Coverage Report

Created: 2025-11-16 07:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/psi/iutil.c
Line
Count
Source
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Utilities for Ghostscript interpreter */
18
#include "math_.h"    /* for fabs */
19
#include "memory_.h"
20
#include "string_.h"
21
#include "ghost.h"
22
#include "ierrors.h"
23
#include "gsccode.h"    /* for gxfont.h */
24
#include "gsmatrix.h"
25
#include "gsutil.h"
26
#include "gxfont.h"
27
#include "strimpl.h"
28
#include "sstring.h"
29
#include "idict.h"
30
#include "ifont.h"    /* for FontID equality */
31
#include "imemory.h"
32
#include "iname.h"
33
#include "ipacked.h"    /* for array_get */
34
#include "iutil.h"    /* for checking prototypes */
35
#include "ivmspace.h"
36
#include "oper.h"
37
#include "store.h"
38
39
/*
40
 * By design choice, none of the procedures in this file take a context
41
 * pointer (i_ctx_p).  Since a number of them require a gs_dual_memory_t
42
 * for store checking or save bookkeeping, we need to #undef idmemory.
43
 */
44
#undef idmemory
45
46
/* ------ Object utilities ------ */
47
48
/* Define the table of ref type properties. */
49
const byte ref_type_properties[] = {
50
    REF_TYPE_PROPERTIES_DATA
51
};
52
53
/* Copy refs from one place to another. */
54
int
55
refcpy_to_old(ref * aref, uint index, const ref * from,
56
              uint size, gs_dual_memory_t *idmemory, client_name_t cname)
57
857M
{
58
857M
    ref *to = aref->value.refs + index;
59
857M
    int code = refs_check_space(from, size, r_space(aref));
60
61
857M
    if (code < 0)
62
0
        return code;
63
    /* We have to worry about aliasing.... */
64
857M
    if (to <= from || from + size <= to)
65
2.39G
        while (size--)
66
1.53G
            ref_assign_old(aref, to, from, cname), to++, from++;
67
0
    else
68
0
        for (from += size, to += size; size--;)
69
0
            from--, to--, ref_assign_old(aref, to, from, cname);
70
857M
    return 0;
71
857M
}
72
void
73
refcpy_to_new(ref * to, const ref * from, uint size,
74
              gs_dual_memory_t *idmemory)
75
0
{
76
0
    while (size--)
77
0
        ref_assign_new(to, from), to++, from++;
78
0
}
79
80
/* Fill a new object with nulls. */
81
void
82
refset_null_new(ref * to, uint size, uint new_mask)
83
1.18G
{
84
33.1G
    for (; size--; ++to)
85
31.9G
        make_ta(to, t_null, new_mask);
86
1.18G
}
87
88
/* Compare two objects for equality. */
89
static bool fid_eq(const gs_memory_t *mem, const gs_font *pfont1,
90
                    const gs_font *pfont2);
91
bool
92
obj_eq(const gs_memory_t *mem, const ref * pref1, const ref * pref2)
93
8.34G
{
94
8.34G
    ref nref;
95
96
8.34G
    if (r_type(pref1) != r_type(pref2)) {
97
        /*
98
         * Only a few cases need be considered here:
99
         * integer/real (and vice versa), name/string (and vice versa),
100
         * arrays, and extended operators.
101
         */
102
1.98G
        switch (r_type(pref1)) {
103
6.97M
            case t_integer:
104
6.97M
                return (r_has_type(pref2, t_real) &&
105
3.55k
                        pref2->value.realval == pref1->value.intval);
106
16.3M
            case t_real:
107
16.3M
                return (r_has_type(pref2, t_integer) &&
108
4.88k
                        pref2->value.intval == pref1->value.realval);
109
1.79G
            case t_name:
110
1.79G
                if (!r_has_type(pref2, t_string))
111
1.77G
                    return false;
112
19.0M
                name_string_ref(mem, pref1, &nref);
113
19.0M
                pref1 = &nref;
114
19.0M
                break;
115
22.8M
            case t_string:
116
22.8M
                if (!r_has_type(pref2, t_name))
117
2.69M
                    return false;
118
20.1M
                name_string_ref(mem, pref2, &nref);
119
20.1M
                pref2 = &nref;
120
20.1M
                break;
121
                /*
122
                 * Differing implementations of packedarray can be eq,
123
                 * if the length is zero, but an array is never eq to a
124
                 * packedarray.
125
                 */
126
1.13M
            case t_mixedarray:
127
1.13M
            case t_shortarray:
128
                /*
129
                 * Since r_type(pref1) is one of the above, this is a
130
                 * clever fast check for r_type(pref2) being the other.
131
                 */
132
1.13M
                return ((int)r_type(pref1) + (int)r_type(pref2) ==
133
1.13M
                        t_mixedarray + t_shortarray) &&
134
0
                    r_size(pref1) == 0 && r_size(pref2) == 0;
135
148M
            default:
136
148M
                if (r_btype(pref1) != r_btype(pref2))
137
148M
                    return false;
138
1.98G
        }
139
1.98G
    }
140
    /*
141
     * Now do a type-dependent comparison.  This would be very simple if we
142
     * always filled in all the bytes of a ref, but we currently don't.
143
     */
144
6.39G
    switch (r_btype(pref1)) {
145
6.28M
        case t_array:
146
6.28M
            return ((pref1->value.refs == pref2->value.refs ||
147
6.22M
                     r_size(pref1) == 0) &&
148
2.10M
                    r_size(pref1) == r_size(pref2));
149
3
        case t_mixedarray:
150
192k
        case t_shortarray:
151
192k
            return ((pref1->value.packed == pref2->value.packed ||
152
192k
                     r_size(pref1) == 0) &&
153
3
                    r_size(pref1) == r_size(pref2));
154
18.2M
        case t_boolean:
155
18.2M
            return (pref1->value.boolval == pref2->value.boolval);
156
135M
        case t_dictionary:
157
135M
            return (pref1->value.pdict == pref2->value.pdict);
158
285k
        case t_file:
159
285k
            return (pref1->value.pfile == pref2->value.pfile &&
160
285k
                    r_size(pref1) == r_size(pref2));
161
2.46G
        case t_integer:
162
2.46G
            return (pref1->value.intval == pref2->value.intval);
163
488k
        case t_mark:
164
147M
        case t_null:
165
147M
            return true;
166
3.26G
        case t_name:
167
3.26G
            return (pref1->value.pname == pref2->value.pname);
168
0
        case t_oparray:
169
151
        case t_operator:
170
151
            return (op_index(pref1) == op_index(pref2));
171
1.92M
        case t_real:
172
1.92M
            return (pref1->value.realval == pref2->value.realval);
173
200M
        case t_save:
174
200M
            return (pref2->value.saveid == pref1->value.saveid);
175
157M
        case t_string:
176
157M
            return (!bytes_compare(pref1->value.bytes, r_size(pref1),
177
157M
                                   pref2->value.bytes, r_size(pref2)));
178
0
        case t_device:
179
0
            return (pref1->value.pdevice->device == pref2->value.pdevice->device);
180
0
        case t_struct:
181
6
        case t_astruct:
182
6
        case t_pdfctx:
183
6
            return (pref1->value.pstruct == pref2->value.pstruct);
184
0
        case t_fontID:
185
            /* This is complicated enough to deserve a separate procedure. */
186
0
            return fid_eq(mem, r_ptr(pref1, gs_font), r_ptr(pref2, gs_font));
187
6.39G
    }
188
0
    return false;   /* shouldn't happen! */
189
6.39G
}
190
191
/*
192
 * Compare two FontIDs for equality.  In the Adobe implementations,
193
 * different scalings of a font have "equal" FIDs, so we do the same.
194
 * Furthermore, in more recent Adobe interpreters, different *copies* of a
195
 * font have equal FIDs -- at least for Type 1 and Type 3 fonts -- as long
196
 * as the "contents" of the font are the same.  We aren't sure that the
197
 * following matches the Adobe algorithm, but it's close enough to pass the
198
 * Genoa CET.
199
 */
200
/* (This is a single-use procedure, for clearer code.) */
201
static bool
202
fid_eq(const gs_memory_t *mem, const gs_font *pfont1, const gs_font *pfont2)
203
0
{
204
0
    while (pfont1->base != pfont1)
205
0
        pfont1 = pfont1->base;
206
0
    while (pfont2->base != pfont2)
207
0
        pfont2 = pfont2->base;
208
0
    if (pfont1 == pfont2)
209
0
        return true;
210
0
    switch (pfont1->FontType) {
211
0
    case 1: case 3:
212
0
        if (pfont1->FontType == pfont2->FontType)
213
0
            break;
214
0
    default:
215
0
        return false;
216
0
    }
217
    /* The following, while peculiar, appears to match CPSI. */
218
0
    {
219
0
        const gs_uid *puid1 = &((const gs_font_base *)pfont1)->UID;
220
0
        const gs_uid *puid2 = &((const gs_font_base *)pfont2)->UID;
221
0
    if (uid_is_UniqueID(puid1) || uid_is_UniqueID(puid2) ||
222
0
        ((uid_is_XUID(puid1) || uid_is_XUID(puid2)) &&
223
0
         !uid_equal(puid1, puid2)))
224
0
        return false;
225
0
    }
226
0
    {
227
0
        const font_data *pfd1 = (const font_data *)pfont1->client_data;
228
0
        const font_data *pfd2 = (const font_data *)pfont2->client_data;
229
230
0
        if (!(obj_eq(mem, &pfd1->BuildChar, &pfd2->BuildChar) &&
231
0
              obj_eq(mem, &pfd1->BuildGlyph, &pfd2->BuildGlyph) &&
232
0
              obj_eq(mem, &pfd1->Encoding, &pfd2->Encoding) &&
233
0
              obj_eq(mem, &pfd1->CharStrings, &pfd2->CharStrings)))
234
0
            return false;
235
0
        if (pfont1->FontType == 1) {
236
0
            ref *ppd1, *ppd2;
237
238
0
            if (dict_find_string(&pfd1->dict, "Private", &ppd1) > 0 &&
239
0
                dict_find_string(&pfd2->dict, "Private", &ppd2) > 0 &&
240
0
                !obj_eq(mem, ppd1, ppd2))
241
0
                return false;
242
0
        }
243
0
    }
244
0
    return true;
245
0
}
246
247
/* Compare two objects for identity. */
248
bool
249
obj_ident_eq(const gs_memory_t *mem, const ref * pref1, const ref * pref2)
250
0
{
251
0
    if (r_type(pref1) != r_type(pref2))
252
0
        return false;
253
0
    if (r_has_type(pref1, t_string))
254
0
        return (pref1->value.bytes == pref2->value.bytes &&
255
0
                r_size(pref1) == r_size(pref2));
256
0
    return obj_eq(mem, pref1, pref2);
257
0
}
258
259
/*
260
 * Set *pchars and *plen to point to the data of a name or string, and
261
 * return 0.  If the object isn't a name or string, return gs_error_typecheck.
262
 * If the object is a string without read access, return gs_error_invalidaccess.
263
 */
264
int
265
obj_string_data(const gs_memory_t *mem, const ref *op, const byte **pchars, uint *plen)
266
392M
{
267
392M
    switch (r_type(op)) {
268
263M
    case t_name: {
269
263M
        ref nref;
270
271
263M
        name_string_ref(mem, op, &nref);
272
263M
        *pchars = nref.value.bytes;
273
263M
        *plen = r_size(&nref);
274
263M
        return 0;
275
0
    }
276
129M
    case t_string:
277
129M
        check_read(*op);
278
129M
        *pchars = op->value.bytes;
279
129M
        *plen = r_size(op);
280
129M
        return 0;
281
0
    default:
282
0
        return_error(gs_error_typecheck);
283
392M
    }
284
392M
}
285
286
/*
287
 * Create a printable representation of an object, a la cvs and =
288
 * (full_print = 0), == (full_print = 1), or === (full_print = 2).  Return 0
289
 * if OK, 1 if the destination wasn't large enough, gs_error_invalidaccess if the
290
 * object's contents weren't readable.  If the return value is 0 or 1,
291
 * *prlen contains the amount of data returned.  start_pos is the starting
292
 * output position -- the first start_pos bytes of output are discarded.
293
 *
294
 * When (restart = false) return gs_error_rangecheck the when destination wasn't
295
 * large enough without modifying the destination. This is needed for
296
 * compatibility with Adobe implementation of cvs and cvrs, which don't
297
 * change the destination string on failure.
298
 *
299
 * The mem argument is only used for getting the type of structures,
300
 * not for allocating; if it is NULL and full_print != 0, structures will
301
 * print as --(struct)--.
302
 *
303
 * This rather complex API is needed so that a client can call obj_cvp
304
 * repeatedly to print on a stream, which may require suspending at any
305
 * point to handle stream callouts.
306
 */
307
static void ensure_dot(char *, size_t);
308
int
309
obj_cvp(const ref * op, byte * str, uint len, uint * prlen,
310
        int full_print, uint start_pos, const gs_memory_t *mem, bool restart)
311
451M
{
312
451M
    char buf[256];  /* big enough for any float, double, or struct name */
313
451M
    const byte *data = (const byte *)buf;
314
451M
    uint size;
315
451M
    int code;
316
451M
    ref nref;
317
318
451M
    if (full_print) {
319
14.5M
        static const char * const type_strings[] = { REF_TYPE_PRINT_STRINGS };
320
321
14.5M
        switch (r_btype(op)) {
322
38
        case t_boolean:
323
58.7k
        case t_integer:
324
58.7k
            break;
325
709
        case t_real: {
326
            /*
327
             * To get fully accurate output results for IEEE
328
             * single-precision floats (24 bits of mantissa), the ANSI %g
329
             * default of 6 digits is not enough; 9 are needed.
330
             * Unfortunately, using %.9g for floats (as opposed to doubles)
331
             * produces unfortunate artifacts such as 0.01 5 mul printing as
332
             * 0.049999997.  Therefore, we print using %g, and if the result
333
             * isn't accurate enough, print again using %.9g.
334
             * Unfortunately, a few PostScript programs 'know' that the
335
             * printed representation of floats fits into 6 digits (e.g.,
336
             * with cvs).  We resolve this by letting cvs, cvrs, and = do
337
             * what the Adobe interpreters appear to do (use %g), and only
338
             * produce accurate output for ==, for which there is no
339
             * analogue of cvs.  What a hack!
340
             */
341
709
            float value = op->value.realval;
342
709
            float scanned;
343
709
            code = gs_snprintf(buf, sizeof(buf), "%g", value);
344
709
            if (code <= 0)
345
0
                return_error(gs_error_undefinedresult);
346
709
            code = sscanf(buf, "%f", &scanned);
347
709
            if (code <= 0)
348
8
                return_error(gs_error_undefinedresult);
349
701
            if (scanned != value)
350
379
                gs_snprintf(buf, sizeof(buf), "%.9g", value);
351
701
            ensure_dot(buf, 256);
352
701
            goto rs;
353
709
        }
354
7.78k
        case t_operator:
355
10.4k
        case t_oparray:
356
10.4k
            code = obj_cvp(op, (byte *)buf + 2, sizeof(buf) - 4, &size, 0, 0, mem, restart);
357
10.4k
            if (code < 0)
358
0
                return code;
359
10.4k
            buf[0] = buf[1] = buf[size + 2] = buf[size + 3] = '-';
360
10.4k
            size += 4;
361
10.4k
            goto nl;
362
92.6k
        case t_name:
363
92.6k
            if (r_has_attr(op, a_executable)) {
364
24.1k
                code = obj_string_data(mem, op, &data, &size);
365
24.1k
                if (code < 0)
366
0
                    return code;
367
24.1k
                goto nl;
368
24.1k
            }
369
68.4k
            if (start_pos > 0)
370
0
                return obj_cvp(op, str, len, prlen, 0, start_pos - 1, mem, restart);
371
68.4k
            if (len < 1)
372
0
                return_error(gs_error_rangecheck);
373
68.4k
            code = obj_cvp(op, str + 1, len - 1, prlen, 0, 0, mem, restart);
374
68.4k
            if (code < 0)
375
0
                return code;
376
68.4k
            str[0] = '/';
377
68.4k
            ++*prlen;
378
68.4k
            return code;
379
0
        case t_null:
380
0
            data = (const byte *)"null";
381
0
            goto rs;
382
14.3M
        case t_string:
383
14.3M
            if (!r_has_attr(op, a_read))
384
14
                goto other;
385
14.3M
            size = r_size(op);
386
14.3M
            {
387
14.3M
                bool truncate = (full_print == 1 && size > CVP_MAX_STRING);
388
14.3M
                stream_cursor_read r;
389
14.3M
                stream_cursor_write w;
390
14.3M
                uint skip;
391
14.3M
                byte *wstr;
392
14.3M
                uint len1;
393
14.3M
                int status = 1;
394
395
14.3M
                if (start_pos == 0) {
396
11.2M
                    if (len < 1)
397
0
                        return_error(gs_error_rangecheck);
398
11.2M
                    str[0] = '(';
399
11.2M
                    skip = 0;
400
11.2M
                    wstr = str + 1;
401
11.2M
                } else {
402
3.10M
                    skip = start_pos - 1;
403
3.10M
                    wstr = str;
404
3.10M
                }
405
14.3M
                len1 = len + (str - wstr);
406
14.3M
                stream_cursor_read_init(&r, op->value.const_bytes, truncate ? CVP_MAX_STRING : size);
407
408
16.9M
                while (skip && status == 1) {
409
5.66M
                    uint written;
410
411
5.66M
                    stream_cursor_write_init(&w, (byte *)buf, min(skip + len1, sizeof(buf)));
412
5.66M
                    status = s_PSSE_template.process(NULL, &r, &w, false);
413
                    /* +1 accounts for crazy w.ptr initialisation - see stream_cursor_write_init() */
414
5.66M
                    written = (w.ptr - ((byte *)buf)) + 1;
415
5.66M
                    if (written > skip) {
416
3.07M
                        written -= skip;
417
3.07M
                        memcpy(wstr, buf + skip, written);
418
3.07M
                        wstr += written;
419
3.07M
                        skip = 0;
420
3.07M
                        break;
421
3.07M
                    }
422
2.58M
                    skip -= written;
423
2.58M
                }
424
                /*
425
                 * We can reach here with status == 0 (and skip != 0) if
426
                 * start_pos lies within the trailing ")" or  "...)".
427
                 */
428
14.3M
                if (status == 0) {
429
#ifdef DEBUG
430
                    if (skip > (truncate ? 4 : 1)) {
431
                        return_error(gs_error_Fatal);
432
                    }
433
#endif
434
786k
                }
435
14.3M
                stream_cursor_write_init(&w, (byte *)wstr, (size_t)((str + len) - wstr));
436
14.3M
                if (status == 1)
437
13.6M
                    status = s_PSSE_template.process(NULL, &r, &w, false);
438
14.3M
                *prlen = w.ptr - (str - 1);
439
14.3M
                if (status != 0)
440
3.07M
                    return 1;
441
11.3M
                if (truncate) {
442
249k
                    if (len - *prlen < 4 - skip)
443
127
                        return 1;
444
249k
                    memcpy(w.ptr + 1, &"...)"[skip], 4 - skip);
445
249k
                    *prlen += 4 - skip;
446
11.0M
                } else {
447
11.0M
                    if (len - *prlen < 1 - skip)
448
22.9k
                        return 1;
449
11.0M
                    if (!skip) {
450
11.0M
                        w.ptr[1] = ')';
451
11.0M
                        *prlen += 1;
452
11.0M
                    }
453
11.0M
                }
454
11.3M
            }
455
11.2M
            return 0;
456
1
        case t_astruct:
457
1
        case t_struct:
458
1
            if (r_is_foreign(op)) {
459
                /* gs_object_type may not work. */
460
0
                data = (const byte *)"-foreign-struct-";
461
0
                goto rs;
462
0
            }
463
1
            if (!mem) {
464
0
                data = (const byte *)"-(struct)-";
465
0
                goto rs;
466
0
            }
467
1
            data = (const byte *)
468
1
                gs_struct_type_name_string(
469
1
                                gs_object_type(mem,
470
1
                                    (const obj_header_t *)op->value.pstruct));
471
1
            size = strlen((const char *)data);
472
1
            if (size > 4 && !memcmp(data + size - 4, "type", 4))
473
1
                size -= 4;
474
1
            if (size > sizeof(buf) - 3)
475
0
                return_error(gs_error_rangecheck);
476
1
            buf[0] = '-';
477
1
            memcpy(buf + 1, data, size);
478
1
            buf[size + 1] = '-';
479
1
            size += 2;
480
1
            data = (const byte *)buf;
481
1
            goto nl;
482
0
        case t_pdfctx:
483
0
            data = (const byte *)"-pdfcontext-";
484
0
            goto rs;
485
8.95k
        default:
486
8.97k
other:
487
8.97k
            {
488
8.97k
                int rtype = r_btype(op);
489
490
8.97k
                if (rtype >= countof(type_strings))
491
0
                    return_error(gs_error_rangecheck);
492
8.97k
                data = (const byte *)type_strings[rtype];
493
8.97k
                if (data == 0)
494
0
                    return_error(gs_error_rangecheck);
495
8.97k
            }
496
8.97k
            goto rs;
497
14.5M
        }
498
14.5M
    }
499
    /* full_print = 0 */
500
436M
    switch (r_btype(op)) {
501
60.4k
    case t_boolean:
502
60.4k
        data = (const byte *)(op->value.boolval ? "true" : "false");
503
60.4k
        break;
504
23.7M
    case t_integer:
505
23.7M
        gs_snprintf(buf, sizeof(buf), "%"PRIpsint, op->value.intval);
506
23.7M
        break;
507
2.95M
    case t_string:
508
2.95M
        check_read(*op);
509
        /* falls through */
510
266M
    case t_name:
511
266M
        code = obj_string_data(mem, op, &data, &size);
512
266M
        if (code < 0)
513
0
            return code;
514
266M
        goto nl;
515
266M
    case t_oparray: {
516
126M
        uint index = op_index(op);
517
126M
        const op_array_table *opt = get_op_array(mem, index);
518
519
126M
        name_index_ref(mem, opt->nx_table[index - opt->base_index], &nref);
520
126M
        name_string_ref(mem, &nref, &nref);
521
126M
        code = obj_string_data(mem, &nref, &data, &size);
522
126M
        if (code < 0)
523
0
            return code;
524
126M
        goto nl;
525
126M
    }
526
126M
    case t_operator: {
527
        /* Recover the name from the initialization table. */
528
3.43M
        uint index = op_index(op);
529
530
        /*
531
         * Check the validity of the index.  (An out-of-bounds index
532
         * is only possible when examining an invalid object using
533
         * the debugger.)
534
         */
535
3.43M
        if (index > 0 && index < op_def_count) {
536
3.43M
            data = (const byte *)(op_index_def(index)->oname + 1);
537
3.43M
            break;
538
3.43M
        }
539
        /* Internal operator, no name. */
540
#if defined(DEBUG) && DEBUG != 0
541
        gs_snprintf(buf, sizeof(buf), "@"PRI_INTPTR, (intptr_t) op->value.opproc);
542
#else
543
180
        gs_snprintf(buf, sizeof(buf), "@anonymous_operator", (intptr_t) op->value.opproc);
544
180
#endif
545
180
        break;
546
3.43M
    }
547
3.15M
    case t_real:
548
        /*
549
         * The value 0.0001 is a boundary case that the Adobe interpreters
550
         * print in f-format but at least some gs versions print in
551
         * e-format, presumably because of differences in the underlying C
552
         * library implementation.  Work around this here.
553
         */
554
3.15M
        if (op->value.realval == (float)0.0001) {
555
35
            strncpy(buf, "0.0001", 256);
556
3.15M
        } else {
557
3.15M
            gs_snprintf(buf, sizeof(buf), "%g", op->value.realval);
558
3.15M
        }
559
3.15M
        ensure_dot(buf, 256);
560
3.15M
        break;
561
13.7M
    default:
562
13.7M
        data = (const byte *)"--nostringval--";
563
436M
    }
564
44.2M
rs: size = strlen((const char *)data);
565
436M
nl: if (size < start_pos)
566
0
        return_error(gs_error_rangecheck);
567
436M
    if (!restart && size > len)
568
6
        return_error(gs_error_rangecheck);
569
436M
    size -= start_pos;
570
436M
    *prlen = min(size, len);
571
436M
    memmove(str, data + start_pos, *prlen);
572
436M
    return (size > len);
573
436M
}
574
/*
575
 * Make sure the converted form of a real number has at least one of an 'e'
576
 * or a decimal point, so it won't be mistaken for an integer.
577
 * Re-format the exponent to satisfy Genoa CET test.
578
 */
579
static void
580
ensure_dot(char *buf, size_t buflen)
581
3.15M
{
582
3.15M
    char *pe = strchr(buf, 'e');
583
3.15M
    if (pe) {
584
701k
        int i;
585
701k
        (void)sscanf(pe + 1, "%d", &i);
586
701k
        buflen -= (size_t)(pe - buf);
587
        /* MSVC .net 2005 express doesn't support "%+02d" */
588
701k
        if (i >= 0)
589
189k
            gs_snprintf(pe + 1, buflen, "+%02d", i);
590
511k
        else
591
511k
            gs_snprintf(pe + 1, buflen, "-%02d", -i);
592
2.45M
    } else if (strchr(buf, '.') == NULL) {
593
1.89M
        strcat(buf, ".0");
594
1.89M
    }
595
3.15M
}
596
597
/*
598
 * Create a printable representation of an object, a la cvs and =.  Return 0
599
 * if OK, gs_error_rangecheck if the destination wasn't large enough,
600
 * gs_error_invalidaccess if the object's contents weren't readable.  If pchars !=
601
 * NULL, then if the object was a string or name, store a pointer to its
602
 * characters in *pchars even if it was too large; otherwise, set *pchars =
603
 * str.  In any case, store the length in *prlen.
604
 */
605
int
606
obj_cvs(const gs_memory_t *mem, const ref * op, byte * str, uint len, uint * prlen,
607
        const byte ** pchars)
608
405M
{
609
405M
    int code = obj_cvp(op, str, len, prlen, 0, 0, mem, false);  /* NB: NULL memptr */
610
611
405M
    if (code == 1) {
612
0
        if (pchars)
613
0
            obj_string_data(mem, op, pchars, prlen);
614
0
        return gs_note_error(gs_error_rangecheck);
615
405M
    } else {
616
405M
        if (pchars)
617
405M
          *pchars = str;
618
405M
        return code;
619
405M
    }
620
405M
}
621
622
/* Find the index of an operator that doesn't have one stored in it. */
623
ushort
624
op_find_index(const ref * pref /* t_operator */ )
625
7.38M
{
626
7.38M
    op_proc_t proc = real_opproc(pref);
627
7.38M
    const op_def *const *opp = op_defs_all;
628
7.38M
    const op_def *const *opend = opp + (op_def_count / OP_DEFS_MAX_SIZE);
629
630
138M
    for (; opp < opend; ++opp) {
631
138M
        const op_def *def = *opp;
632
633
897M
        for (; def->oname != 0; ++def)
634
765M
            if (def->proc == proc)
635
7.38M
                return (opp - op_defs_all) * OP_DEFS_MAX_SIZE + (def - *opp);
636
138M
    }
637
    /* Lookup failed!  This isn't possible.... */
638
343
    return 0;
639
7.38M
}
640
641
/*
642
 * Convert an operator index to an operator or oparray ref.
643
 * This is only used for debugging and for 'get' from packed arrays,
644
 * so it doesn't have to be very fast.
645
 */
646
void
647
op_index_ref(const gs_memory_t *mem, uint index, ref * pref)
648
299M
{
649
299M
    const op_array_table *opt;
650
651
299M
    if (op_index_is_operator(index)) {
652
130M
        make_oper(pref, index, op_index_proc(index));
653
130M
        return;
654
130M
    }
655
168M
    opt = get_op_array(mem, index);
656
168M
    make_tasv(pref, t_oparray, opt->attrs, index,
657
168M
              const_refs, (opt->table.value.const_refs
658
168M
                           + index - opt->base_index));
659
168M
}
660
661
/* Get an element from an array of some kind. */
662
/* This is also used to index into Encoding vectors, */
663
/* the error name vector, etc. */
664
int
665
array_get(const gs_memory_t *mem, const ref * aref, long index_long, ref * pref)
666
13.4G
{
667
13.4G
    if ((ulong)index_long >= r_size(aref))
668
9.12k
        return_error(gs_error_rangecheck);
669
13.4G
    switch (r_type(aref)) {
670
9.44G
        case t_array:
671
9.44G
            {
672
9.44G
                const ref *pvalue = aref->value.refs + index_long;
673
674
9.44G
                ref_assign(pref, pvalue);
675
9.44G
            }
676
9.44G
            break;
677
2.74G
        case t_mixedarray:
678
2.74G
            {
679
2.74G
                const ref_packed *packed = aref->value.packed;
680
2.74G
                uint index = (uint)index_long;
681
682
40.5G
                for (; index--;)
683
37.7G
                    packed = packed_next(packed);
684
2.74G
                packed_get(mem, packed, pref);
685
2.74G
            }
686
2.74G
            break;
687
1.23G
        case t_shortarray:
688
1.23G
            {
689
1.23G
                const ref_packed *packed = aref->value.packed + index_long;
690
691
1.23G
                packed_get(mem, packed, pref);
692
1.23G
            }
693
1.23G
            break;
694
7
        default:
695
7
            return_error(gs_error_typecheck);
696
13.4G
    }
697
13.4G
    return 0;
698
13.4G
}
699
700
/* Get an element from a packed array. */
701
/* (This works for ordinary arrays too.) */
702
/* Source and destination are allowed to overlap if the source is packed, */
703
/* or if they are identical. */
704
void
705
packed_get(const gs_memory_t *mem, const ref_packed * packed, ref * pref)
706
5.42G
{
707
5.42G
    const ref_packed elt = *packed;
708
5.42G
    uint value = elt & packed_value_mask;
709
710
5.42G
    switch (elt >> r_packed_type_shift) {
711
0
        default:    /* (shouldn't happen) */
712
0
            make_null(pref);
713
0
            break;
714
131M
        case pt_executable_operator:
715
131M
            op_index_ref(mem, value, pref);
716
131M
            break;
717
979M
        case pt_integer:
718
979M
            make_int(pref, (ps_int)value + packed_min_intval);
719
979M
            break;
720
1.05G
        case pt_literal_name:
721
1.05G
            name_index_ref(mem, value, pref);
722
1.05G
            break;
723
3.04G
        case pt_executable_name:
724
3.04G
            name_index_ref(mem, value, pref);
725
3.04G
            r_set_attrs(pref, a_executable);
726
3.04G
            break;
727
219M
        case pt_full_ref:
728
219M
        case pt_full_ref + 1:
729
219M
            ref_assign(pref, (const ref *)packed);
730
5.42G
    }
731
5.42G
}
732
733
/* Check to make sure an interval contains no object references */
734
/* to a space younger than a given one. */
735
/* Return 0 or gs_error_invalidaccess. */
736
int
737
refs_check_space(const ref * bot, uint size, uint space)
738
858M
{
739
2.60G
    for (; size--; bot++)
740
1.74G
        store_check_space(space, bot);
741
858M
    return 0;
742
858M
}
743
744
/* ------ String utilities ------ */
745
746
/* Convert a C string to a Ghostscript string */
747
int
748
string_to_ref(const char *cstr, ref * pref, gs_ref_memory_t * mem,
749
              client_name_t cname)
750
51.2k
{
751
51.2k
    uint size = strlen(cstr);
752
51.2k
    int code = gs_alloc_string_ref(mem, pref, a_all, size, cname);
753
754
51.2k
    if (code < 0)
755
0
        return code;
756
51.2k
    memcpy(pref->value.bytes, cstr, size);
757
51.2k
    return 0;
758
51.2k
}
759
760
/* Convert a Ghostscript string to a C string. */
761
/* Return 0 iff the buffer can't be allocated. */
762
char *
763
ref_to_string(const ref * pref, gs_memory_t * mem, client_name_t cname)
764
1.54M
{
765
1.54M
    uint size = r_size(pref);
766
1.54M
    char *str = (char *)gs_alloc_string(mem, size + 1, cname);
767
768
1.54M
    if (str == 0)
769
0
        return 0;
770
1.54M
    memcpy(str, (const char *)pref->value.bytes, size);
771
1.54M
    str[size] = 0;
772
1.54M
    return str;
773
1.54M
}
774
775
/* ------ Operand utilities ------ */
776
777
/* Get N numeric operands from the stack or an array. */
778
/* Return a bit-mask indicating which ones are integers, */
779
/* or a (negative) error indication. */
780
/* The 1-bit in the bit-mask refers to the first operand. */
781
/* Store float versions of the operands at pval. */
782
/* The stack underflow check (check for t__invalid) is harmless */
783
/* if the operands come from somewhere other than the stack. */
784
int
785
num_params(const ref * op, int count, double *pval)
786
111M
{
787
111M
    int mask = 0;
788
789
111M
    pval += count;
790
628M
    while (--count >= 0) {
791
516M
        mask <<= 1;
792
516M
        switch (r_type(op)) {
793
119M
            case t_real:
794
119M
                *--pval = op->value.realval;
795
119M
                break;
796
397M
            case t_integer:
797
397M
                *--pval = (double)op->value.intval;
798
397M
                mask++;
799
397M
                break;
800
136
            case t__invalid:
801
136
                return_error(gs_error_stackunderflow);
802
2.72k
            default:
803
2.72k
                return_error(gs_error_typecheck);
804
516M
        }
805
516M
        op--;
806
516M
    }
807
    /* If count is very large, mask might overflow. */
808
    /* In this case we clearly don't care about the value of mask. */
809
111M
    return (mask < 0 ? 0 : mask);
810
111M
}
811
/* float_params doesn't bother to keep track of the mask. */
812
int
813
float_params(const ref * op, int count, float *pval)
814
64.9M
{
815
264M
    for (pval += count; --count >= 0; --op)
816
199M
        switch (r_type(op)) {
817
60.9M
            case t_real:
818
60.9M
                *--pval = op->value.realval;
819
60.9M
                break;
820
138M
            case t_integer:
821
138M
                *--pval = (float)op->value.intval;
822
138M
                break;
823
106
            case t__invalid:
824
106
                return_error(gs_error_stackunderflow);
825
81
            default:
826
81
                return_error(gs_error_typecheck);
827
199M
        }
828
64.9M
    return 0;
829
64.9M
}
830
831
/* Get N numeric parameters (as floating point numbers) from an array */
832
int
833
process_float_array(const gs_memory_t *mem, const ref * parray, int count, float * pval)
834
2.35M
{
835
2.35M
    int         code = 0, indx0 = 0;
836
837
    /* we assume parray is an array of some type, of adequate length */
838
2.35M
    if (r_has_type(parray, t_array))
839
1.73M
        return float_params(parray->value.refs + count - 1, count, pval);
840
841
    /* short/mixed array; convert the entries to refs */
842
1.24M
    while (count > 0 && code >= 0) {
843
621k
        int     i, subcount;
844
621k
        ref     ref_buff[20];   /* 20 is arbitrary */
845
846
621k
        subcount = (count > countof(ref_buff) ? countof(ref_buff) : count);
847
1.86M
        for (i = 0; i < subcount && code >= 0; i++)
848
1.24M
            code = array_get(mem, parray, (long)(i + indx0), &ref_buff[i]);
849
621k
        if (code >= 0)
850
621k
            code = float_params(ref_buff + subcount - 1, subcount, pval);
851
621k
        count -= subcount;
852
621k
        pval += subcount;
853
621k
        indx0 += subcount;
854
621k
    }
855
856
621k
    return code;
857
2.35M
}
858
859
/* Get a single real parameter. */
860
/* The only possible errors are gs_error_typecheck and gs_error_stackunderflow. */
861
/* If an error is returned, the return value is not updated. */
862
int
863
real_param(const ref * op, double *pparam)
864
220M
{
865
220M
    switch (r_type(op)) {
866
101M
        case t_integer:
867
101M
            *pparam = (double)op->value.intval;
868
101M
            break;
869
118M
        case t_real:
870
118M
            *pparam = op->value.realval;
871
118M
            break;
872
31
        case t__invalid:
873
31
            return_error(gs_error_stackunderflow);
874
5.57k
        default:
875
5.57k
            return_error(gs_error_typecheck);
876
220M
    }
877
220M
    return 0;
878
220M
}
879
int
880
float_param(const ref * op, float *pparam)
881
4.13M
{
882
4.13M
    double dval;
883
4.13M
    int code = real_param(op, &dval);
884
885
4.13M
    if (code >= 0)
886
4.13M
        *pparam = (float)dval; /* can't overflow */
887
4.13M
    return code;
888
4.13M
}
889
890
/* Get an integer parameter in a given range. */
891
int
892
int_param(const ref * op, int max_value, int *pparam)
893
2.37M
{
894
2.37M
    check_int_leu(*op, max_value);
895
2.37M
    *pparam = (int)op->value.intval;
896
2.37M
    return 0;
897
2.37M
}
898
899
/* Make real values on the operand stack. */
900
int
901
make_reals(ref * op, const double *pval, int count)
902
154k
{
903
    /* This should return gs_error_limitcheck if any real is too large */
904
    /* to fit into a float on the stack. */
905
771k
    for (; count--; op++, pval++)
906
616k
        make_real(op, *pval);
907
154k
    return 0;
908
154k
}
909
int
910
make_floats(ref * op, const float *pval, int count)
911
5.89M
{
912
    /* This should return gs_error_undefinedresult for infinities. */
913
21.7M
    for (; count--; op++, pval++)
914
15.8M
        make_real(op, *pval);
915
5.89M
    return 0;
916
5.89M
}
917
918
/* Compute the error code when check_proc fails. */
919
/* Note that the client, not this procedure, uses return_error. */
920
/* The stack underflow check is harmless in the off-stack case. */
921
int
922
check_proc_failed(const ref * pref)
923
236
{
924
236
    if (r_is_array(pref)) {
925
22
        if (r_has_attr(pref, a_executable))
926
0
            return gs_error_invalidaccess;
927
22
        else
928
22
            return gs_error_typecheck;
929
214
    } else {
930
214
        if (r_has_type(pref, t__invalid))
931
59
            return gs_error_stackunderflow;
932
155
        else
933
155
            return gs_error_typecheck;
934
214
    }
935
236
}
936
937
/* Compute the error code when a type check on the stack fails. */
938
/* Note that the client, not this procedure, uses return_error. */
939
int
940
check_type_failed(const ref * op)
941
125M
{
942
125M
    return (r_has_type(op, t__invalid) ? gs_error_stackunderflow : gs_error_typecheck);
943
125M
}
944
945
/* ------ Matrix utilities ------ */
946
947
/* Read a matrix operand. */
948
/* Return 0 if OK, error code if not. */
949
int
950
read_matrix(const gs_memory_t *mem, const ref * op, gs_matrix * pmat)
951
5.38M
{
952
5.38M
    int code;
953
5.38M
    ref values[6];
954
5.38M
    const ref *pvalues;
955
956
5.38M
    switch (r_type(op)) {
957
5.38M
        case t_array:
958
5.38M
            pvalues = op->value.refs;
959
5.38M
            break;
960
0
        case t_mixedarray:
961
11
        case t_shortarray:
962
11
            {
963
11
                int i;
964
965
65
                for (i = 0; i < 6; ++i) {
966
56
                    code = array_get(mem, op, (long)i, &values[i]);
967
56
                    if (code < 0)
968
2
                        return code;
969
56
                }
970
9
                pvalues = values;
971
9
            }
972
0
            break;
973
314
        default:
974
314
            return_op_typecheck(op);
975
5.38M
    }
976
5.38M
    check_read(*op);
977
5.38M
    if (r_size(op) != 6)
978
28
        return_error(gs_error_rangecheck);
979
5.38M
    code = float_params(pvalues + 5, 6, (float *)pmat);
980
5.38M
    return (code < 0 ? code : 0);
981
5.38M
}
982
983
/* Write a matrix operand. */
984
/* Return 0 if OK, error code if not. */
985
int
986
write_matrix_in(ref * op, const gs_matrix * pmat, gs_dual_memory_t *idmemory,
987
                gs_ref_memory_t *imem)
988
2.62M
{
989
2.62M
    ref *aptr;
990
2.62M
    const float *pel;
991
2.62M
    int i;
992
993
2.62M
    check_write_type(*op, t_array);
994
2.62M
    if (r_size(op) != 6)
995
0
        return_error(gs_error_rangecheck);
996
2.62M
    aptr = op->value.refs;
997
2.62M
    pel = (const float *)pmat;
998
18.3M
    for (i = 5; i >= 0; i--, aptr++, pel++) {
999
15.7M
        if (idmemory) {
1000
15.4M
            ref_save(op, aptr, "write_matrix");
1001
15.4M
            make_real_new(aptr, *pel);
1002
15.4M
        } else {
1003
327k
            make_tav(aptr, t_real, imemory_new_mask(imem), realval, *pel);
1004
327k
        }
1005
15.7M
    }
1006
2.62M
    return 0;
1007
2.62M
}