Coverage Report

Created: 2025-11-16 07:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/base/gxshade1.c
Line
Count
Source
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Rendering for non-mesh shadings */
18
#include "math_.h"
19
#include "memory_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gsmatrix.h"   /* for gscoord.h */
23
#include "gscoord.h"
24
#include "gspath.h"
25
#include "gsptype2.h"
26
#include "gxcspace.h"
27
#include "gxdcolor.h"
28
#include "gxfarith.h"
29
#include "gxfixed.h"
30
#include "gxgstate.h"
31
#include "gxpath.h"
32
#include "gxshade.h"
33
#include "gxdevcli.h"
34
#include "gxshade4.h"
35
#include "gsicc_cache.h"
36
37
/* ---------------- Function-based shading ---------------- */
38
39
typedef struct Fb_frame_s { /* A rudiment of old code. */
40
    gs_rect region;
41
    gs_client_color cc[4];  /* colors at 4 corners */
42
    int state;
43
} Fb_frame_t;
44
45
typedef struct Fb_fill_state_s {
46
    shading_fill_state_common;
47
    const gs_shading_Fb_t *psh;
48
    gs_matrix_fixed ptm;  /* parameter space -> device space */
49
    Fb_frame_t frame;
50
} Fb_fill_state_t;
51
/****** NEED GC DESCRIPTOR ******/
52
53
static inline void
54
make_other_poles(patch_curve_t curve[4])
55
309k
{
56
309k
    int i, j;
57
58
1.54M
    for (i = 0; i < 4; i++) {
59
1.23M
        j = (i + 1) % 4;
60
1.23M
        curve[i].control[0].x = (curve[i].vertex.p.x * 2 + curve[j].vertex.p.x) / 3;
61
1.23M
        curve[i].control[0].y = (curve[i].vertex.p.y * 2 + curve[j].vertex.p.y) / 3;
62
1.23M
        curve[i].control[1].x = (curve[i].vertex.p.x + curve[j].vertex.p.x * 2) / 3;
63
1.23M
        curve[i].control[1].y = (curve[i].vertex.p.y + curve[j].vertex.p.y * 2) / 3;
64
1.23M
        curve[i].straight = true;
65
1.23M
    }
66
309k
}
67
68
/* Transform a point with a fixed-point result. */
69
static void
70
gs_point_transform2fixed_clamped(const gs_matrix_fixed * pmat,
71
                         double x, double y, gs_fixed_point * ppt)
72
0
{
73
0
    gs_point fpt;
74
75
0
    gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt);
76
0
    ppt->x = clamp_coord(fpt.x);
77
0
    ppt->y = clamp_coord(fpt.y);
78
0
}
79
80
static int
81
Fb_fill_region(Fb_fill_state_t * pfs, const gs_fixed_rect *rect)
82
0
{
83
0
    patch_fill_state_t pfs1;
84
0
    patch_curve_t curve[4];
85
0
    Fb_frame_t * fp = &pfs->frame;
86
0
    int code;
87
88
0
    memcpy(&pfs1, (shading_fill_state_t *)pfs, sizeof(shading_fill_state_t));
89
0
    pfs1.Function = pfs->psh->params.Function;
90
0
    code = init_patch_fill_state(&pfs1);
91
0
    if (code < 0)
92
0
        return code;
93
0
    pfs1.maybe_self_intersecting = false;
94
0
    pfs1.n_color_args = 2;
95
0
    pfs1.rect = *rect;
96
0
    gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.p.y, &curve[0].vertex.p);
97
0
    gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.p.y, &curve[1].vertex.p);
98
0
    gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.q.y, &curve[2].vertex.p);
99
0
    gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.q.y, &curve[3].vertex.p);
100
0
    make_other_poles(curve);
101
0
    curve[0].vertex.cc[0] = fp->region.p.x;   curve[0].vertex.cc[1] = fp->region.p.y;
102
0
    curve[1].vertex.cc[0] = fp->region.q.x;   curve[1].vertex.cc[1] = fp->region.p.y;
103
0
    curve[2].vertex.cc[0] = fp->region.q.x;   curve[2].vertex.cc[1] = fp->region.q.y;
104
0
    curve[3].vertex.cc[0] = fp->region.p.x;   curve[3].vertex.cc[1] = fp->region.q.y;
105
0
    code = patch_fill(&pfs1, curve, NULL, NULL);
106
0
    if (term_patch_fill_state(&pfs1))
107
0
        return_error(gs_error_unregistered); /* Must not happen. */
108
0
    return code;
109
0
}
110
111
int
112
gs_shading_Fb_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
113
                             const gs_fixed_rect * rect_clip,
114
                             gx_device * dev, gs_gstate * pgs)
115
0
{
116
0
    const gs_shading_Fb_t * const psh = (const gs_shading_Fb_t *)psh0;
117
0
    gs_matrix save_ctm;
118
0
    int xi, yi, code;
119
0
    float x[2], y[2];
120
0
    Fb_fill_state_t state;
121
122
0
    code = shade_init_fill_state((shading_fill_state_t *) & state, psh0, dev, pgs);
123
0
    if (code < 0)
124
0
        return code;
125
0
    state.psh = psh;
126
    /****** HACK FOR FIXED-POINT MATRIX MULTIPLY ******/
127
0
    gs_currentmatrix((gs_gstate *) pgs, &save_ctm);
128
0
    gs_concat((gs_gstate *) pgs, &psh->params.Matrix);
129
0
    state.ptm = pgs->ctm;
130
0
    gs_setmatrix((gs_gstate *) pgs, &save_ctm);
131
    /* Compute the parameter X and Y ranges. */
132
0
    {
133
0
        gs_rect pbox;
134
135
0
        code = gs_bbox_transform_inverse(rect, &psh->params.Matrix, &pbox);
136
0
        if (code < 0)
137
0
            return code;
138
0
        x[0] = max(pbox.p.x, psh->params.Domain[0]);
139
0
        x[1] = min(pbox.q.x, psh->params.Domain[1]);
140
0
        y[0] = max(pbox.p.y, psh->params.Domain[2]);
141
0
        y[1] = min(pbox.q.y, psh->params.Domain[3]);
142
0
    }
143
0
    if (x[0] > x[1] || y[0] > y[1]) {
144
        /* The region is outside the shading area. */
145
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
146
0
        return 0;
147
0
    }
148
0
    for (xi = 0; xi < 2; ++xi)
149
0
        for (yi = 0; yi < 2; ++yi) {
150
0
            float v[2];
151
152
0
            v[0] = x[xi], v[1] = y[yi];
153
0
            gs_function_evaluate(psh->params.Function, v,
154
0
                                 state.frame.cc[yi * 2 + xi].paint.values);
155
0
        }
156
0
    state.frame.region.p.x = x[0];
157
0
    state.frame.region.p.y = y[0];
158
0
    state.frame.region.q.x = x[1];
159
0
    state.frame.region.q.y = y[1];
160
0
    code = Fb_fill_region(&state, rect_clip);
161
0
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
162
0
    return code;
163
0
}
164
165
/* ---------------- Axial shading ---------------- */
166
167
typedef struct A_fill_state_s {
168
    const gs_shading_A_t *psh;
169
    gs_point delta;
170
    double length;
171
    double t0, t1;
172
    double v0, v1, u0, u1;
173
} A_fill_state_t;
174
/****** NEED GC DESCRIPTOR ******/
175
176
/* Note t0 and t1 vary over [0..1], not the Domain. */
177
178
typedef struct
179
{
180
    patch_curve_t curve[4];
181
    gs_point corners[4];
182
} corners_and_curves;
183
184
/* Ghostscript cannot possibly render any patch whose bounds aren't
185
 * representable in fixed's. In fact, this is a larger limit than
186
 * we need. We notionally have an area defined by coordinates
187
 * that can be represented in fixed point with at least 1 bit to
188
 * spare.
189
 *
190
 * Any patch that lies completely outside this region can be clipped
191
 * away. Any patch that isn't representable by fixed points can be
192
 * subdivided into 4.
193
 *
194
 * This avoids us subdividing patches huge numbers of times because
195
 * one side is just outside the region we will accept.
196
 */
197
198
199
#define MIN_CLIP_LIMIT ((int)(fixed2int(min_fixed)/2))
200
#define MAX_CLIP_LIMIT ((int)(fixed2int(max_fixed)/2))
201
202
static int not_clipped_away(const gs_point *p, const gs_fixed_rect *rect)
203
401M
{
204
401M
    if (p[0].x < rect->p.x &&
205
204M
        p[1].x < rect->p.x &&
206
109M
        p[2].x < rect->p.x &&
207
109M
        p[3].x < rect->p.x)
208
109M
        return 0; /* Clipped away! */
209
292M
    if (p[0].x > rect->q.x &&
210
190M
        p[1].x > rect->q.x &&
211
190M
        p[2].x > rect->q.x &&
212
190M
        p[3].x > rect->q.x)
213
111M
        return 0; /* Clipped away! */
214
180M
    if (p[0].y < rect->p.y &&
215
819
        p[1].y < rect->p.y &&
216
799
        p[2].y < rect->p.y &&
217
780
        p[3].y < rect->p.y)
218
7
        return 0; /* Clipped away! */
219
180M
    if (p[0].y > rect->q.y &&
220
244
        p[1].y > rect->q.y &&
221
0
        p[2].y > rect->q.y &&
222
0
        p[3].y > rect->q.y)
223
0
        return 0; /* Clipped away! */
224
180M
    return 1;
225
180M
}
226
227
#define midpoint(a,b)\
228
1.29G
  (arith_rshift_1(a) + arith_rshift_1(b) + (((a) | (b)) & 1))
229
230
#define quarterpoint(a,b)\
231
482M
  (midpoint(a,midpoint(a,b)))
232
233
static int
234
subdivide_patch_fill(patch_fill_state_t *pfs, patch_curve_t c[4])
235
80.1M
{
236
80.1M
    fixed m0, m1;
237
80.1M
    int v0, v1;
238
80.1M
    int changed;
239
240
80.1M
    if (pfs->rect.p.x >= pfs->rect.q.x || pfs->rect.p.y >= pfs->rect.q.y)
241
603
        return 0;
242
243
    /* On entry we have a patch:
244
     *   c[0].vertex  c[1].vertex
245
     *
246
     *   c[3].vertex  c[2].vertex
247
     *
248
     * Only the corners are set. The control points are not!
249
     *
250
     * BUT... in terms of spacial coords, it might be different...
251
     * They might be flipped on X, Y or both, giving:
252
     *  01 or 10 or 32 or 23
253
     *  32    23    01    10
254
     * or they might be rotated, and then flipped on X, Y or both, giving:
255
     *  03 or 30 or 12 or 21
256
     *  12    21    03    30
257
     */
258
259
    /* The +MIDPOINT_ACCURACY in the tests below is to allow for us finding the midpoint of [a] = z+1 and [b] = z, and getting z+1,
260
     * and updating [a] to be z+1, hence never actually shrinking the gap. Just accept not culling the patch as
261
     * much as we might. See bug 706378 for an example. */
262
455M
#define MIDPOINT_ACCURACY 1
263
309M
#define QUARTERPOINT_ACCURACY 3
264
265
80.1M
    do {
266
80.1M
        changed = 0;
267
268
        /* Is the whole of our patch outside the clipping rectangle? */
269
        /* Tempting to try to roll this into the cases below, but that
270
         * doesn't work because we want <= or >= here. Do X ones first. */
271
80.1M
        if ((c[0].vertex.p.x <= pfs->rect.p.x &&
272
42.9M
             c[1].vertex.p.x <= pfs->rect.p.x &&
273
33.3k
             c[2].vertex.p.x <= pfs->rect.p.x &&
274
1.57k
             c[3].vertex.p.x <= pfs->rect.p.x) ||
275
80.1M
            (c[0].vertex.p.x >= pfs->rect.q.x &&
276
37.0M
             c[1].vertex.p.x >= pfs->rect.q.x &&
277
37.0M
             c[2].vertex.p.x >= pfs->rect.q.x &&
278
37.0M
             c[3].vertex.p.x >= pfs->rect.q.x))
279
6.61M
                return 0;
280
281
        /* First, let's try to see if we can cull the patch horizontally with the clipping
282
         * rectangle. */
283
        /* Non rotated cases first. Can we cull the left hand half? */
284
73.5M
        if (c[0].vertex.p.x < pfs->rect.p.x && c[3].vertex.p.x < pfs->rect.p.x)
285
42.7M
        {
286
            /* Check 0+3 off left. */
287
42.7M
            v0 = 0;
288
42.7M
            v1 = 3;
289
42.7M
            goto check_left;
290
42.7M
        }
291
30.7M
        else if (c[1].vertex.p.x < pfs->rect.p.x && c[2].vertex.p.x < pfs->rect.p.x)
292
44
        {
293
            /* Check 1+2 off left. */
294
44
            v0 = 1;
295
44
            v1 = 2;
296
42.7M
check_left:
297
            /* At this point we know that the condition for the following loop is true, so it
298
             * can be a do...while rather than a while. */
299
42.7M
            do
300
79.1M
            {
301
                /* Let's form (X coords only):
302
                 *
303
                 * c[v0].vertex  m0  c[v0^1].vertex
304
                 * c[v1].vertex  m1  c[v1^1].vertex
305
                 */
306
79.1M
                m0 = midpoint(c[0].vertex.p.x, c[1].vertex.p.x);
307
79.1M
                if (m0 >= pfs->rect.p.x)
308
42.7M
                    goto check_left_quarter;
309
36.4M
                m1 = midpoint(c[3].vertex.p.x, c[2].vertex.p.x);
310
36.4M
                if (m1 >= pfs->rect.p.x)
311
1
                    goto check_left_quarter;
312
                /* So, we can completely discard the left hand half of the patch. */
313
36.4M
                c[v0].vertex.p.x = m0;
314
36.4M
                c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[1].vertex.p.y);
315
36.4M
                c[v1].vertex.p.x = m1;
316
36.4M
                c[v1].vertex.p.y = midpoint(c[3].vertex.p.y, c[2].vertex.p.y);
317
36.4M
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2;
318
36.4M
                c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2;
319
36.4M
                changed = 1;
320
36.4M
            }
321
42.7M
            while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x);
322
0
            if (0)
323
0
            {
324
42.7M
check_left_quarter:
325
                /* At this point we know that the condition for the following loop is true, so it
326
                 * can be a do...while rather than a while. */
327
42.7M
                do
328
65.8M
                {
329
                    /* Let's form (X coords only):
330
                     *
331
                     * c[v0].vertex  m0  x  x  c[v0^1].vertex
332
                     * c[v1].vertex  m1  x  x  c[v1^1].vertex
333
                     */
334
65.8M
                    m0 = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x);
335
65.8M
                    if (m0 >= pfs->rect.p.x)
336
42.7M
                        break;
337
23.0M
                    m1 = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x);
338
23.0M
                    if (m1 >= pfs->rect.p.x)
339
1
                        break;
340
                    /* So, we can completely discard the left hand quarter of the patch. */
341
23.0M
                    c[v0].vertex.p.x = m0;
342
23.0M
                    c[v0].vertex.p.y = midpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y);
343
23.0M
                    c[v1].vertex.p.x = m1;
344
23.0M
                    c[v1].vertex.p.y = midpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y);
345
23.0M
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4;
346
23.0M
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4;
347
23.0M
                    changed = 1;
348
23.0M
                }
349
42.7M
                while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x);
350
42.7M
            }
351
0
        }
352
353
        /* or the right hand half? */
354
73.5M
        if (c[0].vertex.p.x > pfs->rect.q.x && c[3].vertex.p.x > pfs->rect.q.x)
355
82
        {
356
            /* Check 0+3 off right. */
357
82
            v0 = 0;
358
82
            v1 = 3;
359
82
            goto check_right;
360
82
        }
361
73.5M
        else if (c[1].vertex.p.x > pfs->rect.q.x && c[2].vertex.p.x > pfs->rect.q.x)
362
42.7M
        {
363
            /* Check 1+2 off right. */
364
42.7M
            v0 = 1;
365
42.7M
            v1 = 2;
366
42.7M
check_right:
367
            /* At this point we know that the condition for the following loop is true, so it
368
             * can be a do...while rather than a while. */
369
42.7M
            do
370
79.2M
            {
371
                /* Let's form (X coords only):
372
                 *
373
                 * c[v0].vertex  m0  c[v0^1].vertex
374
                 * c[v1].vertex  m1  c[v1^1].vertex
375
                 */
376
79.2M
                m0 = midpoint(c[0].vertex.p.x, c[1].vertex.p.x);
377
79.2M
                if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
378
170
                    goto check_right_quarter;
379
79.2M
                m1 = midpoint(c[3].vertex.p.x, c[2].vertex.p.x);
380
79.2M
                if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
381
42.7M
                    goto check_right_quarter;
382
                /* So, we can completely discard the left hand half of the patch. */
383
36.4M
                c[v0].vertex.p.x = m0;
384
36.4M
                c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[1].vertex.p.y);
385
36.4M
                c[v1].vertex.p.x = m1;
386
36.4M
                c[v1].vertex.p.y = midpoint(c[3].vertex.p.y, c[2].vertex.p.y);
387
36.4M
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2;
388
36.4M
                c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2;
389
36.4M
                changed = 1;
390
36.4M
            }
391
42.7M
            while (c[v0].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY);
392
0
            if (0)
393
0
            {
394
42.7M
check_right_quarter:
395
                /* At this point we know that the condition for the following loop is true, so it
396
                 * can be a do...while rather than a while. */
397
42.7M
                do
398
65.8M
                {
399
                    /* Let's form (X coords only):
400
                     *
401
                     * c[v0].vertex  m0  x  x  c[v0^1].vertex
402
                     * c[v1].vertex  m1  x  x  c[v1^1].vertex
403
                     */
404
65.8M
                    m0 = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x);
405
65.8M
                    if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
406
170
                        break;
407
65.8M
                    m1 = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x);
408
65.8M
                    if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
409
42.7M
                        break;
410
                    /* So, we can completely discard the left hand half of the patch. */
411
23.0M
                    c[v0].vertex.p.x = m0;
412
23.0M
                    c[v0].vertex.p.y = quarterpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y);
413
23.0M
                    c[v1].vertex.p.x = m1;
414
23.0M
                    c[v1].vertex.p.y = quarterpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y);
415
23.0M
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4;
416
23.0M
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4;
417
23.0M
                    changed = 1;
418
23.0M
                }
419
42.7M
                while (c[v0].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY);
420
42.7M
            }
421
0
        }
422
423
        /* Now, rotated cases: Can we cull the left hand half? */
424
73.5M
        if (c[0].vertex.p.x < pfs->rect.p.x && c[1].vertex.p.x < pfs->rect.p.x)
425
26.3k
        {
426
            /* Check 0+1 off left. */
427
26.3k
            v0 = 0;
428
26.3k
            v1 = 1;
429
26.3k
            goto check_rot_left;
430
26.3k
        }
431
73.5M
        else if (c[3].vertex.p.x < pfs->rect.p.x && c[2].vertex.p.x < pfs->rect.p.x)
432
30.4M
        {
433
            /* Check 3+2 off left. */
434
30.4M
            v0 = 3;
435
30.4M
            v1 = 2;
436
30.4M
check_rot_left:
437
            /* At this point we know that the condition for the following loop is true, so it
438
             * can be a do...while rather than a while. */
439
30.4M
            do
440
61.8M
            {
441
                /* Let's form (X coords only):
442
                 *
443
                 * c[v0].vertex    m0  c[v0^3].vertex
444
                 * c[v1^3].vertex  m1  c[v1].vertex
445
                 */
446
61.8M
                m0 = midpoint(c[0].vertex.p.x, c[3].vertex.p.x);
447
61.8M
                if (m0 >= pfs->rect.p.x)
448
35.1k
                    goto check_rot_left_quarter;
449
61.8M
                m1 = midpoint(c[1].vertex.p.x, c[2].vertex.p.x);
450
61.8M
                if (m1 >= pfs->rect.p.x)
451
30.4M
                    goto check_rot_left_quarter;
452
                /* So, we can completely discard the left hand half of the patch. */
453
31.4M
                c[v0].vertex.p.x = m0;
454
31.4M
                c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[3].vertex.p.y);
455
31.4M
                c[v1].vertex.p.x = m1;
456
31.4M
                c[v1].vertex.p.y = midpoint(c[1].vertex.p.y, c[2].vertex.p.y);
457
31.4M
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2;
458
31.4M
                c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2;
459
31.4M
                changed = 1;
460
31.4M
            }
461
31.4M
            while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x);
462
0
            if (0)
463
0
            {
464
30.4M
check_rot_left_quarter:
465
                /* At this point we know that the condition for the following loop is true, so it
466
                 * can be a do...while rather than a while. */
467
30.4M
                do
468
46.0M
                {
469
                    /* Let's form (X coords only):
470
                     *
471
                     * c[v0].vertex  m0  x  x  c[v0^3].vertex
472
                     * c[v1].vertex  m1  x  x  c[v1^3].vertex
473
                     */
474
46.0M
                    m0 = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x);
475
46.0M
                    if (m0 >= pfs->rect.p.x)
476
28.2k
                        break;
477
46.0M
                    m1 = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x);
478
46.0M
                    if (m1 >= pfs->rect.p.x)
479
30.4M
                        break;
480
                    /* So, we can completely discard the left hand half of the patch. */
481
15.6M
                    c[v0].vertex.p.x = m0;
482
15.6M
                    c[v0].vertex.p.y = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y);
483
15.6M
                    c[v1].vertex.p.x = m1;
484
15.6M
                    c[v1].vertex.p.y = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y);
485
15.6M
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4;
486
15.6M
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4;
487
15.6M
                    changed = 1;
488
15.6M
                }
489
30.4M
                while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x);
490
30.4M
            }
491
0
        }
492
493
        /* or the right hand half? */
494
73.5M
        if (c[0].vertex.p.x > pfs->rect.q.x && c[1].vertex.p.x > pfs->rect.q.x)
495
30.4M
        {
496
            /* Check 0+1 off right. */
497
30.4M
            v0 = 0;
498
30.4M
            v1 = 1;
499
30.4M
            goto check_rot_right;
500
30.4M
        }
501
43.1M
        else if (c[3].vertex.p.x > pfs->rect.q.x && c[2].vertex.p.x > pfs->rect.q.x)
502
20.1k
        {
503
            /* Check 3+2 off right. */
504
20.1k
            v0 = 3;
505
20.1k
            v1 = 2;
506
30.4M
check_rot_right:
507
            /* At this point we know that the condition for the following loop is true, so it
508
             * can be a do...while rather than a while. */
509
30.4M
            do
510
61.8M
            {
511
                /* Let's form (X coords only):
512
                 *
513
                 * c[v0].vertex  m0  c[v0^3].vertex
514
                 * c[v1].vertex  m1  c[v1^3].vertex
515
                 */
516
61.8M
                m0 = midpoint(c[0].vertex.p.x, c[3].vertex.p.x);
517
61.8M
                if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
518
30.4M
                    goto check_rot_right_quarter;
519
31.4M
                m1 = midpoint(c[1].vertex.p.x, c[2].vertex.p.x);
520
31.4M
                if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
521
897
                    goto check_rot_right_quarter;
522
                /* So, we can completely discard the left hand half of the patch. */
523
31.4M
                c[v0].vertex.p.x = m0;
524
31.4M
                c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[3].vertex.p.y);
525
31.4M
                c[v1].vertex.p.x = m1;
526
31.4M
                c[v1].vertex.p.y = midpoint(c[1].vertex.p.y, c[2].vertex.p.y);
527
31.4M
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2;
528
31.4M
                c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2;
529
31.4M
                changed = 1;
530
31.4M
            }
531
31.4M
            while (c[v0].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY);
532
0
            if (0)
533
0
            {
534
30.4M
check_rot_right_quarter:
535
                /* At this point we know that the condition for the following loop is true, so it
536
                 * can be a do...while rather than a while. */
537
30.4M
                do
538
46.0M
                {
539
                    /* Let's form (X coords only):
540
                     *
541
                     * c[v0].vertex  m0  c[v0^3].vertex
542
                     * c[v1].vertex  m1  c[v1^3].vertex
543
                     */
544
46.0M
                    m0 = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x);
545
46.0M
                    if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
546
30.4M
                        break;
547
15.6M
                    m1 = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x);
548
15.6M
                    if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
549
8.72k
                        break;
550
                    /* So, we can completely discard the left hand half of the patch. */
551
15.6M
                    c[v0].vertex.p.x = m0;
552
15.6M
                    c[v0].vertex.p.y = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y);
553
15.6M
                    c[v1].vertex.p.x = m1;
554
15.6M
                    c[v1].vertex.p.y = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y);
555
15.6M
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4;
556
15.6M
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4;
557
15.6M
                    changed = 1;
558
15.6M
                }
559
30.4M
                while (c[v0].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY);
560
30.4M
            }
561
0
        }
562
563
        /* Is the whole of our patch outside the clipping rectangle? */
564
        /* Tempting to try to roll this into the cases below, but that
565
         * doesn't work because we want <= or >= here. Do Y ones. Can't have
566
         * done this earlier, as the previous set of tests might have reduced
567
         * the range here. */
568
73.5M
        if ((c[0].vertex.p.y <= pfs->rect.p.y &&
569
64.3k
             c[1].vertex.p.y <= pfs->rect.p.y &&
570
27.3k
             c[2].vertex.p.y <= pfs->rect.p.y &&
571
146
             c[3].vertex.p.y <= pfs->rect.p.y) ||
572
73.5M
            (c[0].vertex.p.y >= pfs->rect.q.y &&
573
73.2M
             c[1].vertex.p.y >= pfs->rect.q.y &&
574
73.2M
             c[2].vertex.p.y >= pfs->rect.q.y &&
575
73.2M
             c[3].vertex.p.y >= pfs->rect.q.y))
576
73.2M
            return 0;
577
578
        /* Now, let's try to see if we can cull the patch vertically with the clipping
579
         * rectangle. */
580
        /* Non rotated cases first. Can we cull the top half? */
581
327k
        if (c[0].vertex.p.y < pfs->rect.p.y && c[1].vertex.p.y < pfs->rect.p.y)
582
13.8k
        {
583
            /* Check 0+1 off above. */
584
13.8k
            v0 = 0;
585
13.8k
            v1 = 1;
586
13.8k
            goto check_above;
587
13.8k
        }
588
313k
        else if (c[3].vertex.p.y < pfs->rect.p.y && c[2].vertex.p.y < pfs->rect.p.y)
589
9.62k
        {
590
            /* Check 3+2 off above. */
591
9.62k
            v0 = 3;
592
9.62k
            v1 = 2;
593
23.4k
check_above:
594
            /* At this point we know that the condition for the following loop is true, so it
595
             * can be a do...while rather than a while. */
596
23.4k
            do
597
26.6k
            {
598
                /* Let's form (Y coords only):
599
                 *
600
                 * c[v0].vertex     c[v1].vertex
601
                 * m0               m1
602
                 * c[v0^3].vertex   c[v1^3].vertex
603
                 */
604
26.6k
                m0 = midpoint(c[0].vertex.p.y, c[3].vertex.p.y);
605
26.6k
                if (m0 >= pfs->rect.p.y)
606
7.73k
                    goto check_above_quarter;
607
18.9k
                m1 = midpoint(c[1].vertex.p.y, c[2].vertex.p.y);
608
18.9k
                if (m1 >= pfs->rect.p.y)
609
15.7k
                    goto check_above_quarter;
610
                /* So, we can completely discard the top half of the patch. */
611
3.21k
                c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[3].vertex.p.x);
612
3.21k
                c[v0].vertex.p.y = m0;
613
3.21k
                c[v1].vertex.p.x = midpoint(c[1].vertex.p.x, c[2].vertex.p.x);
614
3.21k
                c[v1].vertex.p.y = m1;
615
3.21k
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2;
616
3.21k
                c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2;
617
3.21k
                changed = 1;
618
3.21k
            }
619
23.4k
            while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y);
620
0
            if (0)
621
0
            {
622
23.4k
check_above_quarter:
623
                /* At this point we know that the condition for the following loop is true, so it
624
                 * can be a do...while rather than a while. */
625
23.4k
                do
626
28.3k
                {
627
                    /* Let's form (Y coords only):
628
                     *
629
                     * c[v0].vertex     c[v1].vertex
630
                     * m0               m1
631
                     * x                x
632
                     * x                x
633
                     * c[v0^3].vertex   c[v1^3].vertex
634
                     */
635
28.3k
                    m0 = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y);
636
28.3k
                    if (m0 >= pfs->rect.p.y)
637
6.37k
                        break;
638
21.9k
                    m1 = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y);
639
21.9k
                    if (m1 >= pfs->rect.p.y)
640
17.0k
                        break;
641
                    /* So, we can completely discard the top half of the patch. */
642
4.88k
                    c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x);
643
4.88k
                    c[v0].vertex.p.y = m0;
644
4.88k
                    c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x);
645
4.88k
                    c[v1].vertex.p.y = m1;
646
4.88k
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4;
647
4.88k
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4;
648
4.88k
                    changed = 1;
649
4.88k
                }
650
23.4k
                while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y);
651
23.4k
            }
652
0
        }
653
654
        /* or the bottom half? */
655
327k
        if (c[0].vertex.p.y > pfs->rect.q.y && c[1].vertex.p.y > pfs->rect.q.y)
656
9.67k
        {
657
            /* Check 0+1 off bottom. */
658
9.67k
            v0 = 0;
659
9.67k
            v1 = 1;
660
9.67k
            goto check_bottom;
661
9.67k
        }
662
317k
        else if (c[3].vertex.p.y > pfs->rect.q.y && c[2].vertex.p.y > pfs->rect.q.y)
663
13.1k
        {
664
            /* Check 3+2 off bottom. */
665
13.1k
            v0 = 3;
666
13.1k
            v1 = 2;
667
22.8k
check_bottom:
668
            /* At this point we know that the condition for the following loop is true, so it
669
             * can be a do...while rather than a while. */
670
22.8k
            do
671
26.4k
            {
672
                /* Let's form (Y coords only):
673
                 *
674
                 * c[v0].vertex     c[v1].vertex
675
                 * m0               m1
676
                 * c[v0^3].vertex   c[v1^3].vertex
677
                 */
678
26.4k
                m0 = midpoint(c[0].vertex.p.y, c[3].vertex.p.y);
679
26.4k
                if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
680
18.4k
                    goto check_bottom_quarter;
681
7.92k
                m1 = midpoint(c[1].vertex.p.y, c[2].vertex.p.y);
682
7.92k
                if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
683
4.32k
                    goto check_bottom_quarter;
684
                /* So, we can completely discard the bottom half of the patch. */
685
3.60k
                c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[3].vertex.p.x);
686
3.60k
                c[v0].vertex.p.y = m0;
687
3.60k
                c[v1].vertex.p.x = midpoint(c[1].vertex.p.x, c[2].vertex.p.x);
688
3.60k
                c[v1].vertex.p.y = m1;
689
3.60k
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2;
690
3.60k
                c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2;
691
3.60k
                changed = 1;
692
3.60k
            }
693
22.8k
            while (c[v0].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY);
694
0
            if (0)
695
0
            {
696
22.8k
check_bottom_quarter:
697
                /* At this point we know that the condition for the following loop is true, so it
698
                 * can be a do...while rather than a while. */
699
22.8k
                do
700
28.2k
                {
701
                    /* Let's form (Y coords only):
702
                     *
703
                     * c[v0].vertex     c[v1].vertex
704
                     * x                x
705
                     * x                x
706
                     * m0               m1
707
                     * c[v0^3].vertex   c[v1^3].vertex
708
                     */
709
28.2k
                    m0 = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y);
710
28.2k
                    if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
711
17.8k
                        break;
712
10.3k
                    m1 = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y);
713
10.3k
                    if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
714
4.96k
                        break;
715
                    /* So, we can completely discard the bottom half of the patch. */
716
5.41k
                    c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x);
717
5.41k
                    c[v0].vertex.p.y = m0;
718
5.41k
                    c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x);
719
5.41k
                    c[v1].vertex.p.y = m1;
720
5.41k
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4;
721
5.41k
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4;
722
5.41k
                    changed = 1;
723
5.41k
                }
724
22.8k
                while (c[v0].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY);
725
22.8k
            }
726
0
        }
727
728
        /* Now, rotated cases: Can we cull the top half? */
729
327k
        if (c[0].vertex.p.y < pfs->rect.p.y && c[3].vertex.p.y < pfs->rect.p.y)
730
1.94k
        {
731
            /* Check 0+3 off above. */
732
1.94k
            v0 = 0;
733
1.94k
            v1 = 3;
734
1.94k
            goto check_rot_above;
735
1.94k
        }
736
325k
        else if (c[1].vertex.p.y < pfs->rect.p.y && c[2].vertex.p.y < pfs->rect.p.y)
737
824
        {
738
            /* Check 1+2 off above. */
739
824
            v0 = 1;
740
824
            v1 = 2;
741
2.77k
check_rot_above:
742
            /* At this point we know that the condition for the following loop is true, so it
743
             * can be a do...while rather than a while. */
744
2.77k
            do
745
3.28k
            {
746
                /* Let's form (Y coords only):
747
                 *
748
                 * c[v0].vertex     c[v1].vertex
749
                 * m0               m1
750
                 * c[v0^1].vertex   c[v1^1].vertex
751
                 */
752
3.28k
                m0 = midpoint(c[0].vertex.p.y, c[1].vertex.p.y);
753
3.28k
                if (m0 >= pfs->rect.p.y)
754
2.75k
                    goto check_rot_above_quarter;
755
529
                m1 = midpoint(c[3].vertex.p.y, c[2].vertex.p.y);
756
529
                if (m1 >= pfs->rect.p.y)
757
17
                    goto check_rot_above_quarter;
758
                /* So, we can completely discard the top half of the patch. */
759
512
                c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[1].vertex.p.x);
760
512
                c[v0].vertex.p.y = m0;
761
512
                c[v1].vertex.p.x = midpoint(c[3].vertex.p.x, c[2].vertex.p.x);
762
512
                c[v1].vertex.p.y = m1;
763
512
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2;
764
512
                c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2;
765
512
                changed = 1;
766
512
            }
767
2.77k
            while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y);
768
0
            if (0)
769
0
            {
770
2.77k
check_rot_above_quarter:
771
                /* At this point we know that the condition for the following loop is true, so it
772
                 * can be a do...while rather than a while. */
773
2.77k
                do
774
2.85k
                {
775
                    /* Let's form (Y coords only):
776
                     *
777
                     * c[v0].vertex     c[v1].vertex
778
                     * m0               m1
779
                     * x                x
780
                     * x                x
781
                     * c[v0^1].vertex   c[v1^1].vertex
782
                     */
783
2.85k
                    m0 = quarterpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y);
784
2.85k
                    if (m0 >= pfs->rect.p.y)
785
2.75k
                        break;
786
95
                    m1 = quarterpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y);
787
95
                    if (m1 >= pfs->rect.p.y)
788
17
                        break;
789
                    /* So, we can completely discard the top half of the patch. */
790
78
                    c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x);
791
78
                    c[v0].vertex.p.y = m0;
792
78
                    c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x);
793
78
                    c[v1].vertex.p.y = m1;
794
78
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4;
795
78
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4;
796
78
                    changed = 1;
797
78
                }
798
2.77k
                while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y);
799
2.77k
            }
800
0
        }
801
802
        /* or the bottom half? */
803
327k
        if (c[0].vertex.p.y > pfs->rect.q.y && c[3].vertex.p.y > pfs->rect.q.y)
804
36
        {
805
            /* Check 0+3 off the bottom. */
806
36
            v0 = 0;
807
36
            v1 = 3;
808
36
            goto check_rot_bottom;
809
36
        }
810
327k
        else if (c[1].vertex.p.y > pfs->rect.q.y && c[2].vertex.p.y > pfs->rect.q.y)
811
148
        {
812
            /* Check 1+2 off the bottom. */
813
148
            v0 = 1;
814
148
            v1 = 2;
815
184
check_rot_bottom:
816
            /* At this point we know that the condition for the following loop is true, so it
817
             * can be a do...while rather than a while. */
818
184
            do
819
473
            {
820
                /* Let's form (Y coords only):
821
                 *
822
                 * c[v0].vertex     c[v1].vertex
823
                 * m0               m1
824
                 * c[v0^1].vertex   c[v1^1].vertex
825
                 */
826
473
                m0 = midpoint(c[0].vertex.p.y, c[1].vertex.p.y);
827
473
                if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
828
184
                    goto check_rot_bottom_quarter;
829
289
                m1 = midpoint(c[3].vertex.p.y, c[2].vertex.p.y);
830
289
                if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
831
0
                    goto check_rot_bottom_quarter;
832
                /* So, we can completely discard the left hand half of the patch. */
833
289
                c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[1].vertex.p.x);
834
289
                c[v0].vertex.p.y = m0;
835
289
                c[v1].vertex.p.x = midpoint(c[3].vertex.p.x, c[2].vertex.p.x);
836
289
                c[v1].vertex.p.y = m1;
837
289
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2;
838
289
                c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2;
839
289
                changed = 1;
840
289
            }
841
289
            while (c[v0].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY);
842
0
            if (0)
843
0
            {
844
184
check_rot_bottom_quarter:
845
                /* At this point we know that the condition for the following loop is true, so it
846
                 * can be a do...while rather than a while. */
847
184
                do
848
265
                {
849
                    /* Let's form (Y coords only):
850
                     *
851
                     * c[v0].vertex     c[v1].vertex
852
                     * x                x
853
                     * x                x
854
                     * m0               m1
855
                     * c[v0^1].vertex   c[v1^1].vertex
856
                     */
857
265
                    m0 = quarterpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y);
858
265
                    if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
859
184
                        break;
860
81
                    m1 = quarterpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y);
861
81
                    if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
862
0
                        break;
863
                    /* So, we can completely discard the left hand half of the patch. */
864
81
                    c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x);
865
81
                    c[v0].vertex.p.y = m0;
866
81
                    c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x);
867
81
                    c[v1].vertex.p.y = m1;
868
81
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4;
869
81
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4;
870
81
                    changed = 1;
871
81
                }
872
184
                while (c[v0].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY);
873
184
            }
874
0
        }
875
327k
    } while (changed);
876
877
309k
    c[0].vertex.cc[1] = c[1].vertex.cc[1] =
878
309k
                        c[2].vertex.cc[1] =
879
309k
                        c[3].vertex.cc[1] = 0;
880
309k
    make_other_poles(c);
881
309k
    return patch_fill(pfs, c, NULL, NULL);
882
80.1M
}
883
#undef midpoint
884
#undef quarterpoint
885
#undef MIDPOINT_ACCURACY
886
#undef QUARTERPOINT_ACCURACY
887
888
964M
#define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits)
889
890
static int
891
A_fill_region_floats(patch_fill_state_t *pfs1, corners_and_curves *cc, int depth)
892
180M
{
893
180M
    corners_and_curves sub[4];
894
180M
    int code;
895
896
180M
    if (depth == 32)
897
5
        return gs_error_limitcheck;
898
899
180M
    if (depth > 0 &&
900
180M
        f_fits_in_fixed(cc->corners[0].x) &&
901
180M
        f_fits_in_fixed(cc->corners[0].y) &&
902
180M
        f_fits_in_fixed(cc->corners[1].x) &&
903
180M
        f_fits_in_fixed(cc->corners[1].y) &&
904
180M
        f_fits_in_fixed(cc->corners[2].x) &&
905
180M
        f_fits_in_fixed(cc->corners[2].y) &&
906
180M
        f_fits_in_fixed(cc->corners[3].x) &&
907
79.8M
        f_fits_in_fixed(cc->corners[3].y))
908
79.8M
    {
909
79.8M
        cc->curve[0].vertex.p.x = float2fixed(cc->corners[0].x);
910
79.8M
        cc->curve[0].vertex.p.y = float2fixed(cc->corners[0].y);
911
79.8M
        cc->curve[1].vertex.p.x = float2fixed(cc->corners[1].x);
912
79.8M
        cc->curve[1].vertex.p.y = float2fixed(cc->corners[1].y);
913
79.8M
        cc->curve[2].vertex.p.x = float2fixed(cc->corners[2].x);
914
79.8M
        cc->curve[2].vertex.p.y = float2fixed(cc->corners[2].y);
915
79.8M
        cc->curve[3].vertex.p.x = float2fixed(cc->corners[3].x);
916
79.8M
        cc->curve[3].vertex.p.y = float2fixed(cc->corners[3].y);
917
79.8M
        return subdivide_patch_fill(pfs1, cc->curve);
918
79.8M
    }
919
920
    /* We have patches with corners:
921
     *  0  1
922
     *  3  2
923
     * We subdivide these into 4 smaller patches:
924
     *
925
     *  0   10   1     Where 0123 are corners
926
     *   [0]  [1]      [0][1][2][3] are patches.
927
     *  3   23   2
928
     *  0   10   1
929
     *   [3]  [2]
930
     *  3   23   2
931
     */
932
933
100M
    sub[0].corners[0].x = cc->corners[0].x;
934
100M
    sub[0].corners[0].y = cc->corners[0].y;
935
100M
    sub[1].corners[1].x = cc->corners[1].x;
936
100M
    sub[1].corners[1].y = cc->corners[1].y;
937
100M
    sub[2].corners[2].x = cc->corners[2].x;
938
100M
    sub[2].corners[2].y = cc->corners[2].y;
939
100M
    sub[3].corners[3].x = cc->corners[3].x;
940
100M
    sub[3].corners[3].y = cc->corners[3].y;
941
100M
    sub[1].corners[0].x = sub[0].corners[1].x = (cc->corners[0].x + cc->corners[1].x)/2;
942
100M
    sub[1].corners[0].y = sub[0].corners[1].y = (cc->corners[0].y + cc->corners[1].y)/2;
943
100M
    sub[3].corners[2].x = sub[2].corners[3].x = (cc->corners[2].x + cc->corners[3].x)/2;
944
100M
    sub[3].corners[2].y = sub[2].corners[3].y = (cc->corners[2].y + cc->corners[3].y)/2;
945
100M
    sub[3].corners[0].x = sub[0].corners[3].x = (cc->corners[0].x + cc->corners[3].x)/2;
946
100M
    sub[3].corners[0].y = sub[0].corners[3].y = (cc->corners[0].y + cc->corners[3].y)/2;
947
100M
    sub[2].corners[1].x = sub[1].corners[2].x = (cc->corners[1].x + cc->corners[2].x)/2;
948
100M
    sub[2].corners[1].y = sub[1].corners[2].y = (cc->corners[1].y + cc->corners[2].y)/2;
949
100M
    sub[0].corners[2].x = sub[1].corners[3].x =
950
100M
                          sub[2].corners[0].x =
951
100M
                          sub[3].corners[1].x = (sub[0].corners[3].x + sub[1].corners[2].x)/2;
952
100M
    sub[0].corners[2].y = sub[1].corners[3].y =
953
100M
                          sub[2].corners[0].y =
954
100M
                          sub[3].corners[1].y = (sub[0].corners[3].y + sub[1].corners[2].y)/2;
955
100M
    sub[0].curve[0].vertex.cc[0] = sub[0].curve[3].vertex.cc[0] =
956
100M
                                   sub[3].curve[0].vertex.cc[0] =
957
100M
                                   sub[3].curve[3].vertex.cc[0] = cc->curve[0].vertex.cc[0];
958
100M
    sub[1].curve[1].vertex.cc[0] = sub[1].curve[2].vertex.cc[0] =
959
100M
                                   sub[2].curve[1].vertex.cc[0] =
960
100M
                                   sub[2].curve[2].vertex.cc[0] = cc->curve[1].vertex.cc[0];
961
100M
    sub[0].curve[1].vertex.cc[0] = sub[0].curve[2].vertex.cc[0] =
962
100M
                                   sub[1].curve[0].vertex.cc[0] =
963
100M
                                   sub[1].curve[3].vertex.cc[0] =
964
100M
                                   sub[2].curve[0].vertex.cc[0] =
965
100M
                                   sub[2].curve[3].vertex.cc[0] =
966
100M
                                   sub[3].curve[1].vertex.cc[0] =
967
100M
                                   sub[3].curve[2].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
968
969
100M
    depth++;
970
100M
    if (not_clipped_away(sub[0].corners, &pfs1->rect)) {
971
39.5M
        code = A_fill_region_floats(pfs1, &sub[0], depth);
972
39.5M
        if (code < 0)
973
160
            return code;
974
39.5M
    }
975
100M
    if (not_clipped_away(sub[1].corners, &pfs1->rect)) {
976
49.4M
        code = A_fill_region_floats(pfs1, &sub[1], depth);
977
49.4M
        if (code < 0)
978
0
            return code;
979
49.4M
    }
980
100M
    if (not_clipped_away(sub[2].corners, &pfs1->rect)) {
981
39.5M
        code = A_fill_region_floats(pfs1, &sub[2], depth);
982
39.5M
        if (code < 0)
983
0
            return code;
984
39.5M
    }
985
100M
    if (not_clipped_away(sub[3].corners, &pfs1->rect)) {
986
51.7M
        code = A_fill_region_floats(pfs1, &sub[3], depth);
987
51.7M
        if (code < 0)
988
0
            return code;
989
51.7M
    }
990
991
100M
    return 0;
992
100M
}
993
994
3.32k
#define midpoint(a,b)      ((a+b)/2)
995
996
179
#define quarterpoint(a,b)  ((a+3*b)/4)
997
998
static int
999
subdivide_patch_fill_floats(patch_fill_state_t *pfs, corners_and_curves *cc)
1000
374
{
1001
374
    double m0, m1;
1002
374
    int v0, v1;
1003
374
    int changed;
1004
1005
374
    if (pfs->rect.p.x >= pfs->rect.q.x || pfs->rect.p.y >= pfs->rect.q.y)
1006
271
        return 0;
1007
1008
    /* On entry we have a patch:
1009
     *   c[0].vertex  c[1].vertex
1010
     *
1011
     *   c[3].vertex  c[2].vertex
1012
     *
1013
     * Only the corners are set. The control points are not!
1014
     *
1015
     * BUT... in terms of spacial coords, it might be different...
1016
     * They might be flipped on X, Y or both, giving:
1017
     *  01 or 10 or 32 or 23
1018
     *  32    23    01    10
1019
     * or they might be rotated, and then flipped on X, Y or both, giving:
1020
     *  03 or 30 or 12 or 21
1021
     *  12    21    03    30
1022
     */
1023
1024
    /* The +MIDPOINT_ACCURACY in the tests below is to allow for us finding the midpoint of [a] = z+1 and [b] = z, and getting z+1,
1025
     * and updating [a] to be z+1, hence never actually shrinking the gap. Just accept not culling the patch as
1026
     * much as we might. See bug 706378 for an example. */
1027
2.17k
#define MIDPOINT_ACCURACY 0.0001
1028
103
#define QUARTERPOINT_ACCURACY 0.0003
1029
1030
153
    do {
1031
153
        changed = 0;
1032
1033
        /* Is the whole of our patch outside the clipping rectangle? */
1034
        /* Tempting to try to roll this into the cases below, but that
1035
         * doesn't work because we want <= or >= here. Do the X ones
1036
         * first. */
1037
153
        if ((cc->corners[0].x <= pfs->rect.p.x &&
1038
38
             cc->corners[1].x <= pfs->rect.p.x &&
1039
24
             cc->corners[2].x <= pfs->rect.p.x &&
1040
24
             cc->corners[3].x <= pfs->rect.p.x) ||
1041
129
            (cc->corners[0].x >= pfs->rect.q.x &&
1042
85
             cc->corners[1].x >= pfs->rect.q.x &&
1043
25
             cc->corners[2].x >= pfs->rect.q.x &&
1044
25
             cc->corners[3].x >= pfs->rect.q.x))
1045
49
                return 0;
1046
1047
        /* First, let's try to see if we can cull the patch horizontally with the clipping
1048
         * rectangle. */
1049
        /* Non rotated cases first. Can we cull the left hand half? */
1050
104
        if (cc->corners[0].x < pfs->rect.p.x && cc->corners[3].x < pfs->rect.p.x)
1051
14
        {
1052
            /* Check 0+3 off left. */
1053
14
            v0 = 0;
1054
14
            v1 = 3;
1055
14
            goto check_left;
1056
14
        }
1057
90
        else if (cc->corners[1].x < pfs->rect.p.x && cc->corners[2].x < pfs->rect.p.x)
1058
46
        {
1059
            /* Check 1+2 off left. */
1060
46
            v0 = 1;
1061
46
            v1 = 2;
1062
60
check_left:
1063
            /* At this point we know that the condition for the following loop is true, so it
1064
             * can be a do...while rather than a while. */
1065
60
            do
1066
360
            {
1067
                /* Let's form (X coords only):
1068
                 *
1069
                 * c[v0].vertex  m0  c[v0^1].vertex
1070
                 * c[v1].vertex  m1  c[v1^1].vertex
1071
                 */
1072
360
                m0 = midpoint(cc->corners[0].x, cc->corners[1].x);
1073
360
                if (m0 >= pfs->rect.p.x)
1074
60
                    goto check_left_quarter;
1075
300
                m1 = midpoint(cc->corners[3].x, cc->corners[2].x);
1076
300
                if (m1 >= pfs->rect.p.x)
1077
0
                    goto check_left_quarter;
1078
                /* So, we can completely discard the left hand half of the patch. */
1079
300
                cc->corners[v0].x = m0;
1080
300
                cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[1].y);
1081
300
                cc->corners[v1].x = m1;
1082
300
                cc->corners[v1].y = midpoint(cc->corners[3].y, cc->corners[2].y);
1083
300
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
1084
300
                cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1085
300
                changed = 1;
1086
300
            }
1087
300
            while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x);
1088
0
            if (0)
1089
0
            {
1090
60
check_left_quarter:
1091
                /* At this point we know that the condition for the following loop is true, so it
1092
                 * can be a do...while rather than a while. */
1093
60
                do
1094
60
                {
1095
                    /* Let's form (X coords only):
1096
                     *
1097
                     * c[v0].vertex  m0  x  x  c[v0^1].vertex
1098
                     * c[v1].vertex  m1  x  x  c[v1^1].vertex
1099
                     */
1100
60
                    m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x);
1101
60
                    if (m0 >= pfs->rect.p.x)
1102
60
                        break;
1103
0
                    m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x);
1104
0
                    if (m1 >= pfs->rect.p.x)
1105
0
                        break;
1106
                    /* So, we can completely discard the left hand quarter of the patch. */
1107
0
                    cc->corners[v0].x = m0;
1108
0
                    cc->corners[v0].y = midpoint(cc->corners[v0].y, cc->corners[v0^1].y);
1109
0
                    cc->corners[v1].x = m1;
1110
0
                    cc->corners[v1].y = midpoint(cc->corners[v1].y, cc->corners[v1^1].y);
1111
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4;
1112
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4;
1113
0
                    changed = 1;
1114
0
                }
1115
60
                while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x);
1116
60
            }
1117
0
        }
1118
1119
        /* or the right hand half? */
1120
104
        if (cc->corners[0].x > pfs->rect.q.x && cc->corners[3].x > pfs->rect.q.x)
1121
60
        {
1122
            /* Check 0+3 off right. */
1123
60
            v0 = 0;
1124
60
            v1 = 3;
1125
60
            goto check_right;
1126
60
        }
1127
44
        else if (cc->corners[1].x > pfs->rect.q.x && cc->corners[2].x > pfs->rect.q.x)
1128
5
        {
1129
            /* Check 1+2 off right. */
1130
5
            v0 = 1;
1131
5
            v1 = 2;
1132
65
check_right:
1133
            /* At this point we know that the condition for the following loop is true, so it
1134
             * can be a do...while rather than a while. */
1135
65
            do
1136
481
            {
1137
                /* Let's form (X coords only):
1138
                 *
1139
                 * c[v0].vertex  m0  c[v0^1].vertex
1140
                 * c[v1].vertex  m1  c[v1^1].vertex
1141
                 */
1142
481
                m0 = midpoint(cc->corners[0].x, cc->corners[1].x);
1143
481
                if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
1144
64
                    goto check_right_quarter;
1145
417
                m1 = midpoint(cc->corners[3].x, cc->corners[2].x);
1146
417
                if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
1147
1
                    goto check_right_quarter;
1148
                /* So, we can completely discard the left hand half of the patch. */
1149
416
                cc->corners[v0].x = m0;
1150
416
                cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[1].y);
1151
416
                cc->corners[v1].x = m1;
1152
416
                cc->corners[v1].y = midpoint(cc->corners[3].y, cc->corners[2].y);
1153
416
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
1154
416
                cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1155
416
                changed = 1;
1156
416
            }
1157
416
            while (cc->corners[v0].x > pfs->rect.q.x+MIDPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+MIDPOINT_ACCURACY);
1158
0
            if (0)
1159
0
            {
1160
65
check_right_quarter:
1161
                /* At this point we know that the condition for the following loop is true, so it
1162
                 * can be a do...while rather than a while. */
1163
65
                do
1164
65
                {
1165
                    /* Let's form (X coords only):
1166
                     *
1167
                     * c[v0].vertex  m0  x  x  c[v0^1].vertex
1168
                     * c[v1].vertex  m1  x  x  c[v1^1].vertex
1169
                     */
1170
65
                    m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x);
1171
65
                    if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
1172
64
                        break;
1173
1
                    m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x);
1174
1
                    if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
1175
1
                        break;
1176
                    /* So, we can completely discard the left hand half of the patch. */
1177
0
                    cc->corners[v0].x = m0;
1178
0
                    cc->corners[v0].y = quarterpoint(cc->corners[v0].y, cc->corners[v0^1].y);
1179
0
                    cc->corners[v1].x = m1;
1180
0
                    cc->corners[v1].y = quarterpoint(cc->corners[v1].y, cc->corners[v1^1].y);
1181
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4;
1182
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4;
1183
0
                    changed = 1;
1184
0
                }
1185
65
                while (cc->corners[v0].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY);
1186
65
            }
1187
0
        }
1188
1189
        /* Now, rotated cases: Can we cull the left hand half? */
1190
104
        if (cc->corners[0].x < pfs->rect.p.x && cc->corners[1].x < pfs->rect.p.x)
1191
0
        {
1192
            /* Check 0+1 off left. */
1193
0
            v0 = 0;
1194
0
            v1 = 1;
1195
0
            goto check_rot_left;
1196
0
        }
1197
104
        else if (cc->corners[3].x < pfs->rect.p.x && cc->corners[2].x < pfs->rect.p.x)
1198
0
        {
1199
            /* Check 3+2 off left. */
1200
0
            v0 = 3;
1201
0
            v1 = 2;
1202
0
check_rot_left:
1203
            /* At this point we know that the condition for the following loop is true, so it
1204
             * can be a do...while rather than a while. */
1205
0
            do
1206
0
            {
1207
                /* Let's form (X coords only):
1208
                 *
1209
                 * c[v0].vertex    m0  c[v0^3].vertex
1210
                 * c[v1^3].vertex  m1  c[v1].vertex
1211
                 */
1212
0
                m0 = midpoint(cc->corners[0].x, cc->corners[3].x);
1213
0
                if (m0 >= pfs->rect.p.x)
1214
0
                    goto check_rot_left_quarter;
1215
0
                m1 = midpoint(cc->corners[1].x, cc->corners[2].x);
1216
0
                if (m1 >= pfs->rect.p.x)
1217
0
                    goto check_rot_left_quarter;
1218
                /* So, we can completely discard the left hand half of the patch. */
1219
0
                cc->corners[v0].x = m0;
1220
0
                cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[3].y);
1221
0
                cc->corners[v1].x = m1;
1222
0
                cc->corners[v1].y = midpoint(cc->corners[1].y, cc->corners[2].y);
1223
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2;
1224
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1225
0
                changed = 1;
1226
0
            }
1227
0
            while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x);
1228
0
            if (0)
1229
0
            {
1230
0
check_rot_left_quarter:
1231
                /* At this point we know that the condition for the following loop is true, so it
1232
                 * can be a do...while rather than a while. */
1233
0
                do
1234
0
                {
1235
                    /* Let's form (X coords only):
1236
                     *
1237
                     * c[v0].vertex  m0  x  x  c[v0^3].vertex
1238
                     * c[v1].vertex  m1  x  x  c[v1^3].vertex
1239
                     */
1240
0
                    m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x);
1241
0
                    if (m0 >= pfs->rect.p.x)
1242
0
                        break;
1243
0
                    m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x);
1244
0
                    if (m1 >= pfs->rect.p.x)
1245
0
                        break;
1246
                    /* So, we can completely discard the left hand half of the patch. */
1247
0
                    cc->corners[v0].x = m0;
1248
0
                    cc->corners[v0].y = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y);
1249
0
                    cc->corners[v1].x = m1;
1250
0
                    cc->corners[v1].y = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y);
1251
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4;
1252
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4;
1253
0
                    changed = 1;
1254
0
                }
1255
0
                while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x);
1256
0
            }
1257
0
        }
1258
1259
        /* or the right hand half? */
1260
104
        if (cc->corners[0].x > pfs->rect.q.x && cc->corners[1].x > pfs->rect.q.x)
1261
0
        {
1262
            /* Check 0+1 off right. */
1263
0
            v0 = 0;
1264
0
            v1 = 1;
1265
0
            goto check_rot_right;
1266
0
        }
1267
104
        else if (cc->corners[3].x > pfs->rect.q.x && cc->corners[2].x > pfs->rect.q.x)
1268
0
        {
1269
            /* Check 3+2 off right. */
1270
0
            v0 = 3;
1271
0
            v1 = 2;
1272
0
check_rot_right:
1273
            /* At this point we know that the condition for the following loop is true, so it
1274
             * can be a do...while rather than a while. */
1275
0
            do
1276
0
            {
1277
                /* Let's form (X coords only):
1278
                 *
1279
                 * c[v0].vertex  m0  c[v0^3].vertex
1280
                 * c[v1].vertex  m1  c[v1^3].vertex
1281
                 */
1282
0
                m0 = midpoint(cc->corners[0].x, cc->corners[3].x);
1283
0
                if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
1284
0
                    goto check_rot_right_quarter;
1285
0
                m1 = midpoint(cc->corners[1].x, cc->corners[2].x);
1286
0
                if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
1287
0
                    goto check_rot_right_quarter;
1288
                /* So, we can completely discard the left hand half of the patch. */
1289
0
                cc->corners[v0].x = m0;
1290
0
                cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[3].y);
1291
0
                cc->corners[v1].x = m1;
1292
0
                cc->corners[v1].y = midpoint(cc->corners[1].y, cc->corners[2].y);
1293
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2;
1294
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1295
0
                changed = 1;
1296
0
            }
1297
0
            while (cc->corners[v0].x > pfs->rect.q.x+MIDPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+MIDPOINT_ACCURACY);
1298
0
            if (0)
1299
0
            {
1300
0
check_rot_right_quarter:
1301
                /* At this point we know that the condition for the following loop is true, so it
1302
                 * can be a do...while rather than a while. */
1303
0
                do
1304
0
                {
1305
                    /* Let's form (X coords only):
1306
                     *
1307
                     * c[v0].vertex  m0  c[v0^3].vertex
1308
                     * c[v1].vertex  m1  c[v1^3].vertex
1309
                     */
1310
0
                    m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x);
1311
0
                    if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
1312
0
                        break;
1313
0
                    m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x);
1314
0
                    if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
1315
0
                        break;
1316
                    /* So, we can completely discard the left hand half of the patch. */
1317
0
                    cc->corners[v0].x = m0;
1318
0
                    cc->corners[v0].y = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y);
1319
0
                    cc->corners[v1].x = m1;
1320
0
                    cc->corners[v1].y = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y);
1321
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4;
1322
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4;
1323
0
                    changed = 1;
1324
0
                }
1325
0
                while (cc->corners[v0].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY);
1326
0
            }
1327
0
        }
1328
1329
        /* Is the whole of our patch outside the clipping rectangle? */
1330
        /* Tempting to try to roll this into the cases below, but that
1331
         * doesn't work because we want <= or >= here. Do the Y ones.
1332
         * Can't do these at the same time as the X ones, as the cases
1333
         * above may have reduced Y by the time we get here. */
1334
104
        if ((cc->corners[0].y <= pfs->rect.p.y &&
1335
56
             cc->corners[1].y <= pfs->rect.p.y &&
1336
50
             cc->corners[2].y <= pfs->rect.p.y &&
1337
24
             cc->corners[3].y <= pfs->rect.p.y) ||
1338
80
            (cc->corners[0].y >= pfs->rect.q.y &&
1339
3
             cc->corners[1].y >= pfs->rect.q.y &&
1340
0
             cc->corners[2].y >= pfs->rect.q.y &&
1341
0
             cc->corners[3].y >= pfs->rect.q.y))
1342
24
            return 0;
1343
1344
        /* Now, let's try to see if we can cull the patch vertically with the clipping
1345
         * rectangle. */
1346
        /* Non rotated cases first. Can we cull the top half? */
1347
80
        if (cc->corners[0].y < pfs->rect.p.y && cc->corners[1].y < pfs->rect.p.y)
1348
12
        {
1349
            /* Check 0+1 off above. */
1350
12
            v0 = 0;
1351
12
            v1 = 1;
1352
12
            goto check_above;
1353
12
        }
1354
68
        else if (cc->corners[3].y < pfs->rect.p.y && cc->corners[2].y < pfs->rect.p.y)
1355
0
        {
1356
            /* Check 3+2 off above. */
1357
0
            v0 = 3;
1358
0
            v1 = 2;
1359
12
check_above:
1360
            /* At this point we know that the condition for the following loop is true, so it
1361
             * can be a do...while rather than a while. */
1362
12
            do
1363
12
            {
1364
                /* Let's form (Y coords only):
1365
                 *
1366
                 * c[v0].vertex     c[v1].vertex
1367
                 * m0               m1
1368
                 * c[v0^3].vertex   c[v1^3].vertex
1369
                 */
1370
12
                m0 = midpoint(cc->corners[0].y, cc->corners[3].y);
1371
12
                if (m0 >= pfs->rect.p.y)
1372
12
                    goto check_above_quarter;
1373
0
                m1 = midpoint(cc->corners[1].y, cc->corners[2].y);
1374
0
                if (m1 >= pfs->rect.p.y)
1375
0
                    goto check_above_quarter;
1376
                /* So, we can completely discard the top half of the patch. */
1377
0
                cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[3].x);
1378
0
                cc->corners[v0].y = m0;
1379
0
                cc->corners[v1].x = midpoint(cc->corners[1].x, cc->corners[2].x);
1380
0
                cc->corners[v1].y = m1;
1381
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2;
1382
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1383
0
                changed = 1;
1384
0
            }
1385
12
            while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y);
1386
0
            if (0)
1387
0
            {
1388
12
check_above_quarter:
1389
                /* At this point we know that the condition for the following loop is true, so it
1390
                 * can be a do...while rather than a while. */
1391
12
                do
1392
12
                {
1393
                    /* Let's form (Y coords only):
1394
                     *
1395
                     * c[v0].vertex     c[v1].vertex
1396
                     * m0               m1
1397
                     * x                x
1398
                     * x                x
1399
                     * c[v0^3].vertex   c[v1^3].vertex
1400
                     */
1401
12
                    m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y);
1402
12
                    if (m0 >= pfs->rect.p.y)
1403
12
                        break;
1404
0
                    m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y);
1405
0
                    if (m1 >= pfs->rect.p.y)
1406
0
                        break;
1407
                    /* So, we can completely discard the top half of the patch. */
1408
0
                    cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x);
1409
0
                    cc->corners[v0].y = m0;
1410
0
                    cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x);
1411
0
                    cc->corners[v1].y = m1;
1412
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4;
1413
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4;
1414
0
                    changed = 1;
1415
0
                }
1416
12
                while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y);
1417
12
            }
1418
0
        }
1419
1420
        /* or the bottom half? */
1421
80
        if (cc->corners[0].y > pfs->rect.q.y && cc->corners[1].y > pfs->rect.q.y)
1422
0
        {
1423
            /* Check 0+1 off bottom. */
1424
0
            v0 = 0;
1425
0
            v1 = 1;
1426
0
            goto check_bottom;
1427
0
        }
1428
80
        else if (cc->corners[3].y > pfs->rect.q.y && cc->corners[2].y > pfs->rect.q.y)
1429
0
        {
1430
            /* Check 3+2 off bottom. */
1431
0
            v0 = 3;
1432
0
            v1 = 2;
1433
0
check_bottom:
1434
            /* At this point we know that the condition for the following loop is true, so it
1435
             * can be a do...while rather than a while. */
1436
0
            do
1437
0
            {
1438
                /* Let's form (Y coords only):
1439
                 *
1440
                 * c[v0].vertex     c[v1].vertex
1441
                 * m0               m1
1442
                 * c[v0^3].vertex   c[v1^3].vertex
1443
                 */
1444
0
                m0 = midpoint(cc->corners[0].y, cc->corners[3].y);
1445
0
                if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
1446
0
                    goto check_bottom_quarter;
1447
0
                m1 = midpoint(cc->corners[1].y, cc->corners[2].y);
1448
0
                if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
1449
0
                    goto check_bottom_quarter;
1450
                /* So, we can completely discard the bottom half of the patch. */
1451
0
                cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[3].x);
1452
0
                cc->corners[v0].y = m0;
1453
0
                cc->corners[v1].x = midpoint(cc->corners[1].x, cc->corners[2].x);
1454
0
                cc->corners[v1].y = m1;
1455
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2;
1456
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1457
0
                changed = 1;
1458
0
            }
1459
0
            while (cc->corners[v0].y > pfs->rect.q.y+MIDPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+MIDPOINT_ACCURACY);
1460
0
            if (0)
1461
0
            {
1462
0
check_bottom_quarter:
1463
                /* At this point we know that the condition for the following loop is true, so it
1464
                 * can be a do...while rather than a while. */
1465
0
                do
1466
0
                {
1467
                    /* Let's form (Y coords only):
1468
                     *
1469
                     * c[v0].vertex     c[v1].vertex
1470
                     * x                x
1471
                     * x                x
1472
                     * m0               m1
1473
                     * c[v0^3].vertex   c[v1^3].vertex
1474
                     */
1475
0
                    m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y);
1476
0
                    if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
1477
0
                        break;
1478
0
                    m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y);
1479
0
                    if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
1480
0
                        break;
1481
                    /* So, we can completely discard the bottom half of the patch. */
1482
0
                    cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x);
1483
0
                    cc->corners[v0].y = m0;
1484
0
                    cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x);
1485
0
                    cc->corners[v1].y = m1;
1486
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4;
1487
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4;
1488
0
                    changed = 1;
1489
0
                }
1490
0
                while (cc->corners[v0].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY);
1491
0
            }
1492
0
        }
1493
1494
        /* Now, rotated cases: Can we cull the top half? */
1495
80
        if (cc->corners[0].y < pfs->rect.p.y && cc->corners[3].y < pfs->rect.p.y)
1496
20
        {
1497
            /* Check 0+3 off above. */
1498
20
            v0 = 0;
1499
20
            v1 = 3;
1500
20
            goto check_rot_above;
1501
20
        }
1502
60
        else if (cc->corners[1].y < pfs->rect.p.y && cc->corners[2].y < pfs->rect.p.y)
1503
3
        {
1504
            /* Check 1+2 off above. */
1505
3
            v0 = 1;
1506
3
            v1 = 2;
1507
23
check_rot_above:
1508
            /* At this point we know that the condition for the following loop is true, so it
1509
             * can be a do...while rather than a while. */
1510
23
            do
1511
88
            {
1512
                /* Let's form (Y coords only):
1513
                 *
1514
                 * c[v0].vertex     c[v1].vertex
1515
                 * m0               m1
1516
                 * c[v0^1].vertex   c[v1^1].vertex
1517
                 */
1518
88
                m0 = midpoint(cc->corners[0].y, cc->corners[1].y);
1519
88
                if (m0 >= pfs->rect.p.y)
1520
8
                    goto check_rot_above_quarter;
1521
80
                m1 = midpoint(cc->corners[3].y, cc->corners[2].y);
1522
80
                if (m1 >= pfs->rect.p.y)
1523
15
                    goto check_rot_above_quarter;
1524
                /* So, we can completely discard the top half of the patch. */
1525
65
                cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[1].x);
1526
65
                cc->corners[v0].y = m0;
1527
65
                cc->corners[v1].x = midpoint(cc->corners[3].x, cc->corners[2].x);
1528
65
                cc->corners[v1].y = m1;
1529
65
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
1530
65
                cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1531
65
                changed = 1;
1532
65
            }
1533
65
            while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y);
1534
0
            if (0)
1535
0
            {
1536
23
check_rot_above_quarter:
1537
                /* At this point we know that the condition for the following loop is true, so it
1538
                 * can be a do...while rather than a while. */
1539
23
                do
1540
23
                {
1541
                    /* Let's form (Y coords only):
1542
                     *
1543
                     * c[v0].vertex     c[v1].vertex
1544
                     * m0               m1
1545
                     * x                x
1546
                     * x                x
1547
                     * c[v0^1].vertex   c[v1^1].vertex
1548
                     */
1549
23
                    m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^1].y);
1550
23
                    if (m0 >= pfs->rect.p.y)
1551
8
                        break;
1552
15
                    m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^1].y);
1553
15
                    if (m1 >= pfs->rect.p.y)
1554
15
                        break;
1555
                    /* So, we can completely discard the top half of the patch. */
1556
0
                    cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x);
1557
0
                    cc->corners[v0].y = m0;
1558
0
                    cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x);
1559
0
                    cc->corners[v1].y = m1;
1560
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4;
1561
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4;
1562
0
                    changed = 1;
1563
0
                }
1564
23
                while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y);
1565
23
            }
1566
0
        }
1567
1568
        /* or the bottom half? */
1569
80
        if (cc->corners[0].y > pfs->rect.q.y && cc->corners[3].y > pfs->rect.q.y)
1570
3
        {
1571
            /* Check 0+3 off the bottom. */
1572
3
            v0 = 0;
1573
3
            v1 = 3;
1574
3
            goto check_rot_bottom;
1575
3
        }
1576
77
        else if (cc->corners[1].y > pfs->rect.q.y && cc->corners[2].y > pfs->rect.q.y)
1577
0
        {
1578
            /* Check 1+2 off the bottom. */
1579
0
            v0 = 1;
1580
0
            v1 = 2;
1581
3
check_rot_bottom:
1582
            /* At this point we know that the condition for the following loop is true, so it
1583
             * can be a do...while rather than a while. */
1584
3
            do
1585
8
            {
1586
                /* Let's form (Y coords only):
1587
                 *
1588
                 * c[v0].vertex     c[v1].vertex
1589
                 * m0               m1
1590
                 * c[v0^1].vertex   c[v1^1].vertex
1591
                 */
1592
8
                m0 = midpoint(cc->corners[0].y, cc->corners[1].y);
1593
8
                if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
1594
3
                    goto check_rot_bottom_quarter;
1595
5
                m1 = midpoint(cc->corners[3].y, cc->corners[2].y);
1596
5
                if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
1597
0
                    goto check_rot_bottom_quarter;
1598
                /* So, we can completely discard the left hand half of the patch. */
1599
5
                cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[1].x);
1600
5
                cc->corners[v0].y = m0;
1601
5
                cc->corners[v1].x = midpoint(cc->corners[3].x, cc->corners[2].x);
1602
5
                cc->corners[v1].y = m1;
1603
5
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
1604
5
                cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1605
5
                changed = 1;
1606
5
            }
1607
5
            while (cc->corners[v0].y > pfs->rect.q.y+MIDPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+MIDPOINT_ACCURACY);
1608
0
            if (0)
1609
0
            {
1610
3
check_rot_bottom_quarter:
1611
                /* At this point we know that the condition for the following loop is true, so it
1612
                 * can be a do...while rather than a while. */
1613
3
                do
1614
3
                {
1615
                    /* Let's form (Y coords only):
1616
                     *
1617
                     * c[v0].vertex     c[v1].vertex
1618
                     * x                x
1619
                     * x                x
1620
                     * m0               m1
1621
                     * c[v0^1].vertex   c[v1^1].vertex
1622
                     */
1623
3
                    m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^1].y);
1624
3
                    if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
1625
3
                        break;
1626
0
                    m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^1].y);
1627
0
                    if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
1628
0
                        break;
1629
                    /* So, we can completely discard the left hand half of the patch. */
1630
0
                    cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x);
1631
0
                    cc->corners[v0].y = m0;
1632
0
                    cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x);
1633
0
                    cc->corners[v1].y = m1;
1634
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4;
1635
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4;
1636
0
                    changed = 1;
1637
0
                }
1638
3
                while (cc->corners[v0].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY);
1639
3
            }
1640
0
        }
1641
80
    } while (changed);
1642
1643
30
    return A_fill_region_floats(pfs, cc, 0);
1644
103
}
1645
#undef midpoint
1646
#undef quarterpoint
1647
#undef MIDPOINT_ACCURACY
1648
#undef QUARTERPOINT_ACCURACY
1649
1650
static int
1651
A_fill_region(A_fill_state_t * pfs, patch_fill_state_t *pfs1)
1652
312k
{
1653
312k
    const gs_shading_A_t * const psh = pfs->psh;
1654
312k
    double x0 = psh->params.Coords[0] + pfs->delta.x * pfs->v0;
1655
312k
    double y0 = psh->params.Coords[1] + pfs->delta.y * pfs->v0;
1656
312k
    double x1 = psh->params.Coords[0] + pfs->delta.x * pfs->v1;
1657
312k
    double y1 = psh->params.Coords[1] + pfs->delta.y * pfs->v1;
1658
312k
    double h0 = pfs->u0, h1 = pfs->u1;
1659
312k
    corners_and_curves cc;
1660
312k
    int code;
1661
1662
312k
    double dx0 = pfs->delta.x * h0;
1663
312k
    double dy0 = pfs->delta.y * h0;
1664
312k
    double dx1 = pfs->delta.x * h1;
1665
312k
    double dy1 = pfs->delta.y * h1;
1666
1667
312k
    cc.curve[0].vertex.cc[0] = pfs->t0; /* The element cc[1] is set to a dummy value against */
1668
312k
    cc.curve[1].vertex.cc[0] = pfs->t1; /* interrupts while an idle processing in gxshade6.c .  */
1669
312k
    cc.curve[2].vertex.cc[0] = pfs->t1;
1670
312k
    cc.curve[3].vertex.cc[0] = pfs->t0;
1671
312k
    cc.corners[0].x = x0 + dy0;
1672
312k
    cc.corners[0].y = y0 - dx0;
1673
312k
    cc.corners[1].x = x1 + dy0;
1674
312k
    cc.corners[1].y = y1 - dx0;
1675
312k
    cc.corners[2].x = x1 + dy1;
1676
312k
    cc.corners[2].y = y1 - dx1;
1677
312k
    cc.corners[3].x = x0 + dy1;
1678
312k
    cc.corners[3].y = y0 - dx1;
1679
312k
    code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[0].x, cc.corners[0].y, &cc.curve[0].vertex.p);
1680
312k
    if (code < 0)
1681
361
        goto fail;
1682
312k
    code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[1].x, cc.corners[1].y, &cc.curve[1].vertex.p);
1683
312k
    if (code < 0)
1684
13
        goto fail;
1685
312k
    code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[2].x, cc.corners[2].y, &cc.curve[2].vertex.p);
1686
312k
    if (code < 0)
1687
0
        goto fail;
1688
312k
    code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[3].x, cc.corners[3].y, &cc.curve[3].vertex.p);
1689
312k
    if (code < 0)
1690
0
        goto fail;
1691
312k
    return subdivide_patch_fill(pfs1, cc.curve);
1692
374
fail:
1693
374
    if (code != gs_error_limitcheck)
1694
0
        return code;
1695
374
    code = gs_point_transform(cc.corners[0].x, cc.corners[0].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[0]);
1696
374
    if (code < 0)
1697
0
        return code;
1698
374
    code = gs_point_transform(cc.corners[1].x, cc.corners[1].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[1]);
1699
374
    if (code < 0)
1700
0
        return code;
1701
374
    code = gs_point_transform(cc.corners[2].x, cc.corners[2].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[2]);
1702
374
    if (code < 0)
1703
0
        return code;
1704
374
    code = gs_point_transform(cc.corners[3].x, cc.corners[3].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[3]);
1705
374
    if (code < 0)
1706
0
        return code;
1707
374
    return subdivide_patch_fill_floats(pfs1, &cc);
1708
374
}
1709
1710
static inline int
1711
gs_shading_A_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
1712
                            const gs_fixed_rect *clip_rect,
1713
                            gx_device * dev, gs_gstate * pgs)
1714
186k
{
1715
186k
    const gs_shading_A_t *const psh = (const gs_shading_A_t *)psh0;
1716
186k
    gs_function_t * const pfn = psh->params.Function;
1717
186k
    gs_matrix cmat;
1718
186k
    gs_rect t_rect;
1719
186k
    A_fill_state_t state;
1720
186k
    patch_fill_state_t pfs1;
1721
186k
    float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
1722
186k
    float dd = d1 - d0;
1723
186k
    double t0, t1;
1724
186k
    gs_point dist;
1725
186k
    int code;
1726
1727
186k
    state.psh = psh;
1728
186k
    code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs);
1729
186k
    if (code < 0)
1730
65
        return code;
1731
186k
    pfs1.Function = pfn;
1732
186k
    pfs1.rect = *clip_rect;
1733
186k
    code = init_patch_fill_state(&pfs1);
1734
186k
    if (code < 0)
1735
0
        goto fail;
1736
186k
    pfs1.maybe_self_intersecting = false;
1737
186k
    pfs1.function_arg_shift = 1;
1738
    /*
1739
     * Compute the parameter range.  We construct a matrix in which
1740
     * (0,0) corresponds to t = 0 and (0,1) corresponds to t = 1,
1741
     * and use it to inverse-map the rectangle to be filled.
1742
     */
1743
186k
    cmat.tx = psh->params.Coords[0];
1744
186k
    cmat.ty = psh->params.Coords[1];
1745
186k
    state.delta.x = psh->params.Coords[2] - psh->params.Coords[0];
1746
186k
    state.delta.y = psh->params.Coords[3] - psh->params.Coords[1];
1747
186k
    cmat.yx = state.delta.x;
1748
186k
    cmat.yy = state.delta.y;
1749
186k
    cmat.xx = cmat.yy;
1750
186k
    cmat.xy = -cmat.yx;
1751
186k
    code = gs_bbox_transform_inverse(rect, &cmat, &t_rect);
1752
186k
    if (code < 0) {
1753
0
        code = 0; /* Swallow this silently */
1754
0
        goto fail;
1755
0
    }
1756
186k
    t0 = min(max(t_rect.p.y, 0), 1);
1757
186k
    t1 = max(min(t_rect.q.y, 1), 0);
1758
186k
    state.v0 = t0;
1759
186k
    state.v1 = t1;
1760
186k
    state.u0 = t_rect.p.x;
1761
186k
    state.u1 = t_rect.q.x;
1762
186k
    state.t0 = t0 * dd + d0;
1763
186k
    state.t1 = t1 * dd + d0;
1764
186k
    code = gs_distance_transform(state.delta.x, state.delta.y, &ctm_only(pgs),
1765
186k
                          &dist);
1766
186k
    if (code < 0)
1767
0
        goto fail;
1768
186k
    state.length = hypot(dist.x, dist.y); /* device space line length */
1769
186k
    code = A_fill_region(&state, &pfs1);
1770
186k
    if (psh->params.Extend[0] && t0 > t_rect.p.y) {
1771
63.1k
        if (code < 0)
1772
0
            goto fail;
1773
        /* Use the general algorithm, because we need the trapping. */
1774
63.1k
        state.v0 = t_rect.p.y;
1775
63.1k
        state.v1 = t0;
1776
63.1k
        state.t0 = state.t1 = t0 * dd + d0;
1777
63.1k
        code = A_fill_region(&state, &pfs1);
1778
63.1k
    }
1779
186k
    if (psh->params.Extend[1] && t1 < t_rect.q.y) {
1780
63.3k
        if (code < 0)
1781
0
            goto fail;
1782
        /* Use the general algorithm, because we need the trapping. */
1783
63.3k
        state.v0 = t1;
1784
63.3k
        state.v1 = t_rect.q.y;
1785
63.3k
        state.t0 = state.t1 = t1 * dd + d0;
1786
63.3k
        code = A_fill_region(&state, &pfs1);
1787
63.3k
    }
1788
186k
fail:
1789
186k
    gsicc_release_link(pfs1.icclink);
1790
186k
    if (term_patch_fill_state(&pfs1))
1791
0
        return_error(gs_error_unregistered); /* Must not happen. */
1792
186k
    return code;
1793
186k
}
1794
1795
int
1796
gs_shading_A_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
1797
                            const gs_fixed_rect * rect_clip,
1798
                            gx_device * dev, gs_gstate * pgs)
1799
186k
{
1800
186k
    return gs_shading_A_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs);
1801
186k
}
1802
1803
/* ---------------- Radial shading ---------------- */
1804
1805
/* Some notes on what I have struggled to understand about the following
1806
 * function. This function renders the 'tube' given by interpolating one
1807
 * circle to another.
1808
 *
1809
 * The first circle is at (x0, y0) with radius r0, and has 'color' t0.
1810
 * The other circle is at (x1, y1) with radius r1, and has 'color' t1.
1811
 *
1812
 * We perform this rendering by approximating each quadrant of the 'tube'
1813
 * by a tensor patch. The tensor patch is formed by taking a curve along
1814
 * 1/4 of the circumference of the first circle, a straight line to the
1815
 * equivalent point on the circumference of the second circle, a curve
1816
 * back along the circumference of the second circle, and then a straight
1817
 * line back to where we started.
1818
 *
1819
 * There is additional logic in this function that forms the directions of
1820
 * the curves differently for different quadrants. This is done to ensure
1821
 * that we always paint 'around' the tube from the back towards the front,
1822
 * so we don't get unexpected regions showing though. This is explained more
1823
 * below.
1824
 *
1825
 * The original code here examined the position change between the two
1826
 * circles dx and dy. Based upon this vector it would pick which quadrant/
1827
 * tensor patch to draw first. It would draw the quadrants/tensor patches
1828
 * in anticlockwise order. Presumably this was intended to be done so that
1829
 * the 'top' quadrant would be drawn last.
1830
 *
1831
 * Unfortunately this did not always work; see bug 692513. If the quadrants
1832
 * were rendered in the order 0,1,2,3, the rendering of 1 was leaving traces
1833
 * on top of 0, which was unexpected.
1834
 *
1835
 * I have therefore altered the code slightly; rather than picking a start
1836
 * quadrant and moving anticlockwise, we now draw the 'undermost' quadrant,
1837
 * then the two adjacent quadrants, then the topmost quadrant.
1838
 *
1839
 * For the purposes of explanation, we shall label the octants as below:
1840
 *
1841
 *     \2|1/       and Quadrants as:       |
1842
 *     3\|/0                            Q1 | Q0
1843
 *    ---+---                          ----+----
1844
 *     4/|\7                            Q2 | Q3
1845
 *     /5|6\                               |
1846
 *
1847
 * We find (dx,dy), the difference between the centres of the circles.
1848
 * We look to see which octant this falls in. Firstly, this tells us which
1849
 * quadrant of the circle we need to draw first (Octant n, starts with
1850
 * Quadrant floor(n/2)). Secondly, it tells us which direction to form the
1851
 * tensor patch in; we always want to draw from the side 'closest' to
1852
 * dx/dy to the side further away. This ensures that we don't overwrite
1853
 * pixels in the incorrect order as the patch decomposes.
1854
 */
1855
static int
1856
R_tensor_annulus(patch_fill_state_t *pfs,
1857
    double x0, double y0, double r0, double t0,
1858
    double x1, double y1, double r1, double t1)
1859
393
{
1860
393
    double dx = x1 - x0, dy = y1 - y0;
1861
393
    double d = hypot(dx, dy);
1862
393
    gs_point p0, p1, pc0, pc1;
1863
393
    int k, j, code, dirn;
1864
393
    bool inside = 0;
1865
1866
    /* pc0 and pc1 are the centres of the respective circles. */
1867
393
    pc0.x = x0, pc0.y = y0;
1868
393
    pc1.x = x1, pc1.y = y1;
1869
    /* Set p0 up so it's a unit vector giving the direction of 90 degrees
1870
     * to the right of the major axis as we move from p0c to p1c. */
1871
393
    if (r0 + d <= r1 || r1 + d <= r0) {
1872
        /* One circle is inside another one.
1873
           Use any subdivision,
1874
           but don't depend on dx, dy, which may be too small. */
1875
393
        p0.x = 0, p0.y = -1, dirn = 0;
1876
        /* Align stripes along radii for faster triangulation : */
1877
393
        inside = 1;
1878
393
        pfs->function_arg_shift = 1;
1879
393
    } else {
1880
        /* Must generate canonic quadrangle arcs,
1881
           because we approximate them with curves. */
1882
0
        if(dx >= 0) {
1883
0
            if (dy >= 0)
1884
0
                p0.x = 1, p0.y = 0, dirn = (dx >= dy ? 1 : 0);
1885
0
            else
1886
0
                p0.x = 0, p0.y = -1, dirn = (dx >= -dy ? 0 : 1);
1887
0
        } else {
1888
0
            if (dy >= 0)
1889
0
                p0.x = 0, p0.y = 1, dirn = (-dx >= dy ? 1 : 0);
1890
0
            else
1891
0
                p0.x = -1, p0.y = 0, dirn = (-dx >= -dy ? 0 : 1);
1892
0
        }
1893
0
        pfs->function_arg_shift = 0;
1894
0
    }
1895
    /* fixme: wish: cut invisible parts off.
1896
       Note : when r0 != r1 the invisible part is not a half circle. */
1897
1.94k
    for (k = 0; k < 4; k++) {
1898
1.56k
        gs_point p[12];
1899
1.56k
        patch_curve_t curve[4];
1900
1901
        /* Set p1 to be 90 degrees anticlockwise from p0 */
1902
1.56k
        p1.x = -p0.y; p1.y = p0.x;
1903
1.56k
        if (dirn == 0) { /* Clockwise */
1904
1.16k
            make_quadrant_arc(p + 0, &pc0, &p1, &p0, r0);
1905
1.16k
            make_quadrant_arc(p + 6, &pc1, &p0, &p1, r1);
1906
1.16k
        } else { /* Anticlockwise */
1907
393
            make_quadrant_arc(p + 0, &pc0, &p0, &p1, r0);
1908
393
            make_quadrant_arc(p + 6, &pc1, &p1, &p0, r1);
1909
393
        }
1910
1.56k
        p[4].x = (p[3].x * 2 + p[6].x) / 3;
1911
1.56k
        p[4].y = (p[3].y * 2 + p[6].y) / 3;
1912
1.56k
        p[5].x = (p[3].x + p[6].x * 2) / 3;
1913
1.56k
        p[5].y = (p[3].y + p[6].y * 2) / 3;
1914
1.56k
        p[10].x = (p[9].x * 2 + p[0].x) / 3;
1915
1.56k
        p[10].y = (p[9].y * 2 + p[0].y) / 3;
1916
1.56k
        p[11].x = (p[9].x + p[0].x * 2) / 3;
1917
1.56k
        p[11].y = (p[9].y + p[0].y * 2) / 3;
1918
7.81k
        for (j = 0; j < 4; j++) {
1919
6.24k
            int jj = (j + inside) % 4;
1920
1921
6.24k
            if (gs_point_transform2fixed(&pfs->pgs->ctm,         p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p) < 0)
1922
0
                gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p);
1923
1924
6.24k
            if (gs_point_transform2fixed(&pfs->pgs->ctm,         p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]) < 0)
1925
0
                gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]);
1926
1927
6.24k
            if (gs_point_transform2fixed(&pfs->pgs->ctm,         p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]) < 0)
1928
0
                gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]);
1929
6.24k
            curve[j].straight = (((j + inside) & 1) != 0);
1930
6.24k
        }
1931
1.56k
        curve[(0 + inside) % 4].vertex.cc[0] = t0;
1932
1.56k
        curve[(1 + inside) % 4].vertex.cc[0] = t0;
1933
1.56k
        curve[(2 + inside) % 4].vertex.cc[0] = t1;
1934
1.56k
        curve[(3 + inside) % 4].vertex.cc[0] = t1;
1935
1.56k
        curve[0].vertex.cc[1] = curve[1].vertex.cc[1] = 0; /* Initialize against FPE. */
1936
1.56k
        curve[2].vertex.cc[1] = curve[3].vertex.cc[1] = 0; /* Initialize against FPE. */
1937
1.56k
        code = patch_fill(pfs, curve, NULL, NULL);
1938
1.56k
        if (code < 0)
1939
10
            return code;
1940
        /* Move p0 to be ready for the next position */
1941
1.55k
        if (k == 0) {
1942
            /* p0 moves clockwise */
1943
393
            p1 = p0;
1944
393
            p0.x = p1.y; p0.y = -p1.x;
1945
393
            dirn = 0;
1946
1.15k
        } else if (k == 1) {
1947
            /* p0 flips sides */
1948
393
            p0.x = -p0.x; p0.y = -p0.y;
1949
393
            dirn = 1;
1950
766
        } else if (k == 2) {
1951
            /* p0 moves anti-clockwise */
1952
383
            p1 = p0;
1953
383
            p0.x = -p1.y; p0.y = p1.x;
1954
383
            dirn = 0;
1955
383
        }
1956
1.55k
    }
1957
383
    return 0;
1958
393
}
1959
1960
/* Find the control points for two points on the arc of a circle
1961
 * the points must be within the same quadrant.
1962
 */
1963
static int find_arc_control_points(gs_point *from, gs_point *to, gs_point *from_control, gs_point *to_control, gs_point *centre)
1964
0
{
1965
0
    double from_tan_alpha, to_tan_alpha, from_alpha, to_alpha;
1966
0
    double half_inscribed_angle, intersect_x, intersect_y, intersect_dist;
1967
0
    double radius = sqrt(((from->x - centre->x) * (from->x - centre->x)) + ((from->y - centre->y) * (from->y - centre->y)));
1968
0
    double tangent_intersect_dist;
1969
0
    double F;
1970
0
    int quadrant;
1971
1972
    /* Quadrant 0 is upper right, numbered anti-clockwise.
1973
     * If the direction of the from->to is atni-clockwise, add 4
1974
     */
1975
0
    if (from->x > to->x) {
1976
0
        if (from->y > to->y) {
1977
0
            if (to->y >= centre->y)
1978
0
                quadrant = 1 + 4;
1979
0
            else
1980
0
                quadrant = 3;
1981
0
        } else {
1982
0
            if (to->x >= centre->x)
1983
0
                quadrant = 0 + 4;
1984
0
            else
1985
0
                quadrant = 2;
1986
0
        }
1987
0
    } else {
1988
0
        if (from->y > to->y) {
1989
0
            if (from->x >= centre->x)
1990
0
                quadrant = 0;
1991
0
            else
1992
0
                quadrant = 2 + 4;
1993
0
        } else {
1994
0
            if (from->x >= centre->x)
1995
0
                quadrant = 3 + 4;
1996
0
            else
1997
0
                quadrant = 1;
1998
0
        }
1999
0
    }
2000
2001
0
    switch(quadrant) {
2002
        /* quadrant 0, arc goes clockwise */
2003
0
        case 0:
2004
0
            if (from->x == centre->x) {
2005
0
                from_alpha = M_PI / 2;
2006
0
            } else {
2007
0
                from_tan_alpha = (from->y - centre->y) / (from->x - centre->x);
2008
0
                from_alpha = atan(from_tan_alpha);
2009
0
            }
2010
0
            to_tan_alpha = (to->y - centre->y) / (to->x - centre->x);
2011
0
            to_alpha = atan(to_tan_alpha);
2012
2013
0
            half_inscribed_angle = (from_alpha - to_alpha) / 2;
2014
0
            intersect_dist = radius / cos(half_inscribed_angle);
2015
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2016
2017
0
            intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist;
2018
0
            intersect_y = centre->y + sin(to_alpha + half_inscribed_angle) * intersect_dist;
2019
0
            break;
2020
        /* quadrant 1, arc goes clockwise */
2021
0
        case 1:
2022
0
            from_tan_alpha = (from->y - centre->y) / (centre->x - from->x);
2023
0
            from_alpha = atan(from_tan_alpha);
2024
2025
0
            if (to->x == centre->x) {
2026
0
                to_alpha = M_PI / 2;
2027
0
            } else {
2028
0
                to_tan_alpha = (to->y - centre->y) / (centre->x - to->x);
2029
0
                to_alpha = atan(to_tan_alpha);
2030
0
            }
2031
2032
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2033
0
            intersect_dist = radius / cos(half_inscribed_angle);
2034
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2035
2036
0
            intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist;
2037
0
            intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist;
2038
0
            break;
2039
        /* quadrant 2, arc goes clockwise */
2040
0
        case 2:
2041
0
            if (from->x == centre->x) {
2042
0
                from_alpha = M_PI / 2;
2043
0
            } else {
2044
0
                from_tan_alpha = (centre->y - from->y) / (centre->x - from->x);
2045
0
                from_alpha = atan(from_tan_alpha);
2046
0
            }
2047
2048
0
            to_tan_alpha = (centre->y - to->y) / (centre->x - to->x);
2049
0
            to_alpha = atan(to_tan_alpha);
2050
2051
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2052
0
            intersect_dist = radius / cos(half_inscribed_angle);
2053
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2054
2055
0
            intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist;
2056
0
            intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist;
2057
0
            break;
2058
        /* quadrant 3, arc goes clockwise */
2059
0
        case 3:
2060
0
            from_tan_alpha = (centre->y - from->y) / (from->x - centre->x);
2061
0
            from_alpha = atan(from_tan_alpha);
2062
2063
0
            if (to->x == centre->x) {
2064
0
                to_alpha = M_PI / 2;
2065
0
            } else {
2066
0
                to_tan_alpha = (centre->y - to->y) / (to->x - centre->x);
2067
0
                to_alpha = atan(to_tan_alpha);
2068
0
            }
2069
2070
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2071
0
            intersect_dist = radius / cos(half_inscribed_angle);
2072
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2073
2074
0
            intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist;
2075
0
            intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist;
2076
0
            break;
2077
        /* quadrant 0, arc goes anti-clockwise */
2078
0
        case 4:
2079
0
            from_tan_alpha = (from->y - centre->y) / (from->x - centre->x);
2080
0
            from_alpha = atan(from_tan_alpha);
2081
2082
0
            if (to->y == centre->y)
2083
0
                to_alpha = M_PI / 2;
2084
0
            else {
2085
0
                to_tan_alpha = (to->y - centre->y) / (to->x - centre->x);
2086
0
                to_alpha = atan(to_tan_alpha);
2087
0
            }
2088
2089
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2090
0
            intersect_dist = radius / cos(half_inscribed_angle);
2091
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2092
2093
0
            intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist;
2094
0
            intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist;
2095
0
            break;
2096
        /* quadrant 1, arc goes anti-clockwise */
2097
0
        case 5:
2098
0
            from_tan_alpha = (centre->x - from->x) / (from->y - centre->y);
2099
0
            from_alpha = atan(from_tan_alpha);
2100
2101
0
            if (to->y == centre->y) {
2102
0
                to_alpha = M_PI / 2;
2103
0
            }
2104
0
            else {
2105
0
                to_tan_alpha = (centre->x - to->x) / (to->y - centre->y);
2106
0
                to_alpha = atan(to_tan_alpha);
2107
0
            }
2108
2109
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2110
0
            intersect_dist = radius / cos(half_inscribed_angle);
2111
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2112
2113
0
            intersect_x = centre->x - sin(from_alpha + half_inscribed_angle) * intersect_dist;
2114
0
            intersect_y = centre->y + cos(from_alpha + half_inscribed_angle) * intersect_dist;
2115
0
            break;
2116
        /* quadrant 2, arc goes anti-clockwise */
2117
0
        case 6:
2118
0
            from_tan_alpha = (from->y - centre->y) / (centre->x - from->x);
2119
0
            from_alpha = atan(from_tan_alpha);
2120
2121
0
            if (to->x == centre->x) {
2122
0
                to_alpha = M_PI / 2;
2123
0
            } else {
2124
0
                to_tan_alpha = (centre->y - to->y) / (centre->x - to->x);
2125
0
                to_alpha = atan(to_tan_alpha);
2126
0
            }
2127
2128
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2129
0
            intersect_dist = radius / cos(half_inscribed_angle);
2130
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2131
2132
0
            intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist;
2133
0
            intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist;
2134
0
            break;
2135
        /* quadrant 3, arc goes anti-clockwise */
2136
0
        case 7:
2137
0
            if (from->x == centre->x) {
2138
0
                from_alpha = M_PI / 2;
2139
0
            } else {
2140
0
                from_tan_alpha = (centre->y - from->y) / (from->x - centre->x);
2141
0
                from_alpha = atan(from_tan_alpha);
2142
0
            }
2143
0
            to_tan_alpha = (centre->y - to->y) / (to->x - centre->x);
2144
0
            to_alpha = atan(to_tan_alpha);
2145
2146
0
            half_inscribed_angle = (from_alpha - to_alpha) / 2;
2147
0
            intersect_dist = radius / cos(half_inscribed_angle);
2148
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2149
2150
0
            intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist;
2151
0
            intersect_y = centre->y - sin(to_alpha + half_inscribed_angle) * intersect_dist;
2152
0
            break;
2153
0
    }
2154
2155
0
    F = (4.0 / 3.0) / (1 + sqrt(1 + ((tangent_intersect_dist / radius) * (tangent_intersect_dist / radius))));
2156
2157
0
    from_control->x = from->x - ((from->x - intersect_x) * F);
2158
0
    from_control->y = from->y - ((from->y - intersect_y) * F);
2159
0
    to_control->x = to->x - ((to->x - intersect_x) * F);
2160
0
    to_control->y = to->y - ((to->y - intersect_y) * F);
2161
2162
0
    return 0;
2163
0
}
2164
2165
/* Create a 'patch_curve' element whch is a straight line between two points */
2166
static int patch_lineto(gs_matrix_fixed *ctm, gs_point *from, gs_point *to, patch_curve_t *p, float t)
2167
0
{
2168
0
    double x_1third, x_2third, y_1third, y_2third;
2169
2170
0
    x_1third = (to->x - from->x) / 3;
2171
0
    x_2third = x_1third * 2;
2172
0
    y_1third = (to->y - from->y) / 3;
2173
0
    y_2third = y_1third * 2;
2174
2175
0
    gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p);
2176
0
    gs_point_transform2fixed(ctm, from->x + x_1third, from->y + y_1third, &p->control[0]);
2177
0
    gs_point_transform2fixed(ctm, from->x + x_2third, from->y + y_2third, &p->control[1]);
2178
2179
0
    p->vertex.cc[0] = t;
2180
0
    p->vertex.cc[1] = t;
2181
0
    p->straight = 1;
2182
2183
0
    return 0;
2184
0
}
2185
2186
static int patch_curveto(gs_matrix_fixed *ctm, gs_point *centre, gs_point *from, gs_point *to, patch_curve_t *p, float t)
2187
0
{
2188
0
    gs_point from_control, to_control;
2189
2190
0
    find_arc_control_points(from, to, &from_control, &to_control, centre);
2191
2192
0
    gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p);
2193
0
    gs_point_transform2fixed(ctm, from_control.x, from_control.y, &p->control[0]);
2194
0
    gs_point_transform2fixed(ctm, to_control.x, to_control.y, &p->control[1]);
2195
0
    p->vertex.cc[0] = t;
2196
0
    p->vertex.cc[1] = t;
2197
0
    p->straight = 0;
2198
2199
0
    return 0;
2200
0
}
2201
2202
static int draw_quarter_annulus(patch_fill_state_t *pfs, gs_point *centre, double radius, gs_point *corner, float t)
2203
0
{
2204
0
    gs_point p0, p1, initial;
2205
0
    patch_curve_t p[4];
2206
0
    int code;
2207
2208
0
    if (corner->x > centre->x) {
2209
0
        initial.x = centre->x + radius;
2210
0
    }
2211
0
    else {
2212
0
        initial.x = centre->x - radius;
2213
0
    }
2214
0
    initial.y = centre->y;
2215
2216
0
    p1.x = initial.x;
2217
0
    p1.y = corner->y;
2218
0
    patch_lineto(&pfs->pgs->ctm, &initial, &p1, &p[0], t);
2219
0
    p0.x = centre->x;
2220
0
    p0.y = p1.y;
2221
0
    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &p[1], t);
2222
0
    p1.x = centre->x;
2223
0
    if (centre->y > corner->y) {
2224
0
        p1.y = centre->y - radius;
2225
0
    } else {
2226
0
        p1.y = centre->y + radius;
2227
0
    }
2228
0
    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t);
2229
0
    patch_curveto(&pfs->pgs->ctm, centre, &p1, &initial, &p[3], t);
2230
0
    code = patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL);
2231
0
    if (code < 0)
2232
0
        return code;
2233
2234
0
    if (corner->x > centre->x)
2235
0
        initial.x = corner->x - (corner->x - (centre->x + radius));
2236
0
    else
2237
0
        initial.x = centre->x - radius;
2238
0
    initial.y = corner->y;
2239
0
    patch_lineto(&pfs->pgs->ctm, corner, &initial, &p[0], t);
2240
2241
0
    p0.x = initial.x;
2242
0
    p0.y = centre->y;
2243
0
    patch_lineto(&pfs->pgs->ctm, &initial, &p0, &p[1], t);
2244
2245
0
    p1.y = p0.y;
2246
0
    p1.x = corner->x;
2247
0
    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t);
2248
0
    patch_lineto(&pfs->pgs->ctm, &p1, corner, &p[3], t);
2249
2250
0
    return (patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL));
2251
0
}
2252
2253
static int R_tensor_annulus_extend_tangent(patch_fill_state_t *pfs,
2254
    double x0, double y0, double r0, double t0,
2255
    double x1, double y1, double r1, double t1, double r2)
2256
0
{
2257
0
    patch_curve_t curve[4];
2258
0
    gs_point p0, p1;
2259
0
    int code = 0, q = 0;
2260
2261
    /* special case axis aligned circles. Its quicker to handle these specially as it
2262
     * avoid lots of trigonometry in the general case code, and avoids us
2263
     * having to watch out for infinity as the result of tan() operations.
2264
     */
2265
0
    if (x0 == x1 || y0 == y1) {
2266
0
        if (x0 == x1 && y0 > y1) {
2267
            /* tangent at top of circles */
2268
0
            p0.x = x1, p0.y = y1;
2269
0
            p1.x = x1 + r2, p1.y = y1 - r2;
2270
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2271
0
            p1.x = x1 - r2, p1.y = y1 - r2;
2272
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2273
0
            p1.x = x1 + r2, p1.y = y1 + r1;
2274
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2275
0
            p1.x = x1 - r2, p1.y = y1 + r1;
2276
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2277
0
        }
2278
0
        if (x0 == x1 && y0 < y1) {
2279
            /* tangent at bottom of circles */
2280
0
            p0.x = x1, p0.y = y1;
2281
0
            p1.x = x1 + r2, p1.y = y1 + r2;
2282
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2283
0
            p1.x = x1 - r2, p1.y = y1 + r2;
2284
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2285
0
            p1.x = x1 + r2, p1.y = y1 - r1;
2286
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2287
0
            p1.x = x1 - r2, p1.y = y1 - r1;
2288
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2289
0
        }
2290
0
        if (y0 == y1 && x0 > x1) {
2291
            /* tangent at right of circles */
2292
0
            p0.x = x1, p0.y = y1;
2293
0
            p1.x = x1 - r2, p1.y = y1 - r2;
2294
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2295
0
            p1.x = x1 - r2, p1.y = y1 + r2;
2296
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2297
0
            p1.x = x1 + r1, p1.y = y1 + r2;
2298
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2299
0
            p1.x = x1 + r1, p1.y = y1 - r2;
2300
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2301
0
        }
2302
0
        if (y0 == y1 && x0 < x1) {
2303
            /* tangent at left of circles */
2304
0
            p0.x = x1, p0.y = y1;
2305
0
            p1.x = x1 + r2, p1.y = y1 - r2;
2306
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2307
0
            p1.x = x1 + r2, p1.y = y1 + r2;
2308
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2309
0
            p1.x = x1 - r1, p1.y = y1 + r2;
2310
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2311
0
            p1.x = x1 - r1, p1.y = y1 - r2;
2312
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2313
0
        }
2314
0
    }
2315
0
    else {
2316
0
        double tx, ty, endx, endy, intersectx, intersecty, alpha, sinalpha, cosalpha, tanalpha;
2317
0
        gs_point centre;
2318
2319
        /* First lets figure out which quadrant the smaller circle is in (we always
2320
         * get called to fill from the larger circle), x0, y0, r0 is the smaller circle.
2321
         */
2322
0
        if (x0 < x1) {
2323
0
            if (y0 < y1)
2324
0
                q = 2;
2325
0
            else
2326
0
                q = 1;
2327
0
        } else {
2328
0
            if (y0 < y1)
2329
0
                q = 3;
2330
0
            else
2331
0
                q = 0;
2332
0
        }
2333
0
        switch(q) {
2334
0
            case 0:
2335
                /* We have two four-sided elements, from the tangent point
2336
                 * each side, to the point where the tangent crosses an
2337
                 * axis of the larger circle. A line back to the edge
2338
                 * of the larger circle, a line to the point where an axis
2339
                 * crosses the smaller circle, then an arc back to the starting point.
2340
                 */
2341
                /* Figure out the tangent point */
2342
                /* sin (angle) = y1 - y0 / r1 - r0
2343
                 * ty = ((y1 - y0) / (r1 - r0)) * r1
2344
                 */
2345
0
                ty = y1 + ((y0 - y1) / (r1 - r0)) * r1;
2346
0
                tx = x1 + ((x0 - x1) / (r1 - r0)) * r1;
2347
                /* Now actually calculating the point where the tangent crosses the axis of the larger circle
2348
                 * So we need to know the angle the tangent makes with the axis of the smaller circle
2349
                 * as its the same angle where it crosses the axis of the larger circle.
2350
                 * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
2351
                 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
2352
                 * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
2353
                 * circle
2354
                 */
2355
0
                sinalpha = (y0 - y1) / (r1 - r0);
2356
0
                alpha = asin(sinalpha);
2357
0
                cosalpha = cos(alpha);
2358
0
                intersectx = x1 + (r1 / cosalpha);
2359
0
                intersecty = y1;
2360
2361
0
                p0.x = tx, p0.y = ty;
2362
0
                p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2;
2363
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2364
0
                p0.x = intersectx, p0.y = intersecty;
2365
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2366
0
                p1.x = x1 + r1, p1.y = y1;
2367
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2368
0
                p0.x = tx, p0.y = ty;
2369
0
                centre.x = x1, centre.y = y1;
2370
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2371
0
                code = patch_fill(pfs, curve, NULL, NULL);
2372
0
                if (code < 0)
2373
0
                    return code;
2374
2375
0
                if (intersectx < x1 + r2) {
2376
                    /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-(
2377
                     * An 'annulus' where the right edge is less than the normal extent and a
2378
                     * quad which is a rectangle with one corner chopped of at an angle.
2379
                     */
2380
0
                    p0.x = x1, p0.y = y1;
2381
0
                    p1.x = intersectx, p1.y = y1 - r2;
2382
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2383
0
                    endx = x1 + r2;
2384
0
                    endy = y1 - (tan ((M_PI / 2) - alpha)) * (endx - intersectx);
2385
0
                    p0.x = intersectx, p0.y = y1;
2386
0
                    p1.x = x1 + r2, p1.y = endy;
2387
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2388
0
                    p0.x = x1 + r2, p0.y = y0 - r2;
2389
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2390
0
                    p1.x = intersectx, p1.y = p0.y;
2391
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2392
0
                    p0.x = intersectx, p0.y = y1;
2393
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2394
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2395
0
                    if (code < 0)
2396
0
                        return code;
2397
2398
0
                } else {
2399
                    /* Quadrant 3 is a normal quarter annulua */
2400
0
                    p0.x = x1, p0.y = y1;
2401
0
                    p1.x = x1 + r2, p1.y = y1 - r2;
2402
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2403
0
                }
2404
2405
                /* Q2 is always a full annulus... */
2406
0
                p0.x = x1, p0.y = y1;
2407
0
                p1.x = x1 - r2, p1.y = y1 - r2;
2408
0
                draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2409
2410
                /* alpha is now the angle between the x axis and the tangent to the
2411
                 * circles.
2412
                 */
2413
0
                alpha = (M_PI / 2) - alpha;
2414
0
                cosalpha = cos(alpha);
2415
0
                endy = y1 + (r1 / cosalpha);
2416
0
                endx = x1;
2417
2418
0
                p0.x = tx, p0.y = ty;
2419
0
                p1.x = endx - ((endx - tx) / 2), p1.y = endy - ((endy - ty) / 2);
2420
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2421
0
                p0.x = endx, p0.y = endy;
2422
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2423
0
                p1.x = x1, p1.y = y1 + r1;
2424
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2425
0
                p0.x = tx, p0.y = ty;
2426
0
                centre.x = x1, centre.y = y1;
2427
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2428
0
                code = patch_fill(pfs, curve, NULL, NULL);
2429
0
                if (code < 0)
2430
0
                    return code;
2431
2432
                /* Q1 is simimlar to Q3, either a full quarter annulus
2433
                 * or a partial one, depending on where the tangent crosses
2434
                 * the y axis
2435
                 */
2436
0
                tanalpha = tan(alpha);
2437
0
                intersecty = y1 + tanalpha * (r2 + (intersectx - x1));
2438
0
                intersectx = x1 - r2;
2439
2440
0
                if (endy < y1 + r2) {
2441
                    /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-(
2442
                     * An 'annulus' where the right edge is less than the normal extent and a
2443
                     * quad which is a rectangle with one corner chopped of at an angle.
2444
                     */
2445
0
                    p0.x = x1, p0.y = y1;
2446
0
                    p1.x = x1 - r2, p1.y = endy;
2447
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2448
0
                    p0.x = x1, p0.y = y1 + r1;
2449
0
                    p1.x = x1, p1.y = endy;
2450
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2451
0
                    p0.x = x1 - r2, p0.y = intersecty;
2452
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2453
0
                    p1.x = p0.x, p1.y = y1 + r1;
2454
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2455
0
                    p0.x = x1, p0.y = y1 + r1;
2456
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2457
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2458
0
                    if (code < 0)
2459
0
                        return code;
2460
0
                } else {
2461
                    /* Quadrant 1 is a normal quarter annulua */
2462
0
                    p0.x = x1, p0.y = y1;
2463
0
                    p1.x = x1 - r2, p1.y = y1 + r2;
2464
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2465
0
                }
2466
0
                break;
2467
0
            case 1:
2468
                /* We have two four-sided elements, from the tangent point
2469
                 * each side, to the point where the tangent crosses an
2470
                 * axis of the larger circle. A line back to the edge
2471
                 * of the larger circle, a line to the point where an axis
2472
                 * crosses the smaller circle, then an arc back to the starting point.
2473
                 */
2474
                /* Figure out the tangent point */
2475
                /* sin (angle) = y1 - y0 / r1 - r0
2476
                 * ty = ((y1 - y0) / (r1 - r0)) * r1
2477
                 */
2478
0
                ty = y1 + ((y0 - y1) / (r1 - r0)) * r1;
2479
0
                tx = x1 - ((x1 - x0) / (r1 - r0)) * r1;
2480
                /* Now actually calculating the point where the tangent crosses the axis of the larger circle
2481
                 * So we need to know the angle the tangent makes with the axis of the smaller circle
2482
                 * as its the same angle where it crosses the axis of the larger circle.
2483
                 * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
2484
                 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
2485
                 * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
2486
                 * circle
2487
                 */
2488
0
                sinalpha = (y0 - y1) / (r1 - r0);
2489
0
                alpha = asin(sinalpha);
2490
0
                cosalpha = cos(alpha);
2491
0
                intersectx = x1 - (r1 / cosalpha);
2492
0
                intersecty = y1;
2493
2494
0
                p0.x = tx, p0.y = ty;
2495
0
                p1.x = tx - (tx - intersectx) / 2, p1.y = ty - (ty - intersecty) / 2;
2496
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2497
0
                p0.x = intersectx, p0.y = intersecty;
2498
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2499
0
                p1.x = x1 - r1, p1.y = y1;
2500
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2501
0
                p0.x = tx, p0.y = ty;
2502
0
                centre.x = x1, centre.y = y1;
2503
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2504
0
                code = patch_fill(pfs, curve, NULL, NULL);
2505
0
                if (code < 0)
2506
0
                    return code;
2507
2508
0
                if (intersectx > x1 - r2) {
2509
                    /* didn't get all the way to the edge, quadrant 2 is composed of 2 quads :-(
2510
                     * An 'annulus' where the right edge is less than the normal extent and a
2511
                     * quad which is a rectangle with one corner chopped of at an angle.
2512
                     */
2513
0
                    p0.x = x1, p0.y = y1;
2514
0
                    p1.x = intersectx, p1.y = y1 - r2;
2515
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2516
0
                    endx = x1 - r2;
2517
0
                    endy = y1 - (tan ((M_PI / 2) - alpha)) * (intersectx - endx);
2518
0
                    p0.x = intersectx, p0.y = y1;
2519
0
                    p1.x = x1 - r2, p1.y = endy;
2520
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2521
0
                    p0.x = x1 - r2, p0.y = y0 - r2;
2522
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2523
0
                    p1.x = intersectx, p1.y = p0.y;
2524
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2525
0
                    p0.x = intersectx, p0.y = y1;
2526
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2527
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2528
0
                    if (code < 0)
2529
0
                        return code;
2530
2531
0
                } else {
2532
                    /* Quadrant 2 is a normal quarter annulua */
2533
0
                    p0.x = x1, p0.y = y1;
2534
0
                    p1.x = x1 - r2, p1.y = y1 - r2;
2535
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2536
0
                }
2537
2538
                /* Q3 is always a full annulus... */
2539
0
                p0.x = x1, p0.y = y1;
2540
0
                p1.x = x1 + r2, p1.y = y1 - r2;
2541
0
                draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2542
2543
                /* alpha is now the angle between the x axis and the tangent to the
2544
                 * circles.
2545
                 */
2546
0
                alpha = (M_PI / 2) - alpha;
2547
0
                cosalpha = cos(alpha);
2548
0
                endy = y1 + (r1 / cosalpha);
2549
0
                endx = x1;
2550
2551
0
                p0.x = tx, p0.y = ty;
2552
0
                p1.x = endx + ((tx - endx) / 2), p1.y = endy - ((endy - ty) / 2);
2553
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2554
0
                p0.x = endx, p0.y = endy;
2555
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2556
0
                p1.x = x1, p1.y = y1 + r1;
2557
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2558
0
                p0.x = tx, p0.y = ty;
2559
0
                centre.x = x1, centre.y = y1;
2560
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2561
0
                code = patch_fill(pfs, curve, NULL, NULL);
2562
0
                if (code < 0)
2563
0
                    return code;
2564
2565
                /* Q0 is simimlar to Q2, either a full quarter annulus
2566
                 * or a partial one, depending on where the tangent crosses
2567
                 * the y axis
2568
                 */
2569
0
                tanalpha = tan(alpha);
2570
0
                intersecty = y1 + tanalpha * (r2 + (x1 - intersectx));
2571
0
                intersectx = x1 + r2;
2572
2573
0
                if (endy < y1 + r2) {
2574
                    /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-(
2575
                     * An 'annulus' where the right edge is less than the normal extent and a
2576
                     * quad which is a rectangle with one corner chopped of at an angle.
2577
                     */
2578
0
                    p0.x = x1, p0.y = y1;
2579
0
                    p1.x = x1 + r2, p1.y = endy;
2580
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2581
0
                    p0.x = x1, p0.y = y1 + r1;
2582
0
                    p1.x = x1, p1.y = endy;
2583
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2584
0
                    p0.x = x1 + r2, p0.y = intersecty;
2585
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2586
0
                    p1.x = p0.x, p1.y = y1 + r1;
2587
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2588
0
                    p0.x = x1, p0.y = y1 + r1;
2589
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2590
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2591
0
                    if (code < 0)
2592
0
                        return code;
2593
0
                } else {
2594
                    /* Quadrant 0 is a normal quarter annulua */
2595
0
                    p0.x = x1, p0.y = y1;
2596
0
                    p1.x = x1 + r2, p1.y = y1 + r2;
2597
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2598
0
                }
2599
0
                break;
2600
0
            case 2:
2601
                /* We have two four-sided elements, from the tangent point
2602
                 * each side, to the point where the tangent crosses an
2603
                 * axis of the larger circle. A line back to the edge
2604
                 * of the larger circle, a line to the point where an axis
2605
                 * crosses the smaller circle, then an arc back to the starting point.
2606
                 */
2607
                /* Figure out the tangent point */
2608
                /* sin (angle) = y1 - y0 / r1 - r0
2609
                 * ty = ((y1 - y0) / (r1 - r0)) * r1
2610
                 */
2611
0
                ty = y1 - ((y1 - y0) / (r1 - r0)) * r1;
2612
0
                tx = x1 - ((x1 - x0) / (r1 - r0)) * r1;
2613
                /* Now actually calculating the point where the tangent crosses the axis of the larger circle
2614
                 * So we need to know the angle the tangent makes with the axis of the smaller circle
2615
                 * as its the same angle where it crosses the axis of the larger circle.
2616
                 * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
2617
                 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
2618
                 * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
2619
                 * circle
2620
                 */
2621
0
                sinalpha = (y1 - y0) / (r1 - r0);
2622
0
                alpha = asin(sinalpha);
2623
0
                cosalpha = cos(alpha);
2624
0
                intersectx = x1 - (r1 / cosalpha);
2625
0
                intersecty = y1;
2626
2627
0
                p0.x = tx, p0.y = ty;
2628
0
                p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2;
2629
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2630
0
                p0.x = intersectx, p0.y = intersecty;
2631
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2632
0
                p1.x = x1 - r1, p1.y = y1;
2633
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2634
0
                p0.x = tx, p0.y = ty;
2635
0
                centre.x = x1, centre.y = y1;
2636
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2637
0
                code = patch_fill(pfs, curve, NULL, NULL);
2638
0
                if (code < 0)
2639
0
                    return code;
2640
0
                if (intersectx > x1 - r2) {
2641
                    /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-(
2642
                     * An 'annulus' where the right edge is less than the normal extent and a
2643
                     * quad which is a rectangle with one corner chopped of at an angle.
2644
                     */
2645
0
                    p0.x = x1, p0.y = y1;
2646
0
                    p1.x = intersectx, p1.y = y1 + r2;
2647
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2648
0
                    endy = y1+r2;
2649
0
                    endx = intersectx - ((endy - intersecty) / (tan ((M_PI / 2) - alpha)));
2650
0
                    p0.x = intersectx, p0.y = y1;
2651
0
                    p1.x = endx, p1.y = endy;
2652
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2653
0
                    p0.x = x1 - r1, p0.y = endy;
2654
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2655
0
                    p1.x = x1 - r1, p1.y = y1;
2656
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2657
0
                    p0.x = intersectx, p0.y = y1;
2658
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2659
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2660
0
                    if (code < 0)
2661
0
                        return code;
2662
0
                } else {
2663
                    /* Quadrant 1 is a normal quarter annulua */
2664
0
                    p0.x = x1, p0.y = y1;
2665
0
                    p1.x = x1 - r2, p1.y = y1 + r2;
2666
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2667
0
                }
2668
2669
                /* Q0 is always a full annulus... */
2670
0
                p0.x = x1, p0.y = y1;
2671
0
                p1.x = x1 + r2, p1.y = y1 + r2;
2672
0
                if (p1.y < 0)
2673
0
                    p1.y = 0;
2674
0
                draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2675
2676
                /* alpha is now the angle between the x axis and the tangent to the
2677
                 * circles.
2678
                 */
2679
0
                alpha = (M_PI / 2) - alpha;
2680
0
                cosalpha = cos(alpha);
2681
0
                endy = y1 - (r1 / cosalpha);
2682
0
                endx = x1;
2683
2684
0
                p0.x = tx, p0.y = ty;
2685
0
                p1.x = endx + ((endx - tx) / 2), p1.y = endy - ((ty - endy) / 2);
2686
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2687
0
                p0.x = endx, p0.y = endy;
2688
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2689
0
                p1.x = x1, p1.y = y1 - r1;
2690
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2691
0
                p0.x = tx, p0.y = ty;
2692
0
                centre.x = x1, centre.y = y1;
2693
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2694
0
                code = patch_fill(pfs, curve, NULL, NULL);
2695
0
                if (code < 0)
2696
0
                    return code;
2697
2698
                /* Q3 is simimlar to Q1, either a full quarter annulus
2699
                 * or a partial one, depending on where the tangent crosses
2700
                 * the y axis
2701
                 */
2702
0
                tanalpha = tan(alpha);
2703
0
                intersecty = y1 - tanalpha * (r2 + (x1 - intersectx));
2704
0
                intersectx = x1 + r2;
2705
2706
0
                if (endy > y1 - r2) {
2707
                    /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-(
2708
                     * An 'annulus' where the right edge is less than the normal extent and a
2709
                     * quad which is a rectangle with one corner chopped of at an angle.
2710
                     */
2711
0
                    p0.x = x1, p0.y = y1;
2712
0
                    p1.x = x1 + r2, p1.y = endy;
2713
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2714
0
                    p0.x = x1, p0.y = y1 - r1;
2715
0
                    p1.x = x1, p1.y = endy;
2716
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2717
0
                    p0.x = x1 + r2, p0.y = intersecty;
2718
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2719
0
                    p1.x = p0.x, p1.y = y1 - r1;
2720
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2721
0
                    p0.x = x1, p0.y = y1 - r1;
2722
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2723
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2724
0
                    if (code < 0)
2725
0
                        return code;
2726
0
                } else {
2727
                    /* Quadrant 1 is a normal quarter annulua */
2728
0
                    p0.x = x1, p0.y = y1;
2729
0
                    p1.x = x1 + r2, p1.y = y1 - r2;
2730
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2731
0
                }
2732
0
                break;
2733
0
            case 3:
2734
                /* We have two four-sided elements, from the tangent point
2735
                 * each side, to the point where the tangent crosses an
2736
                 * axis of the larger circle. A line back to the edge
2737
                 * of the larger circle, a line to the point where an axis
2738
                 * crosses the smaller circle, then an arc back to the starting point.
2739
                 */
2740
                /* Figure out the tangent point */
2741
                /* sin (angle) = y1 - y0 / r1 - r0
2742
                 * ty = ((y1 - y0) / (r1 - r0)) * r1
2743
                 */
2744
0
                ty = y1 - ((y1 - y0) / (r1 - r0)) * r1;
2745
0
                tx = x1 + ((x0 - x1) / (r1 - r0)) * r1;
2746
                /* Now actually calculating the point where the tangent crosses the axis of the larger circle
2747
                 * So we need to know the angle the tangent makes with the axis of the smaller circle
2748
                 * as its the same angle where it crosses the axis of the larger circle.
2749
                 * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
2750
                 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
2751
                 * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
2752
                 * circle
2753
                 */
2754
0
                sinalpha = (y1 - y0) / (r1 - r0);
2755
0
                alpha = asin(sinalpha);
2756
0
                cosalpha = cos(alpha);
2757
0
                intersectx = x1 + (r1 / cosalpha);
2758
0
                intersecty = y1;
2759
2760
0
                p0.x = tx, p0.y = ty;
2761
0
                p1.x = tx + (intersectx - tx) / 2, p1.y = ty + (intersecty - ty) / 2;
2762
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2763
0
                p0.x = intersectx, p0.y = intersecty;
2764
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2765
0
                p1.x = x1 + r1, p1.y = y1;
2766
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2767
0
                p0.x = tx, p0.y = ty;
2768
0
                centre.x = x1, centre.y = y1;
2769
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2770
0
                code = patch_fill(pfs, curve, NULL, NULL);
2771
0
                if (code < 0)
2772
0
                    return code;
2773
0
                if (intersectx < x1 + r2) {
2774
                    /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-(
2775
                     * An 'annulus' where the right edge is less than the normal extent and a
2776
                     * quad which is a rectangle with one corner chopped of at an angle.
2777
                     */
2778
0
                    p0.x = x1, p0.y = y1;
2779
0
                    p1.x = intersectx, p1.y = y1 + r2;
2780
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2781
0
                    endy = y1 + r2;
2782
0
                    endx = intersectx + ((endy - intersecty) / (tan ((M_PI / 2) - alpha)));
2783
0
                    p0.x = intersectx, p0.y = y1;
2784
0
                    p1.x = endx, p1.y = endy;
2785
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2786
0
                    p0.x = x1 + r1, p0.y = endy;
2787
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2788
0
                    p1.x = x1 + r1, p1.y = y1;
2789
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2790
0
                    p0.x = intersectx, p0.y = y1;
2791
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2792
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2793
0
                    if (code < 0)
2794
0
                        return code;
2795
2796
0
                } else {
2797
                    /* Quadrant 0 is a normal quarter annulua */
2798
0
                    p0.x = x1, p0.y = y1;
2799
0
                    p1.x = x1 + r2, p1.y = y1 + r2;
2800
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2801
0
                }
2802
                /* Q1 is always a full annulus... */
2803
0
                p0.x = x1, p0.y = y1;
2804
0
                p1.x = x1 - r2, p1.y = y1 + r2;
2805
0
                draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2806
2807
                /* alpha is now the angle between the x axis and the tangent to the
2808
                 * circles.
2809
                 */
2810
0
                alpha = (M_PI / 2) - alpha;
2811
0
                cosalpha = cos(alpha);
2812
0
                endy = y1 - (r1 / cosalpha);
2813
0
                endx = x1;
2814
2815
0
                p0.x = tx, p0.y = ty;
2816
0
                p1.x = endx + ((tx - endx) / 2), p1.y = endy + ((ty - endy) / 2);
2817
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2818
0
                p0.x = endx, p0.y = endy;
2819
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2820
0
                p1.x = x1, p1.y = y1 - r1;
2821
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2822
0
                p0.x = tx, p0.y = ty;
2823
0
                centre.x = x1, centre.y = y1;
2824
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2825
0
                code = patch_fill(pfs, curve, NULL, NULL);
2826
0
                if (code < 0)
2827
0
                    return code;
2828
2829
                /* Q3 is simimlar to Q1, either a full quarter annulus
2830
                 * or a partial one, depending on where the tangent crosses
2831
                 * the y axis
2832
                 */
2833
0
                tanalpha = tan(alpha);
2834
0
                intersecty = y1 - tanalpha * (r2 + (intersectx - x1));
2835
0
                intersectx = x1 - r2;
2836
2837
0
                if (endy > y1 - r2) {
2838
                    /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-(
2839
                     * An 'annulus' where the right edge is less than the normal extent and a
2840
                     * quad which is a rectangle with one corner chopped of at an angle.
2841
                     */
2842
0
                    p0.x = x1, p0.y = y1;
2843
0
                    p1.x = x1 - r2, p1.y = endy;
2844
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2845
0
                    p0.x = x1, p0.y = y1 - r1;
2846
0
                    p1.x = x1, p1.y = endy;
2847
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2848
0
                    p0.x = x1 - r2, p0.y = intersecty;
2849
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2850
0
                    p1.x = p0.x, p1.y = y1 - r1;
2851
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2852
0
                    p0.x = x1, p0.y = y1 - r1;
2853
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2854
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2855
0
                    if (code < 0)
2856
0
                        return code;
2857
0
                } else {
2858
                    /* Quadrant 1 is a normal quarter annulua */
2859
0
                    p0.x = x1, p0.y = y1;
2860
0
                    p1.x = x1 - r2, p1.y = y1 - r2;
2861
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2862
0
                }
2863
0
                break;
2864
0
        }
2865
0
    }
2866
0
    return 0;
2867
0
}
2868
2869
static int
2870
R_outer_circle(patch_fill_state_t *pfs, const gs_rect *rect,
2871
        double x0, double y0, double r0,
2872
        double x1, double y1, double r1,
2873
        double *x2, double *y2, double *r2)
2874
0
{
2875
0
    double dx = x1 - x0, dy = y1 - y0;
2876
0
    double sp, sq, s;
2877
2878
    /* Compute a cone circle, which contacts the rect externally. */
2879
    /* Don't bother with all 4 sides of the rect,
2880
       just do with the X or Y span only,
2881
       so it's not an exact contact, sorry. */
2882
0
    if (any_abs(dx) > any_abs(dy)) {
2883
        /* Solving :
2884
            x0 + (x1 - x0) * sq + r0 + (r1 - r0) * sq == bbox_px
2885
            (x1 - x0) * sp + (r1 - r0) * sp == bbox_px - x0 - r0
2886
            sp = (bbox_px - x0 - r0) / (x1 - x0 + r1 - r0)
2887
2888
            x0 + (x1 - x0) * sq - r0 - (r1 - r0) * sq == bbox_qx
2889
            (x1 - x0) * sq - (r1 - r0) * sq == bbox_x - x0 + r0
2890
            sq = (bbox_x - x0 + r0) / (x1 - x0 - r1 + r0)
2891
         */
2892
0
        if (x1 - x0 + r1 - r0 ==  0) /* We checked for obtuse cone. */
2893
0
            return_error(gs_error_unregistered); /* Must not happen. */
2894
0
        if (x1 - x0 - r1 + r0 ==  0) /* We checked for obtuse cone. */
2895
0
            return_error(gs_error_unregistered); /* Must not happen. */
2896
0
        sp = (rect->p.x - x0 - r0) / (x1 - x0 + r1 - r0);
2897
0
        sq = (rect->q.x - x0 + r0) / (x1 - x0 - r1 + r0);
2898
0
    } else {
2899
        /* Same by Y. */
2900
0
        if (y1 - y0 + r1 - r0 ==  0) /* We checked for obtuse cone. */
2901
0
            return_error(gs_error_unregistered); /* Must not happen. */
2902
0
        if (y1 - y0 - r1 + r0 ==  0) /* We checked for obtuse cone. */
2903
0
            return_error(gs_error_unregistered); /* Must not happen. */
2904
0
        sp = (rect->p.y - y0 - r0) / (y1 - y0 + r1 - r0);
2905
0
        sq = (rect->q.y - y0 + r0) / (y1 - y0 - r1 + r0);
2906
0
    }
2907
0
    if (sp >= 1 && sq >= 1)
2908
0
        s = max(sp, sq);
2909
0
    else if(sp >= 1)
2910
0
        s = sp;
2911
0
    else if (sq >= 1)
2912
0
        s = sq;
2913
0
    else {
2914
        /* The circle 1 is outside the rect, use it. */
2915
0
        s = 1;
2916
0
    }
2917
0
    if (r0 + (r1 - r0) * s < 0) {
2918
        /* Passed the cone apex, use the apex. */
2919
0
        s = r0 / (r0 - r1);
2920
0
        *r2 = 0;
2921
0
    } else
2922
0
        *r2 = r0 + (r1 - r0) * s;
2923
0
    *x2 = x0 + (x1 - x0) * s;
2924
0
    *y2 = y0 + (y1 - y0) * s;
2925
0
    return 0;
2926
0
}
2927
2928
static double
2929
R_rect_radius(const gs_rect *rect, double x0, double y0)
2930
166
{
2931
166
    double d, dd;
2932
2933
166
    dd = hypot(rect->p.x - x0, rect->p.y - y0);
2934
166
    d = hypot(rect->p.x - x0, rect->q.y - y0);
2935
166
    dd = max(dd, d);
2936
166
    d = hypot(rect->q.x - x0, rect->q.y - y0);
2937
166
    dd = max(dd, d);
2938
166
    d = hypot(rect->q.x - x0, rect->p.y - y0);
2939
166
    dd = max(dd, d);
2940
166
    return dd;
2941
166
}
2942
2943
static int
2944
R_fill_triangle_new(patch_fill_state_t *pfs, const gs_rect *rect,
2945
    double x0, double y0, double x1, double y1, double x2, double y2, double t)
2946
0
{
2947
0
    shading_vertex_t p0, p1, p2;
2948
0
    patch_color_t *c;
2949
0
    int code;
2950
0
    reserve_colors(pfs, &c, 1); /* Can't fail */
2951
2952
0
    p0.c = c;
2953
0
    p1.c = c;
2954
0
    p2.c = c;
2955
0
    code = gs_point_transform2fixed(&pfs->pgs->ctm, x0, y0, &p0.p);
2956
0
    if (code >= 0)
2957
0
        code = gs_point_transform2fixed(&pfs->pgs->ctm, x1, y1, &p1.p);
2958
0
    if (code >= 0)
2959
0
        code = gs_point_transform2fixed(&pfs->pgs->ctm, x2, y2, &p2.p);
2960
0
    if (code >= 0) {
2961
0
        c->t[0] = c->t[1] = t;
2962
0
        patch_resolve_color(c, pfs);
2963
0
        code = mesh_triangle(pfs, &p0, &p1, &p2);
2964
0
    }
2965
0
    release_colors(pfs, pfs->color_stack, 1);
2966
0
    return code;
2967
0
}
2968
2969
static int
2970
R_obtuse_cone(patch_fill_state_t *pfs, const gs_rect *rect,
2971
        double x0, double y0, double r0,
2972
        double x1, double y1, double r1, double t0, double r_rect)
2973
0
{
2974
0
    double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
2975
0
    double d = hypot(dx, dy);
2976
    /* Assuming dr > d / 3 && d > dr + 1e-7 * (d + dr), see the caller. */
2977
0
    double r = r_rect * 1.4143; /* A few bigger than sqrt(2). */
2978
0
    double ax, ay, as; /* Cone apex. */
2979
0
    double g0; /* The distance from apex to the tangent point of the 0th circle. */
2980
0
    int code;
2981
2982
0
    as = r0 / (r0 - r1);
2983
0
    ax = x0 + (x1 - x0) * as;
2984
0
    ay = y0 + (y1 - y0) * as;
2985
0
    g0 = sqrt(dx * dx + dy * dy - dr * dr) * as;
2986
0
    if (g0 < 1e-7 * r0) {
2987
        /* Nearly degenerate, replace with half-plane. */
2988
        /* Restrict the half plane with triangle, which covers the rect. */
2989
0
        gs_point p0, p1, p2; /* Right tangent limit, apex limit, left tangent linit,
2990
                                (right, left == when looking from the apex). */
2991
2992
0
        p0.x = ax - dy * r / d;
2993
0
        p0.y = ay + dx * r / d;
2994
0
        p1.x = ax - dx * r / d;
2995
0
        p1.y = ay - dy * r / d;
2996
0
        p2.x = ax + dy * r / d;
2997
0
        p2.y = ay - dx * r / d;
2998
        /* Split into 2 triangles at the apex,
2999
           so that the apex is preciselly covered.
3000
           Especially important when it is not exactly degenerate. */
3001
0
        code = R_fill_triangle_new(pfs, rect, ax, ay, p0.x, p0.y, p1.x, p1.y, t0);
3002
0
        if (code < 0)
3003
0
            return code;
3004
0
        return R_fill_triangle_new(pfs, rect, ax, ay, p1.x, p1.y, p2.x, p2.y, t0);
3005
0
    } else {
3006
        /* Compute the "limit" circle so that its
3007
           tangent points are outside the rect. */
3008
        /* Note: this branch is executed when the condition above is false :
3009
           g0 >= 1e-7 * r0 .
3010
           We believe that computing this branch with doubles
3011
           provides enough precision after converting coordinates into 'fixed',
3012
           and that the limit circle radius is not dramatically big.
3013
         */
3014
0
        double es, er; /* The limit circle parameter, radius. */
3015
0
        double ex, ey; /* The limit circle centrum. */
3016
3017
0
        es = as - as * r / g0; /* Always negative. */
3018
0
        er = r * r0 / g0 ;
3019
0
        ex = x0 + dx * es;
3020
0
        ey = y0 + dy * es;
3021
        /* Fill the annulus: */
3022
0
        code = R_tensor_annulus(pfs, x0, y0, r0, t0, ex, ey, er, t0);
3023
0
        if (code < 0)
3024
0
            return code;
3025
        /* Fill entire ending circle to ensure entire rect is covered. */
3026
0
        return R_tensor_annulus(pfs, ex, ey, er, t0, ex, ey, 0, t0);
3027
0
    }
3028
0
}
3029
3030
static int
3031
R_tensor_cone_apex(patch_fill_state_t *pfs, const gs_rect *rect,
3032
        double x0, double y0, double r0,
3033
        double x1, double y1, double r1, double t)
3034
0
{
3035
0
    double as = r0 / (r0 - r1);
3036
0
    double ax = x0 + (x1 - x0) * as;
3037
0
    double ay = y0 + (y1 - y0) * as;
3038
3039
0
    return R_tensor_annulus(pfs, x1, y1, r1, t, ax, ay, 0, t);
3040
0
}
3041
3042
/*
3043
 * A map of this code:
3044
 *
3045
 * R_extensions
3046
 * |-> (R_rect_radius)
3047
 * |-> (R_outer_circle)
3048
 * |-> R_obtuse_cone
3049
 * |   |-> R_fill_triangle_new
3050
 * |   |   '-> mesh_triangle
3051
 * |   |       '-> mesh_triangle_rec <--.
3052
 * |   |           |--------------------'
3053
 * |   |           |-> small_mesh_triangle
3054
 * |   |           |   '-> fill_triangle
3055
 * |   |           |       '-> triangle_by_4 <--.
3056
 * |   |           |           |----------------'
3057
 * |   |           |           |-> constant_color_triangle
3058
 * |   |           |           |-> make_wedge_median (etc)
3059
 * |   |           '-----------+--------------------.
3060
 * |   '-------------------.                        |
3061
 * |-> R_tensor_cone_apex  |                        |
3062
 * |   '-------------------+                        |
3063
 * '-> R_tensor_annulus <--'                       \|/
3064
 *     |-> (make_quadrant_arc)                      |
3065
 *     '-> patch_fill                               |
3066
 *         |-> fill_patch <--.                      |
3067
 *         |   |-------------'                      |
3068
 *         |   |------------------------------------+
3069
 *         |   '-> fill_stripe                      |
3070
 *         |       |-----------------------.        |
3071
 *         |      \|/                      |        |
3072
 *         |-> fill_wedges                 |        |
3073
 *             '-> fill_wedges_aux <--.    |        |
3074
 *                 |------------------'   \|/       |
3075
 *                 |----------------> mesh_padding  '
3076
 *                 |                  '----------------------------------.
3077
 *                 '-> wedge_by_triangles <--.      .                    |
3078
 *                     |---------------------'      |                    |
3079
 *                     '-> fill_triangle_wedge <----'                    |
3080
 *                         '-> fill_triangle_wedge_aux                   |
3081
 *                             '-> fill_wedge_trap                       |
3082
 *                                 '-> wedge_trap_decompose              |
3083
 *                                     '-> linear_color_trapezoid        |
3084
 *                                         '-> decompose_linear_color <--|
3085
 *                                             |-------------------------'
3086
 *                                             '-> constant_color_trapezoid
3087
 */
3088
static int
3089
R_extensions(patch_fill_state_t *pfs, const gs_shading_R_t *psh, const gs_rect *rect,
3090
        double t0, double t1, bool Extend0, bool Extend1)
3091
336
{
3092
336
    float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
3093
336
    double r0 = psh->params.Coords[2];
3094
336
    float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
3095
336
    double r1 = psh->params.Coords[5];
3096
336
    double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
3097
336
    double d = hypot(dx, dy), r;
3098
336
    int code;
3099
3100
    /* In order for the circles to be nested, one end circle
3101
     * needs to be sufficiently large to cover the entirety
3102
     * of the other end circle. i.e.
3103
     *
3104
     *     max(r0,r1) >= d + min(r0,r1)
3105
     * === min(r0,r1) + dr >= d + min(r0,r1)
3106
     * === dr >= d
3107
     *
3108
     * This, plus a fudge factor for FP operation is what we use below.
3109
     *
3110
     * An "Obtuse Cone" is defined to be one for which the "opening
3111
     * angle" is obtuse.
3112
     *
3113
     * Consider two circles; one at (r0,r0) of radius r0, and one at
3114
     * (r1,r1) of radius r1. These clearly lie on the acute/obtuse
3115
     * boundary. The distance between the centres of these two circles
3116
     * is d = sqr(2.(r0-r1)^2) by pythagoras. Thus d = sqr(2).dr.
3117
     * By observation if d gets longer, we become acute, shorter, obtuse.
3118
     * i.e. if sqr(2).dr > d we are obtuse, if d > sqr(2).dr we are acute.
3119
     * (Thanks to Paul Gardiner for this reasoning).
3120
     *
3121
     * The code below tests (dr > d/3) (i.e. 3.dr > d). This
3122
     * appears to be a factor of 2 and a bit out, so I am confused
3123
     * by it.
3124
     *
3125
     * Either Igor meant something different to the standard meaning
3126
     * of "Obtuse Cone", or he got his maths wrong. Or he was more
3127
     * cunning than I can understand. Leave it as it until we find
3128
     * an actual example that goes wrong.
3129
     */
3130
3131
    /* Tests with Acrobat seem to indicate that it uses a fudge factor
3132
     * of around .0001. (i.e. [1.0001 0 0 0 0 1] is accepted as a
3133
     * non nested circle, but [1.00009 0 0 0 0 1] is a nested one.
3134
     * Approximate the same sort of value here to appease bug 690831.
3135
     */
3136
336
    if (any_abs (dr - d) < 0.001) {
3137
0
        if ((r0 > r1 && Extend0) || (r1 > r0 && Extend1)) {
3138
0
            r = R_rect_radius(rect, x0, y0);
3139
0
            if (r0 < r1)
3140
0
                code = R_tensor_annulus_extend_tangent(pfs, x0, y0, r0, t1, x1, y1, r1, t1, r);
3141
0
            else
3142
0
                code = R_tensor_annulus_extend_tangent(pfs, x1, y1, r1, t0, x0, y0, r0, t0, r);
3143
0
            if (code < 0)
3144
0
                return code;
3145
0
        } else {
3146
0
            if (r0 > r1) {
3147
0
                if (Extend1 && r1 > 0)
3148
0
                    return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1);
3149
0
            }
3150
0
            else {
3151
0
                if (Extend0 && r0 > 0)
3152
0
                    return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0);
3153
0
            }
3154
0
        }
3155
0
    } else
3156
336
    if (dr > d - 1e-4 * (d + dr)) {
3157
        /* Nested circles, or degenerate. */
3158
336
        if (r0 > r1) {
3159
7
            if (Extend0) {
3160
0
                r = R_rect_radius(rect, x0, y0);
3161
0
                if (r > r0) {
3162
0
                    code = R_tensor_annulus(pfs, x0, y0, r, t0, x0, y0, r0, t0);
3163
0
                    if (code < 0)
3164
0
                        return code;
3165
0
                }
3166
0
            }
3167
7
            if (Extend1 && r1 > 0)
3168
7
                return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1);
3169
329
        } else {
3170
329
            if (Extend1) {
3171
166
                r = R_rect_radius(rect, x1, y1);
3172
166
                if (r > r1) {
3173
164
                    code = R_tensor_annulus(pfs, x1, y1, r, t1, x1, y1, r1, t1);
3174
164
                    if (code < 0)
3175
0
                        return code;
3176
164
                }
3177
166
            }
3178
329
            if (Extend0 && r0 > 0)
3179
0
                return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0);
3180
329
        }
3181
336
    } else if (dr > d / 3) {
3182
        /* Obtuse cone. */
3183
0
        if (r0 > r1) {
3184
0
            if (Extend0) {
3185
0
                r = R_rect_radius(rect, x0, y0);
3186
0
                code = R_obtuse_cone(pfs, rect, x0, y0, r0, x1, y1, r1, t0, r);
3187
0
                if (code < 0)
3188
0
                    return code;
3189
0
            }
3190
0
            if (Extend1 && r1 != 0)
3191
0
                return R_tensor_cone_apex(pfs, rect, x0, y0, r0, x1, y1, r1, t1);
3192
0
            return 0;
3193
0
        } else {
3194
0
            if (Extend1) {
3195
0
                r = R_rect_radius(rect, x1, y1);
3196
0
                code = R_obtuse_cone(pfs, rect, x1, y1, r1, x0, y0, r0, t1, r);
3197
0
                if (code < 0)
3198
0
                    return code;
3199
0
            }
3200
0
            if (Extend0 && r0 != 0)
3201
0
                return R_tensor_cone_apex(pfs, rect, x1, y1, r1, x0, y0, r0, t0);
3202
0
        }
3203
0
    } else {
3204
        /* Acute cone or cylinder. */
3205
0
        double x2, y2, r2, x3, y3, r3;
3206
3207
0
        if (Extend0) {
3208
0
            code = R_outer_circle(pfs, rect, x1, y1, r1, x0, y0, r0, &x3, &y3, &r3);
3209
0
            if (code < 0)
3210
0
                return code;
3211
0
            if (x3 != x1 || y3 != y1) {
3212
0
                code = R_tensor_annulus(pfs, x0, y0, r0, t0, x3, y3, r3, t0);
3213
0
                if (code < 0)
3214
0
                    return code;
3215
0
            }
3216
0
        }
3217
0
        if (Extend1) {
3218
0
            code = R_outer_circle(pfs, rect, x0, y0, r0, x1, y1, r1, &x2, &y2, &r2);
3219
0
            if (code < 0)
3220
0
                return code;
3221
0
            if (x2 != x0 || y2 != y0) {
3222
0
                code = R_tensor_annulus(pfs, x1, y1, r1, t1, x2, y2, r2, t1);
3223
0
                if (code < 0)
3224
0
                    return code;
3225
0
            }
3226
0
        }
3227
0
    }
3228
329
    return 0;
3229
336
}
3230
3231
static int
3232
R_fill_rect_with_const_color(patch_fill_state_t *pfs, const gs_fixed_rect *clip_rect, float t)
3233
2
{
3234
#if 0 /* Disabled because the clist writer device doesn't pass
3235
         the clipping path with fill_recatangle. */
3236
    patch_color_t pc;
3237
    const gs_color_space *pcs = pfs->direct_space;
3238
    gx_device_color dc;
3239
    int code;
3240
3241
    code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
3242
    if (code < 0)
3243
        return code;
3244
    pcs->type->restrict_color(&pc.cc, pcs);
3245
    code = patch_color_to_device_color(pfs, &pc, &dc);
3246
    if (code < 0)
3247
        return code;
3248
    return gx_fill_rectangle_device_rop(fixed2int_pixround(clip_rect->p.x), fixed2int_pixround(clip_rect->p.y),
3249
                                        fixed2int_pixround(clip_rect->q.x) - fixed2int_pixround(clip_rect->p.x),
3250
                                        fixed2int_pixround(clip_rect->q.y) - fixed2int_pixround(clip_rect->p.y),
3251
                                        &dc, pfs->dev, pfs->pgs->log_op);
3252
#else
3253
    /* Can't apply fill_rectangle, because the clist writer device doesn't pass
3254
       the clipping path with fill_recatangle. Convert into trapezoids instead.
3255
    */
3256
2
    quadrangle_patch p;
3257
2
    shading_vertex_t pp[2][2];
3258
2
    const gs_color_space *pcs = pfs->direct_space;
3259
2
    patch_color_t pc;
3260
2
    int code;
3261
3262
2
    code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
3263
2
    if (code < 0)
3264
0
        return code;
3265
2
    pcs->type->restrict_color(&pc.cc, pcs);
3266
2
    pc.t[0] = pc.t[1] = t;
3267
2
    pp[0][0].p = clip_rect->p;
3268
2
    pp[0][1].p.x = clip_rect->q.x;
3269
2
    pp[0][1].p.y = clip_rect->p.y;
3270
2
    pp[1][0].p.x = clip_rect->p.x;
3271
2
    pp[1][0].p.y = clip_rect->q.y;
3272
2
    pp[1][1].p = clip_rect->q;
3273
2
    pp[0][0].c = pp[0][1].c = pp[1][0].c = pp[1][1].c = &pc;
3274
2
    p.p[0][0] = &pp[0][0];
3275
2
    p.p[0][1] = &pp[0][1];
3276
2
    p.p[1][0] = &pp[1][0];
3277
2
    p.p[1][1] = &pp[1][1];
3278
2
    return constant_color_quadrangle(pfs, &p, false);
3279
2
#endif
3280
2
}
3281
3282
typedef struct radial_shading_attrs_s {
3283
    double x0, y0;
3284
    double x1, y1;
3285
    double span[2][2];
3286
    double apex;
3287
    bool have_apex;
3288
    bool have_root[2]; /* ongoing contact, outgoing contact. */
3289
    bool outer_contact[2];
3290
    gs_point p[6]; /* 4 corners of the rectangle, p[4] = p[0], p[5] = p[1] */
3291
} radial_shading_attrs_t;
3292
3293
7.16k
#define Pw2(a) ((a)*(a))
3294
3295
static void
3296
radial_shading_external_contact(radial_shading_attrs_t *rsa, int point_index, double t, double r0, double r1, bool at_corner, int root_index)
3297
1.06k
{
3298
1.06k
    double cx = rsa->x0 + (rsa->x1 - rsa->x0) * t;
3299
1.06k
    double cy = rsa->y0 + (rsa->y1 - rsa->y0) * t;
3300
1.06k
    double rx = rsa->p[point_index].x - cx;
3301
1.06k
    double ry = rsa->p[point_index].y - cy;
3302
1.06k
    double dx = rsa->p[point_index - 1].x - rsa->p[point_index].x;
3303
1.06k
    double dy = rsa->p[point_index - 1].y - rsa->p[point_index].y;
3304
3305
1.06k
    if (at_corner) {
3306
1.02k
        double Dx = rsa->p[point_index + 1].x - rsa->p[point_index].x;
3307
1.02k
        double Dy = rsa->p[point_index + 1].y - rsa->p[point_index].y;
3308
1.02k
        bool b1 = (dx * rx + dy * ry >= 0);
3309
1.02k
        bool b2 = (Dx * rx + Dy * ry >= 0);
3310
3311
1.02k
        if (b1 & b2)
3312
248
            rsa->outer_contact[root_index] = true;
3313
1.02k
    } else {
3314
36
        if (rx * dy - ry * dx < 0)
3315
12
            rsa->outer_contact[root_index] = true;
3316
36
    }
3317
1.06k
}
3318
3319
static void
3320
store_roots(radial_shading_attrs_t *rsa, const bool have_root[2], const double t[2], double r0, double r1, int point_index, bool at_corner)
3321
2.04k
{
3322
2.04k
    int i;
3323
3324
6.14k
    for (i = 0; i < 2; i++) {
3325
4.09k
        bool good_root;
3326
3327
4.09k
        if (!have_root[i])
3328
2.01k
            continue;
3329
2.08k
        good_root = (!rsa->have_apex || (rsa->apex <= 0 || r0 == 0 ? t[i] >= rsa->apex : t[i] <= rsa->apex));
3330
2.08k
        if (good_root) {
3331
1.06k
            radial_shading_external_contact(rsa, point_index, t[i], r0, r1, at_corner, i);
3332
1.06k
            if (!rsa->have_root[i]) {
3333
64
                rsa->span[i][0] = rsa->span[i][1] = t[i];
3334
64
                rsa->have_root[i] = true;
3335
996
            } else {
3336
996
                if (rsa->span[i][0] > t[i])
3337
70
                    rsa->span[i][0] = t[i];
3338
996
                if (rsa->span[i][1] < t[i])
3339
149
                    rsa->span[i][1] = t[i];
3340
996
            }
3341
1.06k
        }
3342
2.08k
    }
3343
2.04k
}
3344
3345
static void
3346
compute_radial_shading_span_extended_side(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
3347
1.02k
{
3348
1.02k
    double cc, c;
3349
1.02k
    bool have_root[2] = {false, false};
3350
1.02k
    double t[2];
3351
1.02k
    bool by_x = (rsa->p[point_index].x != rsa->p[point_index + 1].x);
3352
1.02k
    int i;
3353
3354
    /* As t moves from 0 to 1, the circles move from r0 to r1, and from
3355
     * from position p0 to py. For simplicity, adjust so that p0 is at
3356
     * the origin. Consider the projection of the circle drawn at any given
3357
     * time onto the x axis. The range of points would be:
3358
     * p1x*t +/- (r0+(r1-r0)*t). We are interested in the first (and last)
3359
     * moments when the range includes a point c on the x axis. So solve for:
3360
     * p1x*t +/- (r0+(r1-r0)*t) = c. Let cc = p1x.
3361
     * So p1x*t0 + (r1-r0)*t0 = c - r0 => t0 = (c - r0)/(p1x + r1 - r0)
3362
     *    p1x*t1 - (r1-r0)*t1 = c + r0 => t1 = (c + r0)/(p1x - r1 + r0)
3363
     */
3364
1.02k
    if (by_x) {
3365
480
        c = rsa->p[point_index].x - rsa->x0;
3366
480
        cc = rsa->x1 - rsa->x0;
3367
544
    } else {
3368
544
        c = rsa->p[point_index].y - rsa->y0;
3369
544
        cc = rsa->y1 - rsa->y0;
3370
544
    }
3371
1.02k
    t[0] = (c - r0) / (cc + r1 - r0);
3372
1.02k
    t[1] = (c + r0) / (cc - r1 + r0);
3373
1.02k
    if (t[0] > t[1]) {
3374
688
        c    = t[0];
3375
688
        t[0] = t[1];
3376
688
        t[1] = c;
3377
688
    }
3378
3.07k
    for (i = 0; i < 2; i++) {
3379
2.04k
        double d, d0, d1;
3380
3381
2.04k
        if (by_x) {
3382
960
            d = rsa->y1 - rsa->y0 + r0 + (r1 - r0) * t[i];
3383
960
            d0 = rsa->p[point_index].y;
3384
960
            d1 = rsa->p[point_index + 1].y;
3385
1.08k
        } else {
3386
1.08k
            d = rsa->x1 - rsa->x0 + r0 + (r1 - r0) * t[i];
3387
1.08k
            d0 = rsa->p[point_index].x;
3388
1.08k
            d1 = rsa->p[point_index + 1].x;
3389
1.08k
        }
3390
2.04k
        if (d1 > d0 ? d0 <= d && d <= d1 : d1 <= d && d <= d0)
3391
36
            have_root[i] = true;
3392
2.04k
    }
3393
1.02k
    store_roots(rsa, have_root, t, r0, r1, point_index, false);
3394
1.02k
}
3395
3396
static int
3397
compute_radial_shading_span_extended_point(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
3398
1.02k
{
3399
    /* As t moves from 0 to 1, the circles move from r0 to r1, and from
3400
     * from position p0 to py. At any given time t, therefore, we
3401
     * paint the points that are distance r0+(r1-r0)*t from point
3402
     * (p0x+(p1x-p0x)*t,p0y+(p1y-p0y)*t) = P(t).
3403
     *
3404
     * To simplify our algebra, adjust so that (p0x, p0y) is at the origin.
3405
     * To find the time(s) t at which the a point q is painted, we therefore
3406
     * solve for t in:
3407
     *
3408
     * |q-P(t)| = r0+(r1-r0)*t
3409
     *
3410
     *   (qx-p1x*t)^2 + (qy-p1y*t)^2 - (r0+(r1-r0)*t)^2 = 0
3411
     * = qx^2 - 2qx.p1x.t + p1x^2.t^2 + qy^2 - 2qy.p1y.t + p1y^2.t^2 -
3412
     *                                   (r0^2 + 2r0(r1-r0)t + (r1-r0)^2.t^2)
3413
     * =   qx^2 + qy^2 - r0^2
3414
     *   + -2(qx.p1x + qy.p1y + r0(r1-r0)).t
3415
     *   + (p1x^2 + p1y^2 - (r1-r0)^2).t^2
3416
     *
3417
     * So solve using the usual t = (-b +/- SQRT(b^2 - 4ac)) where
3418
     *   a = p1x^2 + p1y^2 - (r1-r0)^2
3419
     *   b = -2(qx.p1x + qy.p1y + r0(r1-r0))
3420
     *   c = qx^2 + qy^2 - r0^2
3421
     */
3422
1.02k
    double p1x = rsa->x1 - rsa->x0;
3423
1.02k
    double p1y = rsa->y1 - rsa->y0;
3424
1.02k
    double qx  = rsa->p[point_index].x - rsa->x0;
3425
1.02k
    double qy  = rsa->p[point_index].y - rsa->y0;
3426
1.02k
    double a   = (Pw2(p1x) + Pw2(p1y) - Pw2(r0 - r1));
3427
1.02k
    bool have_root[2] = {false, false};
3428
1.02k
    double t[2];
3429
3430
1.02k
    if (fabs(a) < 1e-8) {
3431
        /* Linear equation. */
3432
        /* This case is always the ongoing ellipse contact. */
3433
0
        double cx = rsa->x0 - (rsa->x1 - rsa->x0) * r0 / (r1 - r0);
3434
0
        double cy = rsa->y0 - (rsa->y1 - rsa->y0) * r0 / (r1 - r0);
3435
3436
0
        t[0] = (Pw2(qx) + Pw2(qy))/(cx*qx + cy*qy) / 2;
3437
0
        have_root[0] = true;
3438
1.02k
    } else {
3439
        /* Square equation.  No solution if b^2 - 4ac = 0. Equivalently if
3440
         * (b^2)/4 -a.c = 0 === (b/2)^2 - a.c = 0 ===  (-b/2)^2 - a.c = 0 */
3441
1.02k
        double minushalfb = r0*(r1-r0) + p1x*qx + p1y*qy;
3442
1.02k
        double c          = Pw2(qx) + Pw2(qy) - Pw2(r0);
3443
1.02k
        double desc2      = Pw2(minushalfb) - a*c; /* desc2 = 1/4 (b^2-4ac) */
3444
3445
1.02k
        if (desc2 < 0) {
3446
0
            return -1; /* The point is outside the shading coverage.
3447
                          Do not shorten, because we didn't observe it in practice. */
3448
1.02k
        } else {
3449
1.02k
            double desc1 = sqrt(desc2); /* desc1 = 1/2 SQRT(b^2-4ac) */
3450
3451
1.02k
            if (a > 0) {
3452
0
                t[0] = (minushalfb - desc1) / a;
3453
0
                t[1] = (minushalfb + desc1) / a;
3454
1.02k
            } else {
3455
1.02k
                t[0] = (minushalfb + desc1) / a;
3456
1.02k
                t[1] = (minushalfb - desc1) / a;
3457
1.02k
            }
3458
1.02k
            have_root[0] = have_root[1] = true;
3459
1.02k
        }
3460
1.02k
    }
3461
1.02k
    store_roots(rsa, have_root, t, r0, r1, point_index, true);
3462
1.02k
    if (have_root[0] && have_root[1])
3463
1.02k
        return 15;
3464
0
    if (have_root[0])
3465
0
        return 15 - 4;
3466
0
    if (have_root[1])
3467
0
        return 15 - 2;
3468
0
    return -1;
3469
0
}
3470
3471
#undef Pw2
3472
3473
static int
3474
compute_radial_shading_span_extended(radial_shading_attrs_t *rsa, double r0, double r1)
3475
256
{
3476
256
    int span_type0, span_type1;
3477
3478
256
    span_type0 = compute_radial_shading_span_extended_point(rsa, r0, r1, 1);
3479
256
    if (span_type0 == -1)
3480
0
        return -1;
3481
256
    span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 2);
3482
256
    if (span_type0 != span_type1)
3483
0
        return -1;
3484
256
    span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 3);
3485
256
    if (span_type0 != span_type1)
3486
0
        return -1;
3487
256
    span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 4);
3488
256
    if (span_type0 != span_type1)
3489
0
        return -1;
3490
256
    compute_radial_shading_span_extended_side(rsa, r0, r1, 1);
3491
256
    compute_radial_shading_span_extended_side(rsa, r0, r1, 2);
3492
256
    compute_radial_shading_span_extended_side(rsa, r0, r1, 3);
3493
256
    compute_radial_shading_span_extended_side(rsa, r0, r1, 4);
3494
256
    return span_type0;
3495
256
}
3496
3497
static int
3498
compute_radial_shading_span(radial_shading_attrs_t *rsa, float x0, float y0, double r0, float x1, float y1, double r1, const gs_rect * rect)
3499
64
{
3500
    /* If the shading area is much larger than the path bbox,
3501
       we want to shorten the shading for a faster rendering.
3502
       If any point of the path bbox falls outside the shading area,
3503
       our math is not applicable, and we render entire shading.
3504
       If the path bbox is inside the shading area,
3505
       we compute 1 or 2 'spans' - the shading parameter intervals,
3506
       which covers the bbox. For doing that we need to resolve
3507
       a square eqation by the shading parameter
3508
       for each corner of the bounding box,
3509
       and for each side of the shading bbox.
3510
       Note the equation to be solved in the user space.
3511
       Since each equation gives 2 roots (because the points are
3512
       strongly inside the shading area), we will get 2 parameter intervals -
3513
       the 'lower' one corresponds to the first (ongoing) contact of
3514
       the running circle, and the second one corresponds to the last (outgoing) contact
3515
       (like in a sun eclipse; well our sun is rectangular).
3516
3517
       Here are few exceptions.
3518
3519
       First, the equation degenerates when the distance sqrt((x1-x0)^2 + (y1-y0)^2)
3520
       appears equal to r0-r1. In this case the base circles do contact,
3521
       and the running circle does contact at the same point.
3522
       The equation degenerates to a linear one.
3523
       Since we don't want float precision noize to affect the result,
3524
       we compute this condition in 'fixed' coordinates.
3525
3526
       Second, Postscript approximates any circle with 3d order beziers.
3527
       This approximation may give a 2% error.
3528
       Therefore using the precise roots may cause a dropout.
3529
       To prevetn them, we slightly modify the base radii.
3530
       However the sign of modification smartly depends
3531
       on the relative sizes of the base circles,
3532
       and on the contact number. Currently we don't want to
3533
       define and debug the smart optimal logic for that,
3534
       so we simply try all 4 variants for each source equation,
3535
       and use the union of intervals.
3536
3537
       Third, we could compute which quarter of the circle
3538
       really covers the path bbox. Using it we could skip
3539
       rendering of uncovering quarters. Currently we do not
3540
       implement this optimization. The general tensor patch algorithm
3541
       will skip uncovering parts.
3542
3543
       Fourth, when one base circle is (almost) inside the other,
3544
       the parameter interval must include the shading apex.
3545
       To know that, we determine whether the contacting circle
3546
       is outside the rectangle (the "outer" contact),
3547
       or it is (partially) inside the rectangle.
3548
3549
       At last, a small shortening of a shading won't give a
3550
       sensible speedup, but it may replace a symmetric function domain
3551
       with an assymmetric one, so that the rendering
3552
       would be asymmetyric for a symmetric shading.
3553
       Therefore we do not perform a small sortening.
3554
       Instead we shorten only if the shading span
3555
       is much smaller that the shading domain.
3556
     */
3557
64
    const double extent = 1.02;
3558
64
    int span_type0, span_type1, span_type;
3559
3560
64
    memset(rsa, 0, sizeof(*rsa));
3561
64
    rsa->x0 = x0;
3562
64
    rsa->y0 = y0;
3563
64
    rsa->x1 = x1;
3564
64
    rsa->y1 = y1;
3565
64
    rsa->p[0] = rsa->p[4] = rect->p;
3566
64
    rsa->p[1].x = rsa->p[5].x = rect->p.x;
3567
64
    rsa->p[1].y = rsa->p[5].y = rect->q.y;
3568
64
    rsa->p[2] = rect->q;
3569
64
    rsa->p[3].x = rect->q.x;
3570
64
    rsa->p[3].y = rect->p.y;
3571
64
    rsa->have_apex = any_abs(r1 - r0) > 1e-7 * any_abs(r1 + r0);
3572
64
    rsa->apex = (rsa->have_apex ? -r0 / (r1 - r0) : 0);
3573
64
    span_type0 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 * extent);
3574
64
    if (span_type0 == -1)
3575
0
        return -1;
3576
64
    span_type1 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 / extent);
3577
64
    if (span_type0 != span_type1)
3578
0
        return -1;
3579
64
    span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 * extent);
3580
64
    if (span_type0 != span_type1)
3581
0
        return -1;
3582
64
    span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 / extent);
3583
64
    if (span_type1 == -1)
3584
0
        return -1;
3585
64
    if (r0 < r1) {
3586
57
        if (rsa->have_root[0] && !rsa->outer_contact[0])
3587
0
            rsa->span[0][0] = rsa->apex; /* Likely never happens. Remove ? */
3588
57
        if (rsa->have_root[1] && !rsa->outer_contact[1])
3589
14
            rsa->span[1][0] = rsa->apex;
3590
57
    } else if (r0 > r1) {
3591
7
        if (rsa->have_root[0] && !rsa->outer_contact[0])
3592
0
            rsa->span[0][1] = rsa->apex;
3593
7
        if (rsa->have_root[1] && !rsa->outer_contact[1])
3594
0
            rsa->span[1][1] = rsa->apex; /* Likely never happens. Remove ? */
3595
7
    }
3596
64
    span_type = 0;
3597
64
    if (rsa->have_root[0] && rsa->span[0][0] < 0)
3598
0
        span_type |= 1;
3599
64
    if (rsa->have_root[1] && rsa->span[1][0] < 0)
3600
0
        span_type |= 1;
3601
64
    if (rsa->have_root[0] && rsa->span[0][1] > 0 && rsa->span[0][0] < 1)
3602
7
        span_type |= 2;
3603
64
    if (rsa->have_root[1] && rsa->span[1][1] > 0 && rsa->span[1][0] < 1)
3604
55
        span_type |= 4;
3605
64
    if (rsa->have_root[0] && rsa->span[0][1] > 1)
3606
7
        span_type |= 8;
3607
64
    if (rsa->have_root[1] && rsa->span[1][1] > 1)
3608
11
        span_type |= 8;
3609
64
    return span_type;
3610
64
}
3611
3612
static bool
3613
shorten_radial_shading(float *x0, float *y0, double *r0, float *d0, float *x1, float *y1, double *r1, float *d1, double span_[2])
3614
62
{
3615
62
    double s0 = span_[0], s1 = span_[1], w;
3616
3617
62
    if (s0 < 0)
3618
0
        s0 = 0;
3619
62
    if (s1 < 0)
3620
0
        s1 = 0;
3621
62
    if (s0 > 1)
3622
0
        s0 = 1;
3623
62
    if (s1 > 1)
3624
16
        s1 = 1;
3625
62
    w = s1 - s0;
3626
62
    if (w == 0)
3627
0
        return false; /* Don't pass a degenerate shading. */
3628
62
    if (w > 0.3)
3629
42
        return false; /* The span is big, don't shorten it. */
3630
20
    { /* Do shorten. */
3631
20
        double R0 = *r0, X0 = *x0, Y0 = *y0, D0 = *d0;
3632
20
        double R1 = *r1, X1 = *x1, Y1 = *y1, D1 = *d1;
3633
3634
20
        *r0 = R0 + (R1 - R0) * s0;
3635
20
        *x0 = X0 + (X1 - X0) * s0;
3636
20
        *y0 = Y0 + (Y1 - Y0) * s0;
3637
20
        *d0 = D0 + (D1 - D0) * s0;
3638
20
        *r1 = R0 + (R1 - R0) * s1;
3639
20
        *x1 = X0 + (X1 - X0) * s1;
3640
20
        *y1 = Y0 + (Y1 - Y0) * s1;
3641
20
        *d1 = D0 + (D1 - D0) * s1;
3642
20
    }
3643
20
    return true;
3644
62
}
3645
3646
static bool inline
3647
is_radial_shading_large(double x0, double y0, double r0, double x1, double y1, double r1, const gs_rect * rect)
3648
224
{
3649
224
    const double d = hypot(x1 - x0, y1 - y0);
3650
224
    const double area0 = M_PI * r0 * r0 / 2;
3651
224
    const double area1 = M_PI * r1 * r1 / 2;
3652
224
    const double area2 = (r0 + r1) / 2 * d;
3653
224
    const double arbitrary = 8;
3654
224
    double areaX, areaY;
3655
3656
    /* The shading area is not equal to area0 + area1 + area2
3657
       when one circle is (almost) inside the other.
3658
       We believe that the 'arbitrary' coefficient recovers that
3659
       when it is set greater than 2. */
3660
    /* If one dimension is large enough, the shading parameter span is wide. */
3661
224
    areaX = (rect->q.x - rect->p.x) * (rect->q.x - rect->p.x);
3662
224
    if (areaX * arbitrary < area0 + area1 + area2)
3663
54
        return true;
3664
170
    areaY = (rect->q.y - rect->p.y) * (rect->q.y - rect->p.y);
3665
170
    if (areaY * arbitrary < area0 + area1 + area2)
3666
10
        return true;
3667
160
    return false;
3668
170
}
3669
3670
static int
3671
gs_shading_R_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
3672
                            const gs_fixed_rect *clip_rect,
3673
                            gx_device * dev, gs_gstate * pgs)
3674
227
{
3675
227
    const gs_shading_R_t *const psh = (const gs_shading_R_t *)psh0;
3676
227
    float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
3677
227
    float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
3678
227
    double r0 = psh->params.Coords[2];
3679
227
    float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
3680
227
    double r1 = psh->params.Coords[5];
3681
227
    radial_shading_attrs_t rsa;
3682
227
    int span_type; /* <0 - don't shorten, 1 - extent0, 2 - first contact, 4 - last contact, 8 - extent1. */
3683
227
    int code;
3684
227
    patch_fill_state_t pfs1;
3685
3686
227
    if (r0 == 0 && r1 == 0)
3687
3
        return 0; /* PLRM requires to paint nothing. */
3688
224
    code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs);
3689
224
    if (code < 0)
3690
0
        return code;
3691
224
    pfs1.Function = psh->params.Function;
3692
224
    code = init_patch_fill_state(&pfs1);
3693
224
    if (code < 0) {
3694
0
        if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
3695
0
        return code;
3696
0
    }
3697
224
    pfs1.function_arg_shift = 0;
3698
224
    pfs1.rect = *clip_rect;
3699
224
    pfs1.maybe_self_intersecting = false;
3700
224
    if (is_radial_shading_large(x0, y0, r0, x1, y1, r1, rect))
3701
64
        span_type = compute_radial_shading_span(&rsa, x0, y0, r0, x1, y1, r1, rect);
3702
160
    else
3703
160
        span_type = -1;
3704
224
    if (span_type < 0) {
3705
160
        code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
3706
160
        if (code >= 0)
3707
160
            code = R_tensor_annulus(&pfs1, x0, y0, r0, d0, x1, y1, r1, d1);
3708
160
        if (code >= 0)
3709
160
            code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
3710
160
    } else if (span_type == 1) {
3711
0
        code = R_fill_rect_with_const_color(&pfs1, clip_rect, d0);
3712
64
    } else if (span_type == 8) {
3713
2
        code = R_fill_rect_with_const_color(&pfs1, clip_rect, d1);
3714
62
    } else {
3715
62
        bool second_interval = true;
3716
3717
62
        code = 0;
3718
62
        if (span_type & 1)
3719
0
            code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
3720
62
        if ((code >= 0) && (span_type & 2)) {
3721
7
            float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
3722
7
            double R0 = r0, R1 = r1;
3723
3724
7
            if ((span_type & 4) && rsa.span[0][1] >= rsa.span[1][0]) {
3725
0
                double united[2];
3726
3727
0
                united[0] = rsa.span[0][0];
3728
0
                united[1] = rsa.span[1][1];
3729
0
                shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, united);
3730
0
                second_interval = false;
3731
7
            } else {
3732
7
                second_interval = shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[0]);
3733
7
            }
3734
7
            code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
3735
7
        }
3736
62
        if (code >= 0 && second_interval) {
3737
62
            if (span_type & 4) {
3738
55
                float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
3739
55
                double R0 = r0, R1 = r1;
3740
3741
55
                shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[1]);
3742
55
                code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
3743
55
            }
3744
62
        }
3745
62
        if (code >= 0 && (span_type & 8))
3746
16
            code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
3747
62
    }
3748
224
    if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
3749
224
    if (term_patch_fill_state(&pfs1))
3750
0
        return_error(gs_error_unregistered); /* Must not happen. */
3751
224
    return code;
3752
224
}
3753
3754
int
3755
gs_shading_R_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
3756
                            const gs_fixed_rect * rect_clip,
3757
                            gx_device * dev, gs_gstate * pgs)
3758
227
{
3759
227
    return gs_shading_R_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs);
3760
227
}