)
1422
0
        return code;
1423
36.5k
    code = serialize_array(p->Decode, p->n, s);
1424
36.5k
    if (code < 0)
1425
0
        return code;
1426
36.5k
    gs_function_get_info(pfn, &info);
1427
36.5k
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
1428
36.5k
    if (code < 0)
1429
0
        return code;
1430
398k
    for (pos = 0; pos < info.data_size; pos += count) {
1431
362k
        count = min(sizeof(buf), info.data_size - pos);
1432
362k
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
1433
362k
        code = sputs(s, ptr, count, &n);
1434
362k
        if (code < 0)
1435
0
            return code;
1436
362k
    }
1437
36.5k
    return 0;
1438
36.5k
}
1439
1440
/* Allocate and initialize a Sampled function. */
1441
int
1442
gs_function_Sd_init(gs_function_t ** ppfn,
1443
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
1444
70.7k
{
1445
70.7k
    static const gs_function_head_t function_Sd_head = {
1446
70.7k
        function_type_Sampled,
1447
70.7k
        {
1448
70.7k
            (fn_evaluate_proc_t) fn_Sd_evaluate,
1449
70.7k
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
1450
70.7k
            (fn_get_info_proc_t) fn_Sd_get_info,
1451
70.7k
            (fn_get_params_proc_t) fn_Sd_get_params,
1452
70.7k
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
1453
70.7k
            (fn_free_params_proc_t) gs_function_Sd_free_params,
1454
70.7k
            fn_common_free,
1455
70.7k
            (fn_serialize_proc_t) gs_function_Sd_serialize,
1456
70.7k
        }
1457
70.7k
    };
1458
70.7k
    int code;
1459
70.7k
    int i;
1460
1461
70.7k
    *ppfn = 0;      /* in case of error */
1462
70.7k
    code = fn_check_mnDR((const gs_function_params_t *)params,
1463
70.7k
                         params->m, params->n);
1464
70.7k
    if (code < 0)
1465
24
        return code;
1466
70.7k
    if (params->m > max_Sd_m)
1467
0
        return_error(gs_error_limitcheck);
1468
70.7k
    switch (params->Order) {
1469
1.15k
        case 0:   /* use default */
1470
70.3k
        case 1:
1471
70.7k
        case 3:
1472
70.7k
            break;
1473
0
        default:
1474
0
            return_error(gs_error_rangecheck);
1475
70.7k
    }
1476
70.7k
    switch (params->BitsPerSample) {
1477
0
        case 1:
1478
0
        case 2:
1479
0
        case 4:
1480
68.5k
        case 8:
1481
68.5k
        case 12:
1482
70.3k
        case 16:
1483
70.3k
        case 24:
1484
70.3k
        case 32:
1485
70.3k
            break;
1486
434
        default:
1487
434
            return_error(gs_error_rangecheck);
1488
70.7k
    }
1489
142k
    for (i = 0; i < params->m; ++i)
1490
72.0k
        if (params->Size[i] <= 0)
1491
0
            return_error(gs_error_rangecheck);
1492
70.3k
    {
1493
70.3k
        gs_function_Sd_t *pfn =
1494
70.3k
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1495
70.3k
                            "gs_function_Sd_init");
1496
70.3k
        int bps, sa, ss, i, order, was;
1497
1498
70.3k
        if (pfn == 0)
1499
0
            return_error(gs_error_VMerror);
1500
70.3k
        pfn->params = *params;
1501
70.3k
        if (params->Order == 0)
1502
1.15k
            pfn->params.Order = 1; /* default */
1503
70.3k
        pfn->params.pole = NULL;
1504
70.3k
        pfn->params.array_step = NULL;
1505
70.3k
        pfn->params.stream_step = NULL;
1506
70.3k
        pfn->head = function_Sd_head;
1507
70.3k
        pfn->params.array_size = 0;
1508
70.3k
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
1509
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
1510
68.4k
        } else {
1511
1.88k
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
1512
1.88k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1513
1.88k
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
1514
1.88k
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1515
1.88k
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
1516
0
                return_error(gs_error_VMerror);
1517
1.88k
            bps = pfn->params.BitsPerSample;
1518
1.88k
            sa = pfn->params.n;
1519
1.88k
            ss = pfn->params.n * bps;
1520
1.88k
            order = pfn->params.Order;
1521
5.49k
            for (i = 0; i < pfn->params.m; i++) {
1522
3.61k
                pfn->params.array_step[i] = sa * order;
1523
3.61k
                was = sa;
1524
3.61k
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
1525
                /* If the calculation of sa went backwards then we overflowed! */
1526
3.61k
                if (was > sa)
1527
0
                    return_error(gs_error_VMerror);
1528
3.61k
                pfn->params.stream_step[i] = ss;
1529
3.61k
                ss = pfn->params.Size[i] * ss;
1530
3.61k
            }
1531
1.88k
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
1532
1.88k
                                    sa, sizeof(double), "gs_function_Sd_init");
1533
1.88k
            if (pfn->params.pole == NULL)
1534
0
                return_error(gs_error_VMerror);
1535
4.66M
            for (i = 0; i < sa; i++)
1536
4.65M
                pfn->params.pole[i] = double_stub;
1537
1.88k
            pfn->params.array_size = sa;
1538
1.88k
        }
1539
70.3k
        *ppfn = (gs_function_t *) pfn;
1540
70.3k
    }
1541
0
    return 0;
1542
70.3k
}