/src/ghostpdl/base/gximage3.c
Line | Count | Source |
1 | | /* Copyright (C) 2001-2025 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
13 | | CA 94129, USA, for further information. |
14 | | */ |
15 | | |
16 | | |
17 | | /* ImageType 3 image implementation */ |
18 | | #include "math_.h" /* for ceil, floor */ |
19 | | #include "memory_.h" |
20 | | #include "gx.h" |
21 | | #include "gserrors.h" |
22 | | #include "gsbitops.h" |
23 | | #include "gscspace.h" |
24 | | #include "gsstruct.h" |
25 | | #include "gxdevice.h" |
26 | | #include "gxdevmem.h" |
27 | | #include "gxclipm.h" |
28 | | #include "gximage3.h" |
29 | | #include "gxgstate.h" |
30 | | #include "gxdevsop.h" |
31 | | #include <limits.h> /* For INT_MAX etc */ |
32 | | |
33 | | /* Forward references */ |
34 | | static dev_proc_begin_typed_image(gx_begin_image3); |
35 | | static image_enum_proc_plane_data(gx_image3_plane_data); |
36 | | static image_enum_proc_end_image(gx_image3_end_image); |
37 | | static image_enum_proc_flush(gx_image3_flush); |
38 | | static image_enum_proc_planes_wanted(gx_image3_planes_wanted); |
39 | | |
40 | | /* GC descriptor */ |
41 | | private_st_gs_image3(); |
42 | | |
43 | | /* Define the image type for ImageType 3 images. */ |
44 | | const gx_image_type_t gs_image_type_3 = { |
45 | | &st_gs_image3, gx_begin_image3, |
46 | | gx_image_no_sput, gx_image_no_sget, gx_image_default_release, 3 |
47 | | }; |
48 | | static const gx_image_enum_procs_t image3_enum_procs = { |
49 | | gx_image3_plane_data, gx_image3_end_image, |
50 | | gx_image3_flush, gx_image3_planes_wanted |
51 | | }; |
52 | | |
53 | | /* Initialize an ImageType 3 image. */ |
54 | | void |
55 | | gs_image3_t_init(gs_image3_t * pim, gs_color_space * color_space, |
56 | | gs_image3_interleave_type_t interleave_type) |
57 | 654 | { |
58 | 654 | gs_pixel_image_t_init((gs_pixel_image_t *) pim, color_space); |
59 | 654 | pim->type = &gs_image_type_3; |
60 | 654 | pim->InterleaveType = interleave_type; |
61 | 654 | gs_data_image_t_init(&pim->MaskDict, -1); |
62 | 654 | } |
63 | | |
64 | | extern_st(st_gx_image_enum_common); |
65 | | gs_private_st_suffix_add6(st_image3_enum, gx_image3_enum_t, "gx_image3_enum_t", |
66 | | image3_enum_enum_ptrs, image3_enum_reloc_ptrs, st_gx_image_enum_common, |
67 | | mdev, pcdev, pixel_info, mask_info, pixel_data, mask_data); |
68 | | |
69 | | /* Define the default implementation of ImageType 3 processing. */ |
70 | | static IMAGE3_MAKE_MID_PROC(make_mid_default); /* check prototype */ |
71 | | static int |
72 | | make_mid_default(gx_device **pmidev, gx_device *dev, int width, int height, |
73 | | gs_memory_t *mem) |
74 | 462 | { |
75 | 462 | gx_device_memory *midev = |
76 | 462 | gs_alloc_struct_immovable(mem, gx_device_memory, &st_device_memory, |
77 | 462 | "make_mid_default"); |
78 | 462 | int code; |
79 | | |
80 | 462 | if (midev == 0) |
81 | 0 | return_error(gs_error_VMerror); |
82 | 462 | gs_make_mem_mono_device(midev, mem, NULL); |
83 | 462 | midev->bitmap_memory = mem; |
84 | 462 | midev->width = width; |
85 | 462 | midev->height = height; |
86 | 462 | midev->raster = gx_device_raster((gx_device *)midev, 1); |
87 | 462 | check_device_separable((gx_device *)midev); |
88 | 462 | gx_device_fill_in_procs((gx_device *)midev); |
89 | 462 | code = dev_proc(midev, open_device)((gx_device *)midev); |
90 | 462 | if (code < 0) { |
91 | 0 | gs_free_object(mem, midev, "make_mid_default"); |
92 | 0 | return code; |
93 | 0 | } |
94 | 462 | midev->is_open = true; |
95 | 462 | dev_proc(midev, fill_rectangle) |
96 | 462 | ((gx_device *)midev, 0, 0, width, height, (gx_color_index)0); |
97 | 462 | *pmidev = (gx_device *)midev; |
98 | 462 | return 0; |
99 | 462 | } |
100 | | static IMAGE3_MAKE_MCDE_PROC(make_mcde_default); /* check prototype */ |
101 | | static int |
102 | | make_mcde_default(gx_device *dev, const gs_gstate *pgs, |
103 | | const gs_matrix *pmat, const gs_image_common_t *pic, |
104 | | const gs_int_rect *prect, const gx_drawing_color *pdcolor, |
105 | | const gx_clip_path *pcpath, gs_memory_t *mem, |
106 | | gx_image_enum_common_t **pinfo, |
107 | | gx_device **pmcdev, gx_device *midev, |
108 | | gx_image_enum_common_t *pminfo, |
109 | | const gs_int_point *origin) |
110 | 462 | { |
111 | 462 | gx_device_memory *const mdev = (gx_device_memory *)midev; |
112 | 462 | gx_device_mask_clip *mcdev = NULL; |
113 | 462 | gx_strip_bitmap bits; /* only gx_bitmap */ |
114 | 462 | int code; |
115 | | |
116 | | /* The gx_strip_bitmap structure defines (via gs_tile_bitmap_common) |
117 | | * rep_width and rep_height as being of type 'ushort', device width and |
118 | | * height are of type 'int'. Make sure we don't overflow because that |
119 | | * will lead to memory corruption. |
120 | | */ |
121 | 462 | if (mdev->width > ARCH_MAX_USHORT || mdev->height > ARCH_MAX_USHORT) |
122 | 1 | return_error(gs_error_rangecheck); |
123 | | |
124 | 461 | mcdev = gs_alloc_struct(mem, gx_device_mask_clip, &st_device_mask_clip, |
125 | 461 | "make_mcde_default"); |
126 | | |
127 | 461 | if (mcdev == 0) |
128 | 0 | return_error(gs_error_VMerror); |
129 | 461 | bits.data = mdev->base; |
130 | 461 | bits.raster = mdev->raster; |
131 | | |
132 | 461 | bits.size.x = bits.rep_width = mdev->width; |
133 | 461 | bits.size.y = bits.rep_height = mdev->height; |
134 | 461 | bits.id = gx_no_bitmap_id; |
135 | 461 | bits.num_planes = 1; |
136 | 461 | bits.rep_shift = bits.shift = 0; |
137 | 461 | code = gx_mask_clip_initialize(mcdev, &gs_mask_clip_device, |
138 | 461 | (const gx_bitmap *)&bits, dev, |
139 | 461 | origin->x, origin->y, mem); |
140 | 461 | if (code < 0) { |
141 | 0 | gs_free_object(mem, mcdev, "make_mcde_default"); |
142 | 0 | return code; |
143 | 0 | } |
144 | 461 | mcdev->tiles = bits; |
145 | 461 | code = dev_proc(mcdev, begin_typed_image) |
146 | 461 | ((gx_device *)mcdev, pgs, pmat, pic, prect, pdcolor, pcpath, mem, |
147 | 461 | pinfo); |
148 | 461 | if (code < 0) { |
149 | 0 | gs_free_object(mem, mcdev, "make_mcde_default"); |
150 | 0 | return code; |
151 | 0 | } |
152 | 461 | *pmcdev = (gx_device *)mcdev; |
153 | 461 | return 0; |
154 | 461 | } |
155 | | static int |
156 | | gx_begin_image3(gx_device * dev, |
157 | | const gs_gstate * pgs, const gs_matrix * pmat, |
158 | | const gs_image_common_t * pic, const gs_int_rect * prect, |
159 | | const gx_drawing_color * pdcolor, const gx_clip_path * pcpath, |
160 | | gs_memory_t * mem, gx_image_enum_common_t ** pinfo) |
161 | 471 | { |
162 | 471 | return gx_begin_image3_generic(dev, pgs, pmat, pic, prect, pdcolor, |
163 | 471 | pcpath, mem, make_mid_default, |
164 | 471 | make_mcde_default, pinfo); |
165 | 471 | } |
166 | | |
167 | | /* |
168 | | * Begin a generic ImageType 3 image, with client handling the creation of |
169 | | * the mask image and mask clip devices. |
170 | | */ |
171 | | static bool check_image3_extent(double mask_coeff, double data_coeff); |
172 | | int |
173 | | gx_begin_image3_generic(gx_device * dev, |
174 | | const gs_gstate *pgs, const gs_matrix *pmat, |
175 | | const gs_image_common_t *pic, const gs_int_rect *prect, |
176 | | const gx_drawing_color *pdcolor, |
177 | | const gx_clip_path *pcpath, gs_memory_t *mem, |
178 | | image3_make_mid_proc_t make_mid, |
179 | | image3_make_mcde_proc_t make_mcde, |
180 | | gx_image_enum_common_t **pinfo) |
181 | 587 | { |
182 | 587 | const gs_image3_t *pim = (const gs_image3_t *)pic; |
183 | 587 | gs_image3_t local_pim; |
184 | 587 | gx_image3_enum_t *penum; |
185 | 587 | gs_int_rect mask_rect, data_rect; |
186 | 587 | gx_device *mdev = 0; |
187 | 587 | gx_device *pcdev = 0; |
188 | 587 | gs_image_t i_pixel, i_mask; |
189 | 587 | gs_matrix mi_pixel, mi_mask, mat; |
190 | 587 | gs_rect mrect; |
191 | 587 | gs_int_point origin; |
192 | 587 | int code; |
193 | | |
194 | | /* Validate the parameters. */ |
195 | 587 | if (pim->Width <= 0 || pim->MaskDict.Width <= 0 || |
196 | 585 | pim->Height <= 0 || pim->MaskDict.Height <= 0) |
197 | 3 | return_error(gs_error_rangecheck); |
198 | 584 | switch (pim->InterleaveType) { |
199 | 0 | default: |
200 | 0 | return_error(gs_error_rangecheck); |
201 | 0 | case interleave_chunky: |
202 | 0 | if (pim->MaskDict.Width != pim->Width || |
203 | 0 | pim->MaskDict.Height != pim->Height || |
204 | 0 | pim->MaskDict.BitsPerComponent != pim->BitsPerComponent || |
205 | 0 | pim->format != gs_image_format_chunky |
206 | 0 | ) |
207 | 0 | return_error(gs_error_rangecheck); |
208 | 0 | break; |
209 | 0 | case interleave_scan_lines: |
210 | 0 | if (pim->MaskDict.Height % pim->Height != 0 && |
211 | 0 | pim->Height % pim->MaskDict.Height != 0 |
212 | 0 | ) |
213 | 0 | return_error(gs_error_rangecheck); |
214 | | /* falls through */ |
215 | 584 | case interleave_separate_source: |
216 | 584 | if (pim->MaskDict.BitsPerComponent != 1) |
217 | 0 | return_error(gs_error_rangecheck); |
218 | 584 | } |
219 | 584 | if ((code = gs_matrix_invert(&pim->ImageMatrix, &mi_pixel)) < 0) |
220 | 0 | return code; |
221 | | /* For Explicit Masking, we follow Acrobats example, and completely |
222 | | * ignore the supplied mask. Instead we generate a new one based on the |
223 | | * image mask, adjusted for any difference in width/height. */ |
224 | 584 | if (pim->InterleaveType == interleave_separate_source || |
225 | 584 | pim->InterleaveType == interleave_scan_lines) { |
226 | 584 | memcpy(&local_pim, pim, sizeof(local_pim)); |
227 | 584 | pim = &local_pim; |
228 | 584 | gs_matrix_scale(&mi_pixel, |
229 | 584 | ((double)pim->Width) / pim->MaskDict.Width, |
230 | 584 | ((double)pim->Height) / pim->MaskDict.Height, |
231 | 584 | &mi_mask); |
232 | 584 | if ((code = gs_matrix_invert(&mi_mask, &local_pim.MaskDict.ImageMatrix)) < 0) |
233 | 0 | return code; |
234 | 584 | } else { |
235 | 0 | if ((code = gs_matrix_invert(&pim->MaskDict.ImageMatrix, &mi_mask)) < 0) |
236 | 0 | return code; |
237 | | |
238 | 0 | if (!check_image3_extent(pim->ImageMatrix.xx, |
239 | 0 | pim->MaskDict.ImageMatrix.xx) || |
240 | 0 | !check_image3_extent(pim->ImageMatrix.xy, |
241 | 0 | pim->MaskDict.ImageMatrix.xy) || |
242 | 0 | !check_image3_extent(pim->ImageMatrix.yx, |
243 | 0 | pim->MaskDict.ImageMatrix.yx) || |
244 | 0 | !check_image3_extent(pim->ImageMatrix.yy, |
245 | 0 | pim->MaskDict.ImageMatrix.yy) |
246 | 0 | ) |
247 | 0 | return_error(gs_error_rangecheck); |
248 | 0 | } |
249 | 584 | if (fabs(mi_pixel.tx - mi_mask.tx) >= 0.5 || |
250 | 584 | fabs(mi_pixel.ty - mi_mask.ty) >= 0.5 |
251 | 584 | ) |
252 | 0 | return_error(gs_error_rangecheck); |
253 | | #ifdef DEBUG |
254 | | { |
255 | | /* Although the PLRM says that the Mask and Image *must* be the same size, */ |
256 | | /* Adobe CPSI (and other RIPS) ignore this and process anyway. Note that we */ |
257 | | /* are not compatible if the Mask Height than the Data (pixel) Height. CPSI */ |
258 | | /* de-interleaves the mask from the data image and stops at the Mask Height */ |
259 | | /* Problem detected with Genoa 468-03 (part of file 468-01.ps) */ |
260 | | /***** fixme: When Data Image Height > Mask Height *****/ |
261 | | gs_point ep, em; |
262 | | |
263 | | if ((code = gs_point_transform(pim->Width, pim->Height, &mi_pixel, |
264 | | &ep)) < 0 || |
265 | | (code = gs_point_transform(pim->MaskDict.Width, |
266 | | pim->MaskDict.Height, &mi_mask, |
267 | | &em)) < 0 |
268 | | ) |
269 | | return code; |
270 | | if (fabs(ep.x - em.x) >= 0.5 || fabs(ep.y - em.y) >= 0.5) |
271 | | code = gs_error_rangecheck; /* leave the check in for debug breakpoint */ |
272 | | } |
273 | | #endif /* DEBUG */ |
274 | 584 | penum = gs_alloc_struct(mem, gx_image3_enum_t, &st_image3_enum, |
275 | 584 | "gx_begin_image3"); |
276 | 584 | if (penum == 0) |
277 | 0 | return_error(gs_error_VMerror); |
278 | 584 | penum->num_components = |
279 | 584 | gs_color_space_num_components(pim->ColorSpace); |
280 | 584 | gx_image_enum_common_init((gx_image_enum_common_t *) penum, |
281 | 584 | (const gs_data_image_t *)pim, |
282 | 584 | &image3_enum_procs, dev, |
283 | 584 | 1 + penum->num_components, |
284 | 584 | pim->format); |
285 | | /* Initialize pointers now in case we bail out. */ |
286 | 584 | penum->mask_data = 0; |
287 | 584 | penum->pixel_data = 0; |
288 | 584 | if (prect) { |
289 | 0 | long lmw = pim->MaskDict.Width, lmh = pim->MaskDict.Height; |
290 | |
|
291 | 0 | data_rect = *prect; |
292 | 0 | mask_rect.p.x = (int)(data_rect.p.x * lmw / pim->Width); |
293 | 0 | mask_rect.p.y = (int)(data_rect.p.y * lmh / pim->Height); |
294 | 0 | mask_rect.q.x = (int)((data_rect.q.x + pim->Width - 1) * lmw / |
295 | 0 | pim->Width); |
296 | 0 | mask_rect.q.y = (int)((data_rect.q.y + pim->Height - 1) * lmh / |
297 | 0 | pim->Height); |
298 | 584 | } else { |
299 | 584 | mask_rect.p.x = mask_rect.p.y = 0; |
300 | 584 | mask_rect.q.x = pim->MaskDict.Width; |
301 | 584 | mask_rect.q.y = pim->MaskDict.Height; |
302 | 584 | data_rect.p.x = data_rect.p.y = 0; |
303 | 584 | data_rect.q.x = pim->Width; |
304 | 584 | data_rect.q.y = pim->Height; |
305 | 584 | } |
306 | 584 | penum->mask_width = mask_rect.q.x - mask_rect.p.x; |
307 | 584 | penum->mask_height = mask_rect.q.y - mask_rect.p.y; |
308 | 584 | penum->mask_full_height = pim->MaskDict.Height; |
309 | 584 | penum->mask_y = 0; |
310 | 584 | penum->mask_skip = 0; |
311 | 584 | penum->pixel_width = data_rect.q.x - data_rect.p.x; |
312 | 584 | penum->pixel_height = data_rect.q.y - data_rect.p.y; |
313 | 584 | penum->pixel_full_height = pim->Height; |
314 | 584 | penum->pixel_y = 0; |
315 | 584 | penum->mask_info = 0; |
316 | 584 | penum->pixel_info = 0; |
317 | 584 | if (pim->InterleaveType == interleave_chunky) { |
318 | | /* Allocate row buffers for the mask and pixel data. */ |
319 | 0 | penum->pixel_data = |
320 | 0 | gs_alloc_bytes(mem, |
321 | 0 | ((size_t)penum->pixel_width * pim->BitsPerComponent * |
322 | 0 | penum->num_components + 7) >> 3, |
323 | 0 | "gx_begin_image3(pixel_data)"); |
324 | 0 | penum->mask_data = |
325 | 0 | gs_alloc_bytes(mem, (penum->mask_width + 7) >> 3, |
326 | 0 | "gx_begin_image3(mask_data)"); |
327 | 0 | if (penum->pixel_data == 0 || penum->mask_data == 0) { |
328 | 0 | code = gs_note_error(gs_error_VMerror); |
329 | 0 | goto out1; |
330 | 0 | } |
331 | | /* Because the mask data is 1 BPC, if the width is not a multiple of 8 |
332 | | * then we will not fill the last byte of mask_data completely. This |
333 | | * provokes valgrind when running to pdfwrite, because pdfwrite has to |
334 | | * write the full byte of mask data to the file. It also means (potentially) |
335 | | * that we could run the same input twice and get (slightly) different |
336 | | * PDF files produced. So we set the last byte to zero to ensure the bits |
337 | | * are fully initialised. See Bug #693814 |
338 | | */ |
339 | 0 | penum->mask_data[((penum->mask_width + 7) >> 3) - 1] = 0x00; |
340 | 0 | } |
341 | 584 | penum->InterleaveType = pim->InterleaveType; |
342 | 584 | penum->bpc = pim->BitsPerComponent; |
343 | 584 | penum->memory = mem; |
344 | 584 | mrect.p.x = mrect.p.y = 0; |
345 | 584 | mrect.q.x = pim->MaskDict.Width; |
346 | 584 | mrect.q.y = pim->MaskDict.Height; |
347 | 584 | if (pmat == 0) |
348 | 524 | pmat = &ctm_only(pgs); |
349 | 584 | if ((code = gs_matrix_multiply(&mi_mask, pmat, &mat)) < 0 || |
350 | 584 | (code = gs_bbox_transform(&mrect, &mat, &mrect)) < 0 |
351 | 584 | ) |
352 | 0 | return code; |
353 | | |
354 | | /* Bug 700438: If the rectangle is out of range, bail */ |
355 | 584 | if (mrect.p.x >= (double)INT_MAX || mrect.q.x <= (double)INT_MIN || |
356 | 575 | mrect.p.y >= (double)INT_MAX || mrect.q.y <= (double)INT_MIN || |
357 | 575 | mrect.p.x <= (double)INT_MIN || mrect.q.x >= (double)INT_MAX || |
358 | 575 | mrect.p.y <= (double)INT_MIN || mrect.q.y >= (double)INT_MAX |
359 | 584 | ) { |
360 | 9 | code = gs_note_error(gs_error_rangecheck); |
361 | 9 | goto out1; |
362 | 9 | } |
363 | | |
364 | | /* This code was changed for bug 686843/687411, but in a way that |
365 | | * a) looked wrong, and b) doesn't appear to make a difference. Revert |
366 | | * it to the sane version until we have evidence why not. */ |
367 | 575 | origin.x = (int)floor(mrect.p.x); |
368 | 575 | origin.y = (int)floor(mrect.p.y); |
369 | 575 | code = make_mid(&mdev, dev, (int)ceil(mrect.q.x) - origin.x, |
370 | 575 | (int)ceil(mrect.q.y) - origin.y, mem); |
371 | 575 | if (code < 0) |
372 | 0 | goto out1; |
373 | 575 | penum->mdev = mdev; |
374 | 575 | gs_image_t_init_mask(&i_mask, false); |
375 | 575 | i_mask.adjust = false; |
376 | 575 | { |
377 | 575 | const gx_image_type_t *type1 = i_mask.type; |
378 | | |
379 | 575 | *(gs_data_image_t *)&i_mask = pim->MaskDict; |
380 | 575 | i_mask.type = type1; |
381 | 575 | i_mask.BitsPerComponent = 1; |
382 | 575 | i_mask.image_parent_type = gs_image_type3; |
383 | 575 | } |
384 | 575 | { |
385 | 575 | gx_drawing_color dcolor; |
386 | 575 | gs_matrix m_mat; |
387 | | |
388 | 575 | set_nonclient_dev_color(&dcolor, 1); |
389 | | /* |
390 | | * Adjust the translation for rendering the mask to include a |
391 | | * negative translation by origin.{x,y} in device space. |
392 | | */ |
393 | 575 | m_mat = *pmat; |
394 | 575 | m_mat.tx -= origin.x; |
395 | 575 | m_mat.ty -= origin.y; |
396 | 575 | i_mask.override_in_smask = (dev_proc(dev, dev_spec_op)(dev, gxdso_in_smask, NULL, 0)) > 0; |
397 | | /* |
398 | | * Note that pgs = NULL here, since we don't want to have to |
399 | | * create another gs_gstate with default log_op, etc. |
400 | | */ |
401 | 575 | code = gx_device_begin_typed_image(mdev, NULL, &m_mat, |
402 | 575 | (const gs_image_common_t *)&i_mask, |
403 | 575 | &mask_rect, &dcolor, NULL, mem, |
404 | 575 | &penum->mask_info); |
405 | 575 | if (code < 0) |
406 | 0 | goto out2; |
407 | 575 | } |
408 | 575 | gs_image_t_init(&i_pixel, pim->ColorSpace); |
409 | 575 | { |
410 | 575 | const gx_image_type_t *type1 = i_pixel.type; |
411 | | |
412 | 575 | *(gs_pixel_image_t *)&i_pixel = *(const gs_pixel_image_t *)pim; |
413 | 575 | i_pixel.type = type1; |
414 | 575 | i_pixel.image_parent_type = gs_image_type3; |
415 | 575 | } |
416 | 575 | code = make_mcde(dev, pgs, pmat, (const gs_image_common_t *)&i_pixel, |
417 | 575 | prect, pdcolor, pcpath, mem, &penum->pixel_info, |
418 | 575 | &pcdev, mdev, penum->mask_info, &origin); |
419 | 575 | if (code < 0) |
420 | 1 | goto out3; |
421 | 574 | penum->pcdev = pcdev; |
422 | | /* |
423 | | * Set num_planes, plane_widths, and plane_depths from the values in the |
424 | | * enumerators for the mask and the image data. |
425 | | */ |
426 | 574 | switch (pim->InterleaveType) { |
427 | 0 | case interleave_chunky: |
428 | | /* Add the mask data to the depth of the image data. */ |
429 | 0 | penum->num_planes = 1; |
430 | 0 | penum->plane_widths[0] = pim->Width; |
431 | 0 | penum->plane_depths[0] = |
432 | 0 | penum->pixel_info->plane_depths[0] * |
433 | 0 | (penum->num_components + 1) / penum->num_components; |
434 | 0 | break; |
435 | 0 | case interleave_scan_lines: |
436 | | /* |
437 | | * There is only 1 plane, with dynamically changing width & depth. |
438 | | * Initialize it for the mask data, since that is what will be |
439 | | * read first. |
440 | | */ |
441 | 0 | penum->num_planes = 1; |
442 | 0 | penum->plane_depths[0] = 1; |
443 | 0 | penum->plane_widths[0] = pim->MaskDict.Width; |
444 | 0 | break; |
445 | 574 | case interleave_separate_source: |
446 | | /* Insert the mask data as a separate plane before the image data. */ |
447 | 574 | penum->num_planes = penum->pixel_info->num_planes + 1; |
448 | 574 | penum->plane_widths[0] = pim->MaskDict.Width; |
449 | 574 | penum->plane_depths[0] = 1; |
450 | 574 | memcpy(&penum->plane_widths[1], &penum->pixel_info->plane_widths[0], |
451 | 574 | (penum->num_planes - 1) * sizeof(penum->plane_widths[0])); |
452 | 574 | memcpy(&penum->plane_depths[1], &penum->pixel_info->plane_depths[0], |
453 | 574 | (penum->num_planes - 1) * sizeof(penum->plane_depths[0])); |
454 | 574 | break; |
455 | 574 | } |
456 | 574 | gx_device_retain(mdev, true); /* will free explicitly */ |
457 | 574 | gx_device_retain(pcdev, true); /* ditto */ |
458 | 574 | *pinfo = (gx_image_enum_common_t *) penum; |
459 | 574 | return 0; |
460 | 1 | out3: |
461 | 1 | gx_image_end(penum->mask_info, false); |
462 | 1 | out2: |
463 | 1 | gs_closedevice(mdev); |
464 | 1 | gs_free_object(mem, mdev, "gx_begin_image3(mdev)"); |
465 | 10 | out1: |
466 | 10 | gs_free_object(mem, penum->mask_data, "gx_begin_image3(mask_data)"); |
467 | 10 | gs_free_object(mem, penum->pixel_data, "gx_begin_image3(pixel_data)"); |
468 | 10 | gs_free_object(mem, penum, "gx_begin_image3"); |
469 | 10 | return code; |
470 | 1 | } |
471 | | static bool |
472 | | check_image3_extent(double mask_coeff, double data_coeff) |
473 | 0 | { |
474 | 0 | if (mask_coeff == 0) |
475 | 0 | return data_coeff == 0; |
476 | 0 | if (data_coeff == 0 || (mask_coeff > 0) != (data_coeff > 0)) |
477 | 0 | return false; |
478 | 0 | return true; |
479 | 0 | } |
480 | | |
481 | | /* |
482 | | * Return > 0 if we want more mask now, < 0 if we want more data now, |
483 | | * 0 if we want both. |
484 | | */ |
485 | | static int |
486 | | planes_next(const gx_image3_enum_t *penum) |
487 | 112k | { |
488 | | /* |
489 | | * The invariant we need to maintain is that we always have at least as |
490 | | * much mask as pixel data, i.e., mask_y / mask_full_height >= |
491 | | * pixel_y / pixel_full_height, or, to avoid floating point, |
492 | | * mask_y * pixel_full_height >= pixel_y * mask_full_height. |
493 | | * We know this condition is true now; |
494 | | * return a value that indicates how to maintain it. |
495 | | */ |
496 | 112k | int mask_h = penum->mask_full_height; |
497 | 112k | int pixel_h = penum->pixel_full_height; |
498 | 112k | long current = penum->pixel_y * (long)mask_h - |
499 | 112k | penum->mask_y * (long)pixel_h; |
500 | | |
501 | | #ifdef DEBUG |
502 | | if (current > 0) |
503 | | lprintf4("planes_next invariant fails: %d/%d > %d/%d\n", |
504 | | penum->pixel_y, penum->pixel_full_height, |
505 | | penum->mask_y, penum->mask_full_height); |
506 | | #endif |
507 | 112k | return ((current += mask_h) <= 0 ? -1 : |
508 | 112k | current - pixel_h <= 0 ? 0 : 1); |
509 | 112k | } |
510 | | |
511 | | /* Process the next piece of an ImageType 3 image. */ |
512 | | static int |
513 | | gx_image3_plane_data(gx_image_enum_common_t * info, |
514 | | const gx_image_plane_t * planes, int height, |
515 | | int *rows_used) |
516 | 111k | { |
517 | 111k | gx_image3_enum_t *penum = (gx_image3_enum_t *) info; |
518 | 111k | int pixel_height = penum->pixel_height; |
519 | 111k | int pixel_used = 0; |
520 | 111k | int mask_height = penum->mask_height; |
521 | 111k | int mask_used = 0; |
522 | 111k | int h1 = max(pixel_height - penum->pixel_y, mask_height - penum->mask_y); |
523 | 111k | int h = min(height, h1); |
524 | 111k | const gx_image_plane_t *pixel_planes; |
525 | 111k | gx_image_plane_t pixel_plane, mask_plane; |
526 | 111k | int code = 0; |
527 | | |
528 | | /* Initialized rows_used in case we get an error. */ |
529 | 111k | *rows_used = 0; |
530 | 111k | switch (penum->InterleaveType) { |
531 | 0 | case interleave_chunky: |
532 | 0 | if (h <= 0) |
533 | 0 | return 0; |
534 | 0 | if (h > 1) { |
535 | | /* Do the operation one row at a time. */ |
536 | 0 | int h_orig = h; |
537 | |
|
538 | 0 | mask_plane = planes[0]; |
539 | 0 | do { |
540 | 0 | code = gx_image3_plane_data(info, &mask_plane, 1, |
541 | 0 | rows_used); |
542 | 0 | h -= *rows_used; |
543 | 0 | if (code) |
544 | 0 | break; |
545 | 0 | mask_plane.data += mask_plane.raster; |
546 | 0 | } while (h); |
547 | 0 | *rows_used = h_orig - h; |
548 | 0 | return code; |
549 | 0 | } { |
550 | | /* Pull apart the source data and the mask data. */ |
551 | 0 | int bpc = penum->bpc; |
552 | 0 | int num_components = penum->num_components; |
553 | 0 | int width = penum->pixel_width; |
554 | | |
555 | | /* We do this in the simplest (not fastest) way for now. */ |
556 | 0 | uint bit_x = bpc * (num_components + 1) * planes[0].data_x; |
557 | |
|
558 | 0 | const byte *sptr = planes[0].data + (bit_x >> 3); |
559 | 0 | int sbit = bit_x & 7; |
560 | |
|
561 | 0 | byte *mptr = penum->mask_data; |
562 | 0 | int mbit = 0; |
563 | 0 | byte mbbyte = 0; |
564 | 0 | byte *pptr = penum->pixel_data; |
565 | 0 | int pbit = 0; |
566 | 0 | byte pbbyte = 0; |
567 | 0 | int x; |
568 | |
|
569 | 0 | mask_plane.data = mptr; |
570 | 0 | mask_plane.data_x = 0; |
571 | 0 | mask_plane.raster = 0; /* raster doesn't matter, pacify Valgrind */ |
572 | 0 | pixel_plane.data = pptr; |
573 | 0 | pixel_plane.data_x = 0; |
574 | 0 | pixel_plane.raster = 0; /* raster doesn't matter, pacify Valgrind */ |
575 | 0 | pixel_planes = &pixel_plane; |
576 | 0 | for (x = 0; x < width; ++x) { |
577 | 0 | uint value; |
578 | 0 | int i; |
579 | |
|
580 | 0 | if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0) |
581 | 0 | return_error(gs_error_rangecheck); |
582 | 0 | if (sample_store_next12(value != 0, &mptr, &mbit, 1, &mbbyte) < 0) |
583 | 0 | return_error(gs_error_rangecheck); |
584 | 0 | for (i = 0; i < num_components; ++i) { |
585 | 0 | if (sample_load_next12(&value, &sptr, &sbit, bpc) < 0) |
586 | 0 | return_error(gs_error_rangecheck); |
587 | 0 | if (sample_store_next12(value, &pptr, &pbit, bpc, &pbbyte) < 0) |
588 | 0 | return_error (gs_error_rangecheck); |
589 | 0 | } |
590 | 0 | } |
591 | 0 | sample_store_flush(mptr, mbit, mbbyte); |
592 | 0 | sample_store_flush(pptr, pbit, pbbyte); |
593 | 0 | } |
594 | 0 | break; |
595 | 0 | case interleave_scan_lines: |
596 | 0 | if (planes_next(penum) >= 0) { |
597 | | /* This is mask data. */ |
598 | 0 | mask_plane = planes[0]; |
599 | 0 | pixel_planes = &pixel_plane; |
600 | 0 | pixel_plane.data = 0; |
601 | 0 | } else { |
602 | | /* This is pixel data. */ |
603 | 0 | mask_plane.data = 0; |
604 | 0 | pixel_planes = planes; |
605 | 0 | } |
606 | 0 | break; |
607 | 111k | case interleave_separate_source: |
608 | | /* |
609 | | * In order to be able to recover from interruptions, we must |
610 | | * limit separate-source processing to 1 scan line at a time. |
611 | | */ |
612 | 111k | if (h > 1) |
613 | 0 | h = 1; |
614 | 111k | mask_plane = planes[0]; |
615 | 111k | pixel_planes = planes + 1; |
616 | 111k | break; |
617 | 0 | default: /* not possible */ |
618 | 0 | return_error(gs_error_rangecheck); |
619 | 111k | } |
620 | | /* |
621 | | * Process the mask data first, so it will set up the mask |
622 | | * device for clipping the pixel data. |
623 | | */ |
624 | 111k | if (mask_plane.data) { |
625 | | /* |
626 | | * If, on the last call, we processed some mask rows successfully |
627 | | * but processing the pixel rows was interrupted, we set rows_used |
628 | | * to indicate the number of pixel rows processed (since there is |
629 | | * no way to return two rows_used values). If this happened, some |
630 | | * mask rows may get presented again. We must skip over them |
631 | | * rather than processing them again. |
632 | | */ |
633 | 111k | int skip = penum->mask_skip; |
634 | | |
635 | 111k | if (skip >= h) { |
636 | 0 | penum->mask_skip = skip - (mask_used = h); |
637 | 111k | } else { |
638 | 111k | int mask_h = h - skip; |
639 | | |
640 | 111k | mask_plane.data += skip * mask_plane.raster; |
641 | 111k | penum->mask_skip = 0; |
642 | 111k | code = gx_image_plane_data_rows(penum->mask_info, &mask_plane, |
643 | 111k | mask_h, &mask_used); |
644 | 111k | mask_used += skip; |
645 | 111k | } |
646 | 111k | *rows_used = mask_used; |
647 | 111k | penum->mask_y += mask_used; |
648 | 111k | if (code < 0) |
649 | 0 | return code; |
650 | 111k | } |
651 | 111k | if (pixel_planes[0].data) { |
652 | | /* |
653 | | * If necessary, flush any buffered mask data to the mask clipping |
654 | | * device. |
655 | | */ |
656 | 99.3k | gx_image_flush(penum->mask_info); |
657 | 99.3k | code = gx_image_plane_data_rows(penum->pixel_info, pixel_planes, h, |
658 | 99.3k | &pixel_used); |
659 | | /* |
660 | | * There isn't any way to set rows_used if different amounts of |
661 | | * the mask and pixel data were used. Fake it. |
662 | | */ |
663 | 99.3k | *rows_used = pixel_used; |
664 | | /* |
665 | | * Don't return code yet: we must account for the fact that |
666 | | * some mask data may have been processed. |
667 | | */ |
668 | 99.3k | penum->pixel_y += pixel_used; |
669 | 99.3k | if (code < 0) { |
670 | | /* |
671 | | * We must prevent the mask data from being processed again. |
672 | | * We rely on the fact that h > 1 is only possible if the |
673 | | * mask and pixel data have the same Y scaling. |
674 | | */ |
675 | 0 | if (mask_used > pixel_used) { |
676 | 0 | int skip = mask_used - pixel_used; |
677 | |
|
678 | 0 | penum->mask_skip = skip; |
679 | 0 | penum->mask_y -= skip; |
680 | 0 | mask_used = pixel_used; |
681 | 0 | } |
682 | 0 | } |
683 | 99.3k | } |
684 | 111k | if_debug5m('b', penum->memory, "[b]image3 h=%d %smask_y=%d %spixel_y=%d\n", |
685 | 111k | h, (mask_plane.data ? "+" : ""), penum->mask_y, |
686 | 111k | (pixel_planes[0].data ? "+" : ""), penum->pixel_y); |
687 | 111k | if (penum->mask_y >= penum->mask_height && |
688 | 176 | penum->pixel_y >= penum->pixel_height) |
689 | 176 | return 1; |
690 | 111k | if (penum->InterleaveType == interleave_scan_lines) { |
691 | | /* Update the width and depth in the enumerator. */ |
692 | 0 | if (planes_next(penum) >= 0) { /* want mask data next */ |
693 | 0 | penum->plane_widths[0] = penum->mask_width; |
694 | 0 | penum->plane_depths[0] = 1; |
695 | 0 | } else { /* want pixel data next */ |
696 | 0 | penum->plane_widths[0] = penum->pixel_width; |
697 | 0 | penum->plane_depths[0] = penum->pixel_info->plane_depths[0]; |
698 | 0 | } |
699 | 0 | } |
700 | | /* |
701 | | * The mask may be complete (gx_image_plane_data_rows returned 1), |
702 | | * but there may still be pixel rows to go, so don't return 1 here. |
703 | | */ |
704 | 111k | return (code < 0 ? code : 0); |
705 | 111k | } |
706 | | |
707 | | /* Flush buffered data. */ |
708 | | static int |
709 | | gx_image3_flush(gx_image_enum_common_t * info) |
710 | 0 | { |
711 | 0 | gx_image3_enum_t * const penum = (gx_image3_enum_t *) info; |
712 | 0 | int code = gx_image_flush(penum->mask_info); |
713 | |
|
714 | 0 | if (code >= 0) |
715 | 0 | code = gx_image_flush(penum->pixel_info); |
716 | 0 | return code; |
717 | 0 | } |
718 | | |
719 | | /* Determine which data planes are wanted. */ |
720 | | static bool |
721 | | gx_image3_planes_wanted(const gx_image_enum_common_t * info, byte *wanted) |
722 | 112k | { |
723 | 112k | const gx_image3_enum_t * const penum = (const gx_image3_enum_t *) info; |
724 | | |
725 | 112k | switch (penum->InterleaveType) { |
726 | 0 | case interleave_chunky: /* only 1 plane */ |
727 | 0 | wanted[0] = 0xff; |
728 | 0 | return true; |
729 | 0 | case interleave_scan_lines: /* only 1 plane, but varying width/depth */ |
730 | 0 | wanted[0] = 0xff; |
731 | 0 | return false; |
732 | 112k | case interleave_separate_source: { |
733 | | /* |
734 | | * We always want at least as much of the mask to be filled as the |
735 | | * pixel data. next > 0 iff we've processed more data than mask. |
736 | | * Plane 0 is the mask, planes [1 .. num_planes - 1] are pixel data. |
737 | | */ |
738 | 112k | int next = planes_next(penum); |
739 | | |
740 | 112k | wanted[0] = (next >= 0 ? 0xff : 0); |
741 | 112k | memset(wanted + 1, (next <= 0 ? 0xff : 0), info->num_planes - 1); |
742 | | /* |
743 | | * In principle, wanted will always be true for both mask and pixel |
744 | | * data if the full_heights are equal. Unfortunately, even in this |
745 | | * case, processing may be interrupted after a mask row has been |
746 | | * passed to the underlying image processor but before the data row |
747 | | * has been passed, in which case pixel data will be 'wanted', but |
748 | | * not mask data, for the next call. Therefore, we must return |
749 | | * false. |
750 | | */ |
751 | 112k | return false |
752 | | /*(next == 0 && |
753 | 0 | penum->mask_full_height == penum->pixel_full_height)*/; |
754 | 0 | } |
755 | 0 | default: /* can't happen */ |
756 | 0 | memset(wanted, 0, info->num_planes); |
757 | 0 | return false; |
758 | 112k | } |
759 | 112k | } |
760 | | |
761 | | /* Clean up after processing an ImageType 3 image. */ |
762 | | static int |
763 | | gx_image3_end_image(gx_image_enum_common_t * info, bool draw_last) |
764 | 574 | { |
765 | 574 | gx_image3_enum_t *penum = (gx_image3_enum_t *) info; |
766 | 574 | gs_memory_t *mem = penum->memory; |
767 | 574 | gx_device *mdev = penum->mdev; |
768 | 574 | int mcode = gx_image_end(penum->mask_info, draw_last); |
769 | 574 | gx_device *pcdev = penum->pcdev; |
770 | 574 | int pcode = gx_image_end(penum->pixel_info, draw_last); |
771 | 574 | int code1 = gs_closedevice(pcdev); |
772 | 574 | int code2 = gs_closedevice(mdev); |
773 | | |
774 | 574 | gs_free_object(mem, penum->mask_data, |
775 | 574 | "gx_image3_end_image(mask_data)"); |
776 | 574 | gs_free_object(mem, penum->pixel_data, |
777 | 574 | "gx_image3_end_image(pixel_data)"); |
778 | 574 | gs_free_object(mem, pcdev, "gx_image3_end_image(pcdev)"); |
779 | 574 | gs_free_object(mem, mdev, "gx_image3_end_image(mdev)"); |
780 | 574 | gx_image_free_enum(&info); |
781 | 574 | return (pcode < 0 ? pcode : mcode < 0 ? mcode : code1 < 0 ? code1 : code2); |
782 | 574 | } |