Coverage Report

Created: 2025-12-31 07:31

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/base/gsht.c
Line
Count
Source
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* setscreen operator for Ghostscript library */
18
#include "memory_.h"
19
#include "string_.h"
20
#include "assert_.h"
21
#include <stdlib.h>             /* for qsort */
22
#include "gx.h"
23
#include "gserrors.h"
24
#include "gsstruct.h"
25
#include "gsutil.h"             /* for gs_next_ids */
26
#include "gxarith.h"            /* for igcd */
27
#include "gzstate.h"
28
#include "gxdevice.h"           /* for gzht.h */
29
#include "gzht.h"
30
#include "gxfmap.h"             /* For effective transfer usage in threshold */
31
#include "gp.h"
32
33
#define DUMP_SCREENS 0
34
35
/* Forward declarations */
36
void gx_set_effective_transfer(gs_gstate *);
37
38
/* Structure types */
39
public_st_ht_order();
40
private_st_ht_order_component();
41
public_st_ht_order_comp_element();
42
public_st_halftone();
43
public_st_device_halftone();
44
45
/* GC procedures */
46
47
static
48
22.2M
ENUM_PTRS_WITH(ht_order_enum_ptrs, gx_ht_order *porder) return 0;
49
4.74M
case 0: ENUM_RETURN((porder->data_memory ? porder->levels : 0));
50
4.74M
case 1: ENUM_RETURN((porder->data_memory ? porder->bit_data : 0));
51
4.74M
case 2: ENUM_RETURN(porder->cache);
52
4.74M
case 3: ENUM_RETURN(porder->transfer);
53
22.2M
ENUM_PTRS_END
54
static
55
4.74M
RELOC_PTRS_WITH(ht_order_reloc_ptrs, gx_ht_order *porder)
56
4.74M
{
57
4.74M
    if (porder->data_memory) {
58
4.17M
        RELOC_VAR(porder->levels);
59
4.17M
        RELOC_VAR(porder->bit_data);
60
4.17M
    }
61
4.74M
    RELOC_VAR(porder->cache);
62
4.74M
    RELOC_VAR(porder->transfer);
63
4.74M
}
64
4.74M
RELOC_PTRS_END
65
66
static
67
572k
ENUM_PTRS_WITH(halftone_enum_ptrs, gs_halftone *hptr) return 0;
68
572k
case 0:
69
572k
switch (hptr->type)
70
572k
{
71
0
    case ht_type_spot:
72
0
        ENUM_RETURN((hptr->params.spot.transfer == 0 ?
73
0
                     hptr->params.spot.transfer_closure.data :
74
0
                     0));
75
0
    case ht_type_threshold:
76
0
        ENUM_RETURN_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
77
0
    case ht_type_threshold2:
78
0
        return ENUM_CONST_BYTESTRING(&hptr->params.threshold2.thresholds);
79
0
    case ht_type_client_order:
80
0
        ENUM_RETURN(hptr->params.client_order.client_data);
81
0
    case ht_type_multiple:
82
0
    case ht_type_multiple_colorscreen:
83
0
        ENUM_RETURN(hptr->params.multiple.components);
84
0
    case ht_type_none:
85
294k
    case ht_type_screen:
86
572k
    case ht_type_colorscreen:
87
572k
        return 0;
88
572k
}
89
/* fall through */
90
0
case 1:
91
0
switch (hptr->type) {
92
0
    case ht_type_threshold:
93
0
        ENUM_RETURN((hptr->params.threshold.transfer == 0 ?
94
0
                     hptr->params.threshold.transfer_closure.data :
95
0
                     0));
96
0
    case ht_type_threshold2:
97
0
        ENUM_RETURN(hptr->params.threshold2.transfer_closure.data);
98
0
    case ht_type_client_order:
99
0
        ENUM_RETURN(hptr->params.client_order.transfer_closure.data);
100
0
    default:
101
0
        return 0;
102
0
}
103
572k
ENUM_PTRS_END
104
105
570k
static RELOC_PTRS_WITH(halftone_reloc_ptrs, gs_halftone *hptr)
106
570k
{
107
570k
    switch (hptr->type) {
108
0
        case ht_type_spot:
109
0
            if (hptr->params.spot.transfer == 0)
110
0
                RELOC_PTR(gs_halftone, params.spot.transfer_closure.data);
111
0
            break;
112
0
        case ht_type_threshold:
113
0
            RELOC_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
114
0
            if (hptr->params.threshold.transfer == 0)
115
0
                RELOC_PTR(gs_halftone, params.threshold.transfer_closure.data);
116
0
            break;
117
0
        case ht_type_threshold2:
118
0
            RELOC_CONST_BYTESTRING_VAR(hptr->params.threshold2.thresholds);
119
0
            RELOC_OBJ_VAR(hptr->params.threshold2.transfer_closure.data);
120
0
            break;
121
0
        case ht_type_client_order:
122
0
            RELOC_PTR(gs_halftone, params.client_order.client_data);
123
0
            RELOC_PTR(gs_halftone, params.client_order.transfer_closure.data);
124
0
            break;
125
0
        case ht_type_multiple:
126
0
        case ht_type_multiple_colorscreen:
127
0
            RELOC_PTR(gs_halftone, params.multiple.components);
128
0
            break;
129
0
        case ht_type_none:
130
293k
        case ht_type_screen:
131
570k
        case ht_type_colorscreen:
132
570k
            break;
133
570k
    }
134
570k
}
135
570k
RELOC_PTRS_END
136
137
/* setscreen */
138
int
139
gs_setscreen(gs_gstate * pgs, gs_screen_halftone * phsp)
140
0
{
141
0
    gs_screen_enum senum;
142
0
    int code = gx_ht_process_screen(&senum, pgs, phsp,
143
0
                                    gs_currentaccuratescreens(pgs->memory));
144
145
0
    if (code < 0)
146
0
        return code;
147
0
    return gs_screen_install(&senum);
148
0
}
149
150
/* currentscreen */
151
int
152
gs_currentscreen(const gs_gstate * pgs, gs_screen_halftone * phsp)
153
0
{
154
0
    switch (pgs->halftone->type) {
155
0
        case ht_type_screen:
156
0
            *phsp = pgs->halftone->params.screen;
157
0
            return 0;
158
0
        case ht_type_colorscreen:
159
0
            *phsp = pgs->halftone->params.colorscreen.screens.colored.gray;
160
0
            return 0;
161
0
        default:
162
0
            return_error(gs_error_undefined);
163
0
    }
164
0
}
165
166
/* .currentscreenlevels */
167
int
168
gs_currentscreenlevels(const gs_gstate * pgs)
169
0
{
170
0
    int gi = 0;
171
172
0
    if (pgs->device != NULL)
173
0
        gi = pgs->device->color_info.gray_index;
174
0
    if (gi != GX_CINFO_COMP_NO_INDEX)
175
0
        return pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[gi].corder.num_levels;
176
0
    else
177
0
        return pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
178
0
}
179
180
/* .setscreenphase */
181
int
182
gx_gstate_setscreenphase(gs_gstate * pgs, int x, int y,
183
                         gs_color_select_t select)
184
54.5M
{
185
54.5M
    if (select == gs_color_select_all) {
186
18.1M
        int i;
187
188
54.3M
        for (i = 0; i < gs_color_select_count; ++i)
189
36.2M
            gx_gstate_setscreenphase(pgs, x, y, (gs_color_select_t) i);
190
18.1M
        return 0;
191
36.3M
    } else if ((int)select < 0 || (int)select >= gs_color_select_count)
192
0
        return_error(gs_error_rangecheck);
193
36.3M
    pgs->screen_phase[select].x = x;
194
36.3M
    pgs->screen_phase[select].y = y;
195
36.3M
    return 0;
196
54.5M
}
197
int
198
gs_setscreenphase(gs_gstate * pgs, int x, int y, gs_color_select_t select)
199
0
{
200
0
    int code = gx_gstate_setscreenphase(pgs, x, y,
201
0
                                        select);
202
203
    /*
204
     * If we're only setting the source phase, we don't need to do
205
     * unset_dev_color, because the source phase doesn't affect painting
206
     * with the current color.
207
     */
208
0
    if (code >= 0 && (select == gs_color_select_texture ||
209
0
                      select == gs_color_select_all)
210
0
        )
211
0
        gx_unset_dev_color(pgs);
212
0
    return code;
213
0
}
214
215
int
216
gs_currentscreenphase_pgs(const gs_gstate * pgs, gs_int_point * pphase,
217
                      gs_color_select_t select)
218
17.8M
{
219
17.8M
    if ((int)select < 0 || (int)select >= gs_color_select_count)
220
0
        return_error(gs_error_rangecheck);
221
17.8M
    *pphase = pgs->screen_phase[select];
222
17.8M
    return 0;
223
17.8M
}
224
225
/* .currentscreenphase */
226
int
227
gs_currentscreenphase(const gs_gstate * pgs, gs_int_point * pphase,
228
                      gs_color_select_t select)
229
17.8M
{
230
17.8M
    return gs_currentscreenphase_pgs((const gs_gstate *)pgs, pphase, select);
231
17.8M
}
232
233
/* currenthalftone */
234
int
235
gs_currenthalftone(gs_gstate * pgs, gs_halftone * pht)
236
183k
{
237
183k
    *pht = *pgs->halftone;
238
183k
    return 0;
239
183k
}
240
241
/* ------ Internal routines ------ */
242
243
/* Process one screen plane. */
244
int
245
gx_ht_process_screen_memory(gs_screen_enum * penum, gs_gstate * pgs,
246
                gs_screen_halftone * phsp, bool accurate, gs_memory_t * mem)
247
1.42M
{
248
1.42M
    gs_point pt;
249
1.42M
    int code = gs_screen_init_memory(penum, pgs, phsp, accurate, mem);
250
251
1.42M
    if (code < 0)
252
0
        return code;
253
25.6M
    while ((code = gs_screen_currentpoint(penum, &pt)) == 0)
254
24.1M
        if ((code = gs_screen_next(penum, (*phsp->spot_function) (pt.x, pt.y))) < 0)
255
0
            return code;
256
1.42M
    return 0;
257
1.42M
}
258
259
/*
260
 * Internal procedure to allocate and initialize either an internally
261
 * generated or a client-defined halftone order.  For spot halftones,
262
 * the client is responsible for calling gx_compute_cell_values.
263
 */
264
int
265
gx_ht_alloc_ht_order(gx_ht_order * porder, uint width, uint height,
266
                     uint num_levels, uint num_bits, uint strip_shift,
267
                     const gx_ht_order_procs_t *procs, gs_memory_t * mem)
268
9.66M
{
269
9.66M
    porder->threshold = NULL;
270
9.66M
    porder->width = width;
271
9.66M
    porder->height = height;
272
9.66M
    porder->raster = bitmap_raster(width);
273
9.66M
    porder->shift = strip_shift;
274
9.66M
    porder->orig_height = porder->height;
275
9.66M
    porder->orig_shift = porder->shift;
276
9.66M
    porder->full_height = ht_order_full_height(porder);
277
9.66M
    porder->num_levels = num_levels;
278
9.66M
    porder->num_bits = num_bits;
279
9.66M
    porder->procs = procs;
280
9.66M
    porder->data_memory = mem;
281
282
9.66M
    if (num_levels > 0) {
283
9.66M
        porder->levels =
284
9.66M
            (uint *)gs_alloc_byte_array(mem, porder->num_levels, sizeof(uint),
285
9.66M
                                        "alloc_ht_order_data(levels)");
286
9.66M
        if (porder->levels == 0)
287
0
            return_error(gs_error_VMerror);
288
9.66M
        memset(porder->levels, 0, sizeof(uint) * porder->num_levels);
289
9.66M
    } else
290
0
        porder->levels = 0;
291
292
9.66M
    if (num_bits > 0) {
293
9.66M
        porder->bit_data =
294
9.66M
            gs_alloc_byte_array(mem, porder->num_bits,
295
9.66M
                                porder->procs->bit_data_elt_size,
296
9.66M
                                "alloc_ht_order_data(bit_data)");
297
9.66M
        if (porder->bit_data == 0) {
298
0
            gs_free_object(mem, porder->levels, "alloc_ht_order_data(levels)");
299
0
            porder->levels = 0;
300
0
            return_error(gs_error_VMerror);
301
0
        }
302
9.66M
    } else
303
0
        porder->bit_data = 0;
304
305
9.66M
    porder->cache = 0;
306
9.66M
    porder->transfer = 0;
307
9.66M
    return 0;
308
9.66M
}
309
310
/*
311
 * Procedure to copy a halftone order.
312
 */
313
static int
314
gx_ht_copy_ht_order(gx_ht_order * pdest, gx_ht_order * psrc, gs_memory_t * mem)
315
4.96M
{
316
4.96M
    int code;
317
318
4.96M
    *pdest = *psrc;
319
320
4.96M
    code = gx_ht_alloc_ht_order(pdest, psrc->width, psrc->height,
321
4.96M
                     psrc->num_levels, psrc->num_bits, psrc->shift,
322
4.96M
                     psrc->procs, mem);
323
4.96M
    if (code < 0)
324
0
        return code;
325
4.96M
    if (pdest->levels != NULL)
326
4.96M
        memcpy(pdest->levels, psrc->levels, psrc->num_levels * sizeof(uint));
327
4.96M
    if (pdest->bit_data != NULL)
328
4.96M
        memcpy(pdest->bit_data, psrc->bit_data,
329
4.96M
               (size_t)psrc->num_bits * psrc->procs->bit_data_elt_size);
330
4.96M
    pdest->transfer = psrc->transfer;
331
4.96M
    rc_increment(pdest->transfer);
332
4.96M
    return 0;
333
4.96M
}
334
335
/*
336
 * Set the destination component to match the source component, and
337
 * "assume ownership" of all of the refrernced data structures.
338
 */
339
static void
340
gx_ht_move_ht_order(gx_ht_order * pdest, gx_ht_order * psrc)
341
0
{
342
0
    uint    width = psrc->width, height = psrc->height, shift = psrc->shift;
343
344
0
    pdest->params = psrc->params;
345
0
    pdest->width = width;
346
0
    pdest->height = height;
347
0
    pdest->raster = bitmap_raster(width);
348
0
    pdest->shift = shift;
349
0
    pdest->orig_height = height;
350
0
    pdest->orig_shift = shift;
351
0
    pdest->full_height = ht_order_full_height(pdest);
352
0
    pdest->num_levels = psrc->num_levels;
353
0
    pdest->num_bits = psrc->num_bits;
354
0
    pdest->procs = psrc->procs;
355
0
    pdest->data_memory = psrc->data_memory;
356
0
    pdest->levels = psrc->levels;
357
0
    pdest->bit_data = psrc->bit_data;
358
0
    pdest->cache = psrc->cache;    /* should be 0 */
359
0
    pdest->transfer = psrc->transfer;
360
0
}
361
362
/* Allocate and initialize the contents of a halftone order. */
363
/* The client must have set the defining values in porder->params. */
364
int
365
gx_ht_alloc_order(gx_ht_order * porder, uint width, uint height,
366
                  uint strip_shift, uint num_levels, gs_memory_t * mem)
367
1.75M
{
368
1.75M
    gx_ht_order order;
369
1.75M
    int code;
370
371
1.75M
    order = *porder;
372
1.75M
    gx_compute_cell_values(&order.params);
373
1.75M
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
374
1.75M
                                width * height, strip_shift,
375
1.75M
                                &ht_order_procs_default, mem);
376
1.75M
    if (code < 0)
377
0
        return code;
378
1.75M
    *porder = order;
379
1.75M
    return 0;
380
1.75M
}
381
382
/*
383
 * Allocate and initialize a threshold order, which may use the short
384
 * representation.
385
 */
386
int
387
gx_ht_alloc_threshold_order(gx_ht_order * porder, uint width, uint height,
388
                            uint num_levels, gs_memory_t * mem)
389
0
{
390
0
    gx_ht_order order;
391
392
0
    unsigned long num_bits = bitmap_raster(width) * (unsigned long)8 * height;
393
0
    const gx_ht_order_procs_t *procs;
394
0
    int code;
395
396
0
    if (num_bits <= 2000)
397
0
        procs = &ht_order_procs_default;
398
0
    else if (num_bits <= max_ushort + 1)  /* We can index 0 to 65535 so a size of 65536 (max_ushort + 1) is OK */
399
0
        procs = &ht_order_procs_short;
400
0
    else if (num_bits <= max_uint)
401
0
        procs = &ht_order_procs_uint;
402
0
    else
403
0
        return_error(gs_error_VMerror);  /* At this point in history, this is way too large of a screen */
404
405
0
    order = *porder;
406
0
    gx_compute_cell_values(&order.params);
407
0
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
408
0
                                width * height, 0, procs, mem);
409
0
    if (code < 0)
410
0
        return code;
411
0
    *porder = order;
412
0
    return 0;
413
0
}
414
415
/* Allocate and initialize the contents of a client-defined halftone order. */
416
int
417
gx_ht_alloc_client_order(gx_ht_order * porder, uint width, uint height,
418
                         uint num_levels, uint num_bits, gs_memory_t * mem)
419
0
{
420
0
    gx_ht_order order;
421
0
    int code;
422
423
0
    order = *porder;
424
0
    order.params.M = width, order.params.N = 0;
425
0
    order.params.R = 1;
426
0
    order.params.M1 = height, order.params.N1 = 0;
427
0
    order.params.R1 = 1;
428
0
    gx_compute_cell_values(&order.params);
429
0
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
430
0
                                num_bits, 0, &ht_order_procs_default, mem);
431
0
    if (code < 0)
432
0
        return code;
433
0
    *porder = order;
434
0
    return 0;
435
0
}
436
437
/* Compare keys ("masks", actually sample values) for qsort. */
438
static int
439
compare_samples(const void *p1, const void *p2)
440
160M
{
441
160M
    ht_sample_t m1 = ((const gx_ht_bit *)p1)->mask;
442
160M
    ht_sample_t m2 = ((const gx_ht_bit *)p2)->mask;
443
444
    /* force qsort() to be determinstic even if two masks are the same */
445
160M
    if (m1==m2) {
446
15.9M
      m1=((const gx_ht_bit *)p1)->offset;
447
15.9M
      m2=((const gx_ht_bit *)p2)->offset;
448
15.9M
    }
449
450
160M
    return (m1 < m2 ? -1 : m1 > m2 ? 1 : 0);
451
160M
}
452
/* Sort the halftone order by sample value. */
453
void
454
gx_sort_ht_order(gx_ht_bit * recs, uint N)
455
3.19M
{
456
3.19M
    int i;
457
458
    /* Tag each sample with its index, for sorting. */
459
58.5M
    for (i = 0; i < N; i++)
460
55.3M
        recs[i].offset = i;
461
3.19M
    qsort((void *)recs, N, sizeof(*recs), compare_samples);
462
#ifdef DEBUG
463
    if (gs_debug_c('H')) {
464
        uint i;
465
466
        dlputs("[H]Sorted samples:\n");
467
        for (i = 0; i < N; i++)
468
            dlprintf3("%5u: %5u: %u\n",
469
                      i, recs[i].offset, recs[i].mask);
470
    }
471
#endif
472
3.19M
}
473
474
/*
475
 * Construct the halftone order from a sampled spot function.  Only width x
476
 * strip samples have been filled in; we must replicate the resulting sorted
477
 * order vertically, shifting it by shift each time.  See gxdht.h regarding
478
 * the invariants that must be restored.
479
 */
480
void
481
gx_ht_construct_spot_order(gx_ht_order * porder)
482
3.19M
{
483
3.19M
    uint width = porder->width;
484
3.19M
    uint num_levels = porder->num_levels;       /* = width x strip */
485
3.19M
    uint strip = num_levels / width;
486
3.19M
    gx_ht_bit *bits = (gx_ht_bit *)porder->bit_data;
487
3.19M
    uint *levels = porder->levels;
488
3.19M
    uint shift = porder->orig_shift;
489
3.19M
    uint full_height = porder->full_height;
490
3.19M
    uint num_bits = porder->num_bits;
491
3.19M
    uint copies = num_bits / (width * strip);
492
3.19M
    gx_ht_bit *bp = bits + num_bits - 1;
493
3.19M
    uint i;
494
495
3.19M
    gx_sort_ht_order(bits, num_levels);
496
3.19M
    if_debug5('h',
497
3.19M
              "[h]spot order: num_levels=%u w=%u h=%u strip=%u shift=%u\n",
498
3.19M
              num_levels, width, porder->orig_height, strip, shift);
499
    /* Fill in the levels array, replicating the bits vertically */
500
    /* if needed. */
501
58.5M
    for (i = num_levels; i > 0;) {
502
55.3M
        uint offset = bits[--i].offset;
503
55.3M
        uint x = offset % width;
504
55.3M
        uint hy = offset - x;
505
55.3M
        uint k;
506
507
55.3M
        levels[i] = i * copies;
508
516M
        for (k = 0; k < copies;
509
461M
             k++, bp--, hy += num_levels, x = (x + width - shift) % width
510
55.3M
            )
511
461M
            bp->offset = hy + x;
512
55.3M
    }
513
    /* If we have a complete halftone, restore the invariant. */
514
3.19M
    if (num_bits == width * full_height) {
515
3.19M
        porder->height = full_height;
516
3.19M
        porder->shift = 0;
517
3.19M
    }
518
3.19M
    gx_ht_construct_bits(porder);
519
3.19M
}
520
521
/* Construct a single offset/mask. */
522
void
523
gx_ht_construct_bit(gx_ht_bit * bit, int width, int bit_num)
524
461M
{
525
461M
    uint padding = bitmap_raster(width) * 8 - width;
526
461M
    int pix = bit_num;
527
461M
    ht_mask_t mask;
528
461M
    byte *pb;
529
530
461M
    pix += pix / width * padding;
531
461M
    bit->offset = (pix >> 3) & -size_of(mask);
532
461M
    mask = (ht_mask_t) 1 << (~pix & (ht_mask_bits - 1));
533
    /* Replicate the mask bits. */
534
461M
    pix = ht_mask_bits - width;
535
692M
    while ((pix -= width) >= 0)
536
231M
        mask |= mask >> width;
537
    /* Store the mask, reversing bytes if necessary. */
538
461M
    bit->mask = 0;
539
461M
    for (pb = (byte *) & bit->mask + (sizeof(mask) - 1);
540
2.06G
         mask != 0;
541
1.60G
         mask >>= 8, pb--
542
461M
        )
543
1.60G
        *pb = (byte) mask;
544
461M
}
545
546
/* Construct offset/masks from the whitening order. */
547
/* porder->bits[i].offset contains the index of the bit position */
548
/* that is i'th in the whitening order. */
549
void
550
gx_ht_construct_bits(gx_ht_order * porder)
551
3.19M
{
552
3.19M
    uint i;
553
3.19M
    gx_ht_bit *phb;
554
555
3.19M
    for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
556
464M
         i < porder->num_bits;
557
461M
         i++, phb++)
558
461M
        gx_ht_construct_bit(phb, porder->width, phb->offset);
559
#ifdef DEBUG
560
    if (gs_debug_c('H')) {
561
        dmlprintf1(porder->data_memory, "[H]Halftone order bits "PRI_INTPTR":\n", (intptr_t)porder->bit_data);
562
        for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
563
             i < porder->num_bits;
564
             i++, phb++)
565
            dmlprintf3(porder->data_memory, "%4d: %u:0x%lx\n", i, phb->offset,
566
                      (ulong) phb->mask);
567
    }
568
#endif
569
3.19M
}
570
571
/* Release a gx_device_halftone by freeing its components. */
572
/* (Don't free the gx_device_halftone itself.) */
573
void
574
gx_ht_order_release(gx_ht_order * porder, gs_memory_t * mem, bool free_cache)
575
11.5M
{
576
    /* "free cache" is a proxy for "differs from default" */
577
11.5M
    if (free_cache) {
578
6.03M
        if (porder->cache != NULL)
579
4.96M
            gx_ht_free_cache(mem, porder->cache);
580
6.03M
    }
581
11.5M
    porder->cache = 0;
582
11.5M
    rc_decrement(porder->transfer, "gx_ht_order_release(transfer)");
583
11.5M
    porder->transfer = 0;
584
11.5M
    if (porder->data_memory != NULL) {
585
9.66M
        gs_free_object(porder->data_memory, porder->bit_data,
586
9.66M
                       "gx_ht_order_release(bit_data)");
587
9.66M
        gs_free_object(porder->data_memory, porder->levels,
588
9.66M
                       "gx_ht_order_release(levels)");
589
9.66M
        if (porder->threshold != NULL) {
590
195k
            gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
591
195k
                       "gx_ht_order_release(threshold)");
592
195k
        }
593
9.66M
    }
594
11.5M
    porder->threshold = 0;
595
11.5M
    porder->levels = 0;
596
11.5M
    porder->bit_data = 0;
597
11.5M
}
598
599
void
600
gx_device_halftone_release(gx_device_halftone * pdht, gs_memory_t * mem)
601
2.53M
{
602
2.53M
    if (pdht->components) {
603
2.21M
        int i;
604
605
        /* One of the components might be the same as the default */
606
        /* order, so check that we don't free it twice. */
607
8.60M
        for (i = 0; i < pdht->num_comp; ++i)
608
6.38M
            if (pdht->components[i].corder.bit_data !=
609
6.38M
                pdht->order.bit_data
610
6.38M
                ) {             /* Currently, all orders except the default one */
611
                /* own their caches. */
612
6.03M
                gx_ht_order_release(&pdht->components[i].corder, mem, true);
613
6.03M
            }
614
2.21M
        gs_free_object(mem, pdht->components,
615
2.21M
                       "gx_dev_ht_release(components)");
616
2.21M
        pdht->components = 0;
617
2.21M
        pdht->num_comp = 0;
618
2.21M
    }
619
2.53M
    gx_ht_order_release(&pdht->order, mem, false);
620
2.53M
}
621
622
/*
623
 * This routine will take a color name (defined by a ptr and size) and
624
 * check if this is a valid colorant name for the current device.  If
625
 * so then the device's colorant number is returned.
626
 *
627
 * Two other checks are also made.  If the name is "Default" then a value
628
 * of GX_DEVICE_COLOR_MAX_COMPONENTS is returned.  This is done to
629
 * simplify the handling of default halftones.  Note:  The device also
630
 * uses GX_DEVICE_COLOR_MAX_COMPONENTS to indicate colorants which are
631
 * known but not being used due to the SeparationOrder parameter.  In this
632
 * case we return -1 since the colorant is not currently being used by the
633
 * device.
634
 *
635
 * If the halftone type is colorscreen or multiple colorscreen, then we
636
 * also check for Red/Cyan, Green/Magenta, Blue/Yellow, and Gray/Black
637
 * component name pairs.  This is done since the setcolorscreen and
638
 * sethalftone types 2 and 4 imply the dual name sets.
639
 *
640
 * A negative value is returned if the color name is not found.
641
 */
642
int
643
gs_color_name_component_number(gx_device * dev, const char * pname,
644
                                int name_size, int halftonetype)
645
1.46M
{
646
1.46M
    int num_colorant;
647
648
1.46M
#define check_colorant_name(dev, name) \
649
1.46M
    ((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_COMP_NAME_TYPE_HT))
650
651
1.46M
#define check_colorant_name_length(dev, name, length) \
652
1.46M
    ((*dev_proc(dev, get_color_comp_index)) (dev, name, length, NO_COMP_NAME_TYPE_HT))
653
654
1.46M
#define check_name(str, pname, length) \
655
3.21M
    ((strlen(str) == length) && (strncmp(pname, str, length) == 0))
656
657
    /*
658
     * Check if this is a device colorant.
659
     */
660
1.46M
    num_colorant = check_colorant_name_length(dev, pname, name_size);
661
1.46M
    if (num_colorant >= 0) {
662
        /*
663
         * The device will return GX_DEVICE_COLOR_MAX_COMPONENTS if the
664
         * colorant is logically present in the device but not being used
665
         * because a SeparationOrder parameter is specified.  Since we are
666
         * using this value to indicate 'Default', we use -1 to indicate
667
         * that the colorant is not really being used.
668
         */
669
502k
        if (num_colorant == GX_DEVICE_COLOR_MAX_COMPONENTS)
670
0
            num_colorant = -1;
671
502k
        return num_colorant;
672
502k
    }
673
674
    /*
675
     * Check if this is the default component
676
     */
677
963k
    if (check_name("Default", pname, name_size))
678
42.5k
        return GX_DEVICE_COLOR_MAX_COMPONENTS;
679
680
    /* Halftones set by setcolorscreen, and (we think) */
681
    /* Type 2 and Type 4 halftones, are supposed to work */
682
    /* for both RGB and CMYK, so we need a special check here. */
683
921k
    if (halftonetype == ht_type_colorscreen ||
684
921k
        halftonetype == ht_type_multiple_colorscreen) {
685
921k
        if (check_name("Red", pname, name_size))
686
238k
            num_colorant = check_colorant_name(dev, "Cyan");
687
682k
        else if (check_name("Green", pname, name_size))
688
238k
            num_colorant = check_colorant_name(dev, "Magenta");
689
444k
        else if (check_name("Blue", pname, name_size))
690
238k
            num_colorant = check_colorant_name(dev, "Yellow");
691
206k
        else if (check_name("Gray", pname, name_size))
692
206k
            num_colorant = check_colorant_name(dev, "Black");
693
        /*
694
         * The device will return GX_DEVICE_COLOR_MAX_COMPONENTS if the
695
         * colorant is logically present in the device but not being used
696
         * because a SeparationOrder parameter is specified.  Since we are
697
         * using this value to indicate 'Default', we use -1 to indicate
698
         * that the colorant is not really being used.
699
         */
700
921k
        if (num_colorant == GX_DEVICE_COLOR_MAX_COMPONENTS)
701
0
            num_colorant = -1;
702
703
921k
#undef check_colorant_name
704
921k
#undef check_colorant_name_length
705
921k
#undef check_name
706
707
921k
    }
708
921k
    return num_colorant;
709
963k
}
710
711
/*
712
 * See gs_color_name_component_number for main description.
713
 *
714
 * This version converts a name index value into a string and size and
715
 * then call gs_color_name_component_number.
716
 */
717
int
718
gs_cname_to_colorant_number(gs_gstate * pgs, byte * pname, uint name_size,
719
                int halftonetype)
720
42.5k
{
721
42.5k
    gx_device * dev = pgs->device;
722
723
42.5k
    return gs_color_name_component_number(dev, (char *)pname, name_size,
724
42.5k
                    halftonetype);
725
42.5k
}
726
727
/*
728
 * Install a device halftone into the gs_gstate.
729
 *
730
 * To allow halftones to be shared between graphic states, the
731
 * gs_gstate contains a pointer to a device halftone structure. Thus, when
732
 * we say a halftone is "in" the gs_gstate, we are only claiming
733
 * that the halftone pointer in the gs_gstate points to that halftone.
734
 *
735
 * Though the operand halftone uses the same structure as the halftone
736
 * "in" the gs_gstate, not all of its fields are filled in, and the
737
 * organization of components differs. Specifically, the following fields
738
 * are not filled in:
739
 *
740
 *  rc          The operand device halftone has only a transient existence,
741
 *              its reference count information is not initialized. In many
742
 *              cases, the operand device halftone structure is allocated
743
 *              on the stack by clients.
744
 *
745
 *  id          A halftone is not considered to have an identity until it
746
 *              is installed in the gs_gstate. This is a design error
747
 *              which reflects the PostScript origins of this code. In
748
 *              PostScript, it is impossible to check if two halftone
749
 *              specifications (sets of operands to setscreen/setcolorscreen
750
 *              or halftone dictionaries) are the same. Hence, the only way
751
 *              a halftone could be identified was by the graphic state in
752
 *              which it was included. In PCL it is possible to directly
753
 *              identify a halftone specification, but currently there is
754
 *              no way to use this knowledge in the graphic library.
755
 *
756
 *              (An altogether more reasonable approach would be to apply
757
 *              id's to halftone orders.)
758
 *
759
 *  type        This is filled in by the type operand. It is used by
760
 *              PostScript's currentscreen/currentcolorscreen operators to
761
 *              determine if a sampling procedure or a halftone dictionary
762
 *              should be pushed onto the stack. More importantly, it is
763
 *              also used to determine if specific halftone components can
764
 *              be used for either the additive or subtractive version of
765
 *              that component in the process color model. For example, a
766
 *              RedThreshold in a HalftoneType 4 dictionary can be applied
767
 *              to either the component "Red" or the component "Cyan", but
768
 *              the value of the key "Red" in a HalftoneType 5 dictionary
769
 *              can only be used for a "Red" component (not a "Cyan"
770
 *              component).
771
 *
772
 *  num_comp    For the operand halftone, this is the number of halftone
773
 *              components included in the specification. For the device
774
 *              halftone in the gs_gstate, this is always the same as
775
 *              the number of color model components (see num_dev_comp).
776
 *
777
 *  num_dev_comp The number of components in the device process color model
778
 *              when the operand halftone was created.  With some compositor
779
 *              devices (for example PDF 1.4) we can have differences in the
780
 *              process color model of the compositor versus the output device.
781
 *              These compositor devices do not halftone.
782
 *
783
 *  components  For the operand halftone, this field is non-null only if
784
 *              multiple halftones are provided. In that case, the size
785
 *              of the array pointed is the same as the number of
786
 *              components provided. One of these components will usually
787
 *              be the same as that identified by the "order" field.
788
 *
789
 *              For the device halftone in the gs_gstate, this field is
790
 *              always non-null, and the size of the array pointed to will
791
 *              be the same as the number of components in the process
792
 *              color model.
793
 *
794
 *  lcm_width,  These fields provide the least common multiple of the
795
 *  lcm_height  halftone dimensions of the individual component orders.
796
 *              They represent the dimensions of the smallest tile that
797
 *              repeats for all color components (this is of interest
798
 *              because Ghostscript uses a "chunky" raster format for all
799
 *              drawing procedures). These fields cannot be set in the
800
 *              operand device halftone as we do not yet know which of
801
 *              the halftone components will actually be used.
802
 *
803
 * Conversely, the "order" field is significant only in the operand device
804
 * halftone. There it represents the default halftone component, which will
805
 * be used for all device color components for which a named halftone is
806
 * not available. It is ignored (filled with 0's) in the device halftone
807
 * in the gs_gstate.
808
 *
809
 * The ordering of entries and the set of fields initialized in the
810
 * components array also vary between the operand device halftone and
811
 * the device halftone in the gs_gstate.
812
 *
813
 * If the components array is present in the operand device halftone, the
814
 * cname field in each entry of the array will contain a name index
815
 * identifying the colorant name, and the comp_number field will provide the
816
 * index of the corresponding component in the process color model. The
817
 * order of entries in the components array is essentially arbitrary,
818
 * but in some common cases will reflect the order in which the halftone
819
 * specification is provided. By convention, if no explicit default order
820
 * is provided (i.e.: via a HalftoneType 5 dictionary), the first
821
 * entry of the array will be the same as the "order" (default) field.
822
 *
823
 * For the device halftone in the gs_gstate, the components array is
824
 * always present, but the cname and comp_number fields of individual
825
 * entries are ignored. The order of the entries in the array always
826
 * matches the order of components in the device color model.
827
 *
828
 * The distinction between the operand device halftone and the one in
829
 * the graphic state extends even to the individual fields of the
830
 * gx_ht_order structure incorporated in the order field of the halftone
831
 * and the corder field of the elements of the components array. The
832
 * fields of this structure that are handled differently in the operand
833
 * and gs_gstate device halftones are:
834
 *
835
 *  params          Provides a set of parameters that are required for
836
 *                  converting a halftone specification to a single
837
 *                  component order. This field is used only in the
838
 *                  operand device halftone; it is not set in the device
839
 *                  halftone in the gs_gstate.
840
 *
841
 *  orig_height,   The height and shift values of the halftone cell,
842
 *  orig_shift     prior to any replication. These fields are currently
843
 *                 unused, and will always be the same as the height
844
 *                 and width fields in the device halftone in the
845
 *                 gs_gstate.
846
 *
847
 *  full_height    The height of the smallest replicated tile whose shift
848
 *                 value is 0. This is calculated as part of the
849
 *                 installation process; it may be set in the operand
850
 *                 device halftone, but its value is ignored.
851
 *
852
 *
853
 *  data_memory    Points to the memory structure used to allocate the
854
 *                 levels and bit_data arrays. The handling of this field
855
 *                 is a bit complicated. For orders that are "taken over"
856
 *                 by the installation process, this field will have the
857
 *                 same value in the operand device halftone and the
858
 *                 device halftone in the gs_gstate. For halftones
859
 *                 that are copied by the installation process, this
860
 *                 field will have the same value as the memory field in
861
 *                 the gs_gstate (the two are usually the same).
862
 *
863
 *  cache          Pointer to a cache of tiles representing various
864
 *                 levels of the halftone. This may or may not be
865
 *                 provided in the operand device halftone (in principle
866
 *                 this should always be a null pointer in the operand
867
 *                 device halftone, but this is not the manner in which
868
 *                 the cache was handled historically).
869
 *
870
 *  screen_params  This structure contains transformation information
871
 *                 that is required when reading the sample data for a
872
 *                 screen. It is no longer required once the halftone
873
 *                 order has been constructed.
874
 *
875
 * In addition to what is noted above, this procedure is made somewhat
876
 * more complex than expected due to memory management considerations. To
877
 * clarify this, it is necessary to consider the properties of the pieces
878
 * that constitute a device halftone.
879
 *
880
 *  The gx_device_halftone structure itself is shareable and uses
881
 *  reference counts.
882
 *
883
 *  The gx_ht_order_component array (components array entry) is in
884
 *  principle shareable, though it does not provide any reference
885
 *  counting mechanism. Hence any sharing needs to be done with
886
 *  caution.
887
 *
888
 *  Individual component orders are not shareable, as they are part of
889
 *  the gx_ht_order_commponent structure (a major design error).
890
 *
891
 *  The levels, bit_data, and cache structures referenced by the
892
 *  gx_ht_order structure are in principle shareable, but they also do
893
 *  not provide any reference counting mechanism. Traditionally, one set
894
 *  of two component orders could share these structures, using the
895
 *  halftone's "order" field and various scattered bits of special case
896
 *  code. This practice has been ended because it did not extend to
897
 *  sharing amongst more than two components.
898
 *
899
 *  The gx_transfer_map structure referenced by the gx_ht_order structure
900
 *  is shareable, and uses reference counts. Traditionally this structure
901
 *  was not shared, but this is no longer the case.
902
 *
903
 * As noted, the rc field of the operand halftone is not initialized, so
904
 * this procedure cannot simply take ownership of the operand device
905
 * halftone structure (i.e.: an ostensibly shareable structure is not
906
 * shareable). Hence, this procedure will always create a new copy of the
907
 * gx_device_halftone structure, either by allocating a new structure or
908
 * re-using the structure already referenced by the gs_gstate. This
909
 * feature must be retained, as in several cases the calling code will
910
 * allocate the operand device halftone structure on the stack.
911
 *
912
 * Traditionally, this procedure took ownership of all of the structures
913
 * referenced by the operand device halftone structure. This implied
914
 * that all structures referenced by the gx_device_halftone structure
915
 * needed to be allocated on the heap, and should not be released once
916
 * the call to gx_gstate_dev_ht_install completes.
917
 *
918
 * There were two problems with this approach:
919
 *
920
 *  1. In the event of an error, the calling code most likely would have
921
 *     to release referenced components, as the gs_gstate had not yet
922
 *     take ownership of them. In many cases, the code did not do this.
923
 *
924
 *  2. When the structures referenced by a single order needed to be
925
 *     shared amongst more than one component, there was no easy way to
926
 *     discover this sharing when the gs_gstate's device halftone
927
 *     subsequently needed to be released. Hence, objects would be
928
 *     released multiple times.
929
 *
930
 * Subsequently, the code in this routine was changed to copy most of
931
 * the referenced structures (everything except the transfer functions).
932
 * Unfortunately, the calling code was not changed, which caused memory
933
 * leaks.
934
 *
935
 * The approach now taken uses a mixture of the two approaches.
936
 * Ownership to structures referenced by the operand device halftone is
937
 * assumed by the device halftone in the gs_gstate where this is
938
 * possible. In these cases, the corresponding references are removed in
939
 * the operand device halftone (hence, this operand is no longer
940
 * qualified as const). When a structure is required but ownership cannot
941
 * be assumed, a copy is made and the reference in the operand device
942
 * halftone is left undisturbed. The calling code has also been modified
943
 * to release any remaining referenced structures when this routine
944
 * returns, whether or not an error is indicated.
945
 */
946
int
947
gx_gstate_dev_ht_install(
948
    gs_gstate *       pgs,
949
    gx_device_halftone *    pdht,
950
    gs_halftone_type        type,
951
    const gx_device *       dev,
952
    gs_HT_objtype_t objtype )
953
1.86M
{
954
1.86M
    gx_device_halftone      dht;
955
1.86M
    int                     num_comps = pdht->num_dev_comp;
956
1.86M
    int                     i, code = 0;
957
1.86M
    bool                    used_default = false;
958
1.86M
    int                     lcm_width = 1, lcm_height = 1;
959
1.86M
    bool                    mem_diff = pdht->rc.memory != pgs->memory;
960
1.86M
    uint w, h;
961
1.86M
    int dw, dh;
962
963
1.86M
    assert(objtype < HT_OBJTYPE_COUNT);
964
965
    /* construct the new device halftone structure */
966
1.86M
    memset(&dht.order, 0, sizeof(dht.order));
967
    /* the rc field is filled in later */
968
1.86M
    dht.id = gs_next_ids(pgs->memory, 1);
969
1.86M
    dht.type = type;
970
1.86M
    dht.components =  gs_alloc_struct_array(
971
1.86M
                          pgs->memory,
972
1.86M
                          num_comps,
973
1.86M
                          gx_ht_order_component,
974
1.86M
                          &st_ht_order_component_element,
975
1.86M
                          "gx_gstate_dev_ht_install(components)" );
976
1.86M
    if (dht.components == NULL)
977
0
        return_error(gs_error_VMerror);
978
1.86M
    dht.num_comp = dht.num_dev_comp = num_comps;
979
    /* lcm_width, lcm_height are filled in later */
980
981
    /* initialize the components array */
982
1.86M
    memset(dht.components, 0, num_comps * sizeof(dht.components[0]));
983
6.82M
    for (i = 0; i < num_comps; i++)
984
4.96M
        dht.components[i].comp_number = -1;
985
986
    /*
987
     * Duplicate any of the non-default components, but do not create copies
988
     * of the levels or bit_data arrays. If all goes according to plan, the
989
     * gs_gstate's device halftone will assume ownership of these arrays
990
     * by clearing the corresponding pointers in the operand halftone's
991
     * orders.
992
     */
993
1.86M
    if (pdht->components != NULL) {
994
1.54M
        int     input_ncomps = pdht->num_comp;
995
996
5.91M
        for (i = 0; i < input_ncomps && code >= 0; i++) {
997
4.37M
            gx_ht_order_component * p_s_comp = &pdht->components[i];
998
4.37M
            gx_ht_order *           p_s_order = &p_s_comp->corder;
999
4.37M
            int                     comp_num = p_s_comp->comp_number;
1000
1001
4.37M
            if (comp_num >= 0 && comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS &&
1002
3.77M
                comp_num < dht.num_comp) {
1003
3.77M
                gx_ht_order *   p_d_order = &dht.components[comp_num].corder;
1004
1005
                /* indicate that this order has been filled in */
1006
3.77M
                dht.components[comp_num].comp_number = comp_num;
1007
1008
                /*
1009
                 * The component can be used only if it is from the
1010
                 * proper memory
1011
                 */
1012
3.77M
                if (mem_diff)
1013
3.77M
                    code = gx_ht_copy_ht_order( p_d_order,
1014
3.77M
                                                p_s_order,
1015
3.77M
                                                pgs->memory );
1016
0
                else {
1017
                    /* check if this is also the default component */
1018
0
                    used_default = used_default ||
1019
0
                                   p_s_order->bit_data == pdht->order.bit_data;
1020
1021
0
                    gx_ht_move_ht_order(p_d_order, p_s_order);
1022
0
                }
1023
3.77M
            }
1024
4.37M
        }
1025
1.54M
    }
1026
1027
    /*
1028
     * Copy the default order to any remaining components.
1029
     */
1030
1031
6.82M
    for (i = 0; i < num_comps && code >= 0; i++) {
1032
4.96M
        gx_ht_order *porder = &dht.components[i].corder;
1033
1034
4.96M
        if (dht.components[i].comp_number != i) {
1035
            /* Previously this code would 'move' the default order from pdht to the
1036
             * dht component here, if we hadn't already done so, and would NULL out the default
1037
             * order in pdht to prevent it being freed when we released the halftone.
1038
             * However this didn't account for the possibility that one or more of the components
1039
             * of dht was already sharing the default order of the halftone. See gx_device_halftone_release
1040
             * which carefully checks to see if the default order is used by any component, in
1041
             * order to avoid double freeing it.
1042
             * We could do that check here, but the tiny benefit in not copying the data would
1043
             * probably be lost by the checks, so lets just always *copy* the default order if we need to.
1044
             */
1045
1.18M
            code = gx_ht_copy_ht_order(porder, &pdht->order, pgs->memory);
1046
1.18M
            dht.components[i].comp_number = i;
1047
1.18M
        }
1048
1049
4.96M
        w = porder->width;
1050
4.96M
        h = porder->full_height;
1051
4.96M
        dw = igcd(lcm_width, w);
1052
4.96M
        dh = igcd(lcm_height, h);
1053
1054
4.96M
        lcm_width /= dw;
1055
4.96M
        lcm_height /= dh;
1056
4.96M
        lcm_width = (w > max_int / lcm_width ? max_int : lcm_width * w);
1057
4.96M
        lcm_height = (h > max_int / lcm_height ? max_int : lcm_height * h);
1058
1059
4.96M
        if (porder->cache == 0) {
1060
4.96M
            uint            tile_bytes, num_tiles, slots_wanted, rep_raster, rep_count;
1061
4.96M
            gx_ht_cache *   pcache;
1062
1063
4.96M
            tile_bytes = porder->raster
1064
4.96M
                          * (porder->num_bits / porder->width);
1065
4.96M
            num_tiles = 1 + gx_ht_cache_default_bits_size() / tile_bytes;
1066
            /*
1067
             * Limit num_tiles to a reasonable number allowing for width repition.
1068
             * The most we need is one cache slot per bit.
1069
             * This prevents allocations of large cache bits that will never
1070
             * be used. See rep_count limit in gxht.c
1071
             */
1072
4.96M
            slots_wanted = 1 + ( porder->width * porder->height );
1073
4.96M
            rep_raster = ((num_tiles*tile_bytes) / porder->height /
1074
4.96M
                            slots_wanted) & ~(align_bitmap_mod - 1);
1075
4.96M
            rep_count = rep_raster * 8 / porder->width;
1076
4.96M
            if (rep_count > sizeof(ulong) * 8 && (num_tiles >
1077
4.95M
                    1 + ((num_tiles * 8 * sizeof(ulong)) / rep_count) ))
1078
4.95M
                num_tiles = 1 + ((num_tiles * 8 * sizeof(ulong)) / rep_count);
1079
4.96M
            pcache = gx_ht_alloc_cache( pgs->memory, num_tiles,
1080
4.96M
                                        tile_bytes * num_tiles );
1081
4.96M
            if (pcache == NULL)
1082
9
                code = gs_error_VMerror;
1083
4.96M
            else {
1084
4.96M
                porder->cache = pcache;
1085
4.96M
                gx_ht_init_cache(pgs->memory, pcache, porder);
1086
4.96M
            }
1087
4.96M
        }
1088
4.96M
    }
1089
1.86M
    dht.lcm_width = lcm_width;
1090
1.86M
    dht.lcm_height = lcm_height;
1091
1092
    /*
1093
     * If everything is OK so far, allocate a unique copy of the device
1094
     * halftone reference by the gs_gstate.
1095
     *
1096
     * This code requires a special check for the case in which the
1097
     * deivce halftone referenced by the gs_gstate is already unique.
1098
     * In this case, we must explicitly release just the components array
1099
     * (and any structures it refers to) of the existing halftone. This
1100
     * cannot be done automatically, as the rc_unshare_struct macro only
1101
     * ensures that a unique instance of the top-level structure is
1102
     * created, not that any substructure references are updated.
1103
     *
1104
     * Though this is scheduled to be changed, for the time being the
1105
     * command list renderer may invoke this code with pdht == psi->dev_ht
1106
     * (in which case we know pgs->dev_ht.rc.ref_count == 1). Special
1107
     * handling is required in that case, to avoid releasing structures
1108
     * we still need.
1109
     */
1110
1.86M
    if (code >= 0) {
1111
1.86M
        gx_device_halftone **ppgsdht;
1112
1.86M
        rc_header tmp_rc;
1113
1114
        /* The pgsdht corresponds to the one we will be installing according to 'objtype' */
1115
1.86M
        ppgsdht = &(pgs->dev_ht[objtype]);
1116
1.86M
        if (*ppgsdht != NULL && (*ppgsdht)->rc.ref_count == 1) {
1117
328k
             if (pdht != *ppgsdht)
1118
328k
                gx_device_halftone_release(*ppgsdht, (*ppgsdht)->rc.memory);
1119
1.53M
        } else {
1120
1.53M
            rc_unshare_struct( *ppgsdht,
1121
1.53M
                               gx_device_halftone,
1122
1.53M
                               &st_device_halftone,
1123
1.53M
                               pgs->memory,
1124
1.53M
                               BEGIN code = gs_error_VMerror; goto err; END,
1125
1.53M
                               "gx_gstate_dev_ht_install" );
1126
1.53M
        }
1127
1128
        /*
1129
         * Everything worked. "Assume ownership" of the appropriate
1130
         * portions of the source device halftone by clearing the
1131
         * associated references.  Since we might have
1132
         * pdht == pgs->dev_ht[], this must done before updating pgs->dev_ht[].
1133
         *
1134
         * If the default order has been used for a device component, and
1135
         * any of the source component orders share their levels or bit_data
1136
         * arrays with the default order, clear the pointers in those orders
1137
         * now. This is necessary because the default order's pointers will
1138
         * be cleared immediately below, so subsequently it will not be
1139
         * possible to tell if that this information is being shared.
1140
         */
1141
1.86M
        if (pdht->components != NULL && !mem_diff) {
1142
0
            int     input_ncomps = pdht->num_comp;
1143
1144
0
            for (i = 0; i < input_ncomps; i++) {
1145
0
                gx_ht_order_component * p_s_comp = &pdht->components[i];
1146
0
                gx_ht_order *           p_s_order = &p_s_comp->corder;
1147
0
                int                     comp_num = p_s_comp->comp_number;
1148
1149
0
                if ( comp_num >= 0                            &&
1150
0
                     comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS  ) {
1151
0
                    memset(p_s_order, 0, sizeof(*p_s_order));
1152
0
                } else if ( comp_num == GX_DEVICE_COLOR_MAX_COMPONENTS &&
1153
0
                            used_default                                 )
1154
0
                    memset(p_s_order, 0, sizeof(*p_s_order));
1155
0
            }
1156
0
        }
1157
1.86M
        if (used_default && !mem_diff) {
1158
0
            memset(&pdht->order, 0, sizeof(pdht->order));
1159
0
        }
1160
1161
1.86M
        tmp_rc = (*ppgsdht)->rc;
1162
1.86M
        **ppgsdht = dht;
1163
1.86M
        (*ppgsdht)->rc = tmp_rc;
1164
1165
        /* update the effective transfer function array */
1166
1.86M
        gx_gstate_set_effective_xfer(pgs);
1167
1168
1.86M
        return 0;
1169
1.86M
    }
1170
1171
    /* something went amiss; release all copied components */
1172
9
  err:
1173
36
    for (i = 0; i < num_comps; i++) {
1174
27
        gx_ht_order_component * pcomp = &dht.components[i];
1175
27
        gx_ht_order *           porder = &pcomp->corder;
1176
1177
27
        if (pcomp->comp_number == -1) {
1178
9
            gx_ht_order_release(porder, pgs->memory, true);
1179
9
        }
1180
18
        else if (porder->cache != NULL) {
1181
9
            gx_ht_free_cache(pgs->memory, porder->cache);
1182
9
            porder->cache = NULL;
1183
9
        }
1184
27
    }
1185
9
    gs_free_object(pgs->memory, dht.components, "gx_gstate_dev_ht_install");
1186
1187
9
    return code;
1188
1.86M
}
1189
1190
/*
1191
 * Copy the dev_ht[HT_OBJTYPE_DEFAULT] to the dev_ht[] for the specified object type.
1192
 */
1193
int
1194
gx_gstate_dev_ht_copy_to_objtype(gs_gstate *pgs, gs_HT_objtype_t objtype)
1195
0
{
1196
0
    gx_device_halftone *pdht = pgs->dev_ht[HT_OBJTYPE_DEFAULT]; /* the current dev_ht */
1197
1198
0
    if (objtype >= HT_OBJTYPE_COUNT) {
1199
0
        return_error(gs_error_undefined);
1200
0
    }
1201
0
    rc_increment(pdht);
1202
0
    pgs->dev_ht[objtype] = pdht;
1203
0
    return 0;
1204
0
}
1205
1206
/*
1207
 * Install a new halftone in the graphics state.  Note that we copy the top
1208
 * level of the gs_halftone and the gx_device_halftone, and take ownership
1209
 * of any substructures.
1210
 */
1211
int
1212
gx_ht_install(gs_gstate * pgs, const gs_halftone * pht,
1213
              gx_device_halftone * pdht)
1214
634k
{
1215
634k
    gs_memory_t *mem = pht->rc.memory;
1216
634k
    gs_halftone *old_ht = pgs->halftone;
1217
634k
    gs_halftone *new_ht;
1218
634k
    int code;
1219
1220
634k
    pdht->num_dev_comp = pgs->device->color_info.num_components;
1221
634k
    if (old_ht != NULL && old_ht->rc.memory == mem &&
1222
450k
        old_ht->rc.ref_count == 1
1223
634k
        )
1224
269k
        new_ht = old_ht;
1225
364k
    else
1226
634k
        rc_alloc_struct_1(new_ht, gs_halftone, &st_halftone,
1227
634k
                          mem, return_error(gs_error_VMerror),
1228
634k
                          "gx_ht_install(new halftone)");
1229
634k
    code = gx_gstate_dev_ht_install(pgs,
1230
634k
                             pdht, pht->type, gs_currentdevice_inline(pgs),
1231
634k
                             pht->objtype);
1232
634k
    if (code < 0) {
1233
9
        if (new_ht != old_ht)
1234
9
            gs_free_object(mem, new_ht, "gx_ht_install(new halftone)");
1235
9
        return code;
1236
9
    }
1237
1238
    /*
1239
     * Discard any unused components and the components array of the
1240
     * operand device halftone
1241
     */
1242
634k
    gx_device_halftone_release(pdht, pdht->rc.memory);
1243
1244
634k
    if (new_ht != old_ht)
1245
634k
        rc_decrement(old_ht, "gx_ht_install(old halftone)");
1246
634k
    {
1247
634k
        rc_header rc;
1248
1249
634k
        rc = new_ht->rc;
1250
634k
        *new_ht = *pht;
1251
634k
        new_ht->rc = rc;
1252
634k
    }
1253
634k
    pgs->halftone = new_ht;
1254
634k
    gx_unset_both_dev_colors(pgs);
1255
634k
    return 0;
1256
634k
}
1257
1258
/*
1259
 * This macro will determine the colorant number of a given color name.
1260
 * A value of -1 indicates that the name is not valid.
1261
 */
1262
#define check_colorant_name(name, dev) \
1263
   ((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_NAME_TYPE))
1264
1265
/* Reestablish the effective transfer functions, taking into account */
1266
/* any overrides from halftone dictionaries. */
1267
void
1268
gx_gstate_set_effective_xfer(gs_gstate * pgs)
1269
11.5M
{
1270
11.5M
    gx_device_halftone *pdht = pgs->dev_ht[HT_OBJTYPE_DEFAULT];
1271
11.5M
    gx_transfer_map *pmap;
1272
11.5M
    gx_ht_order *porder;
1273
11.5M
    int i, component_num, non_id_count;
1274
1275
11.5M
    non_id_count = (pgs->set_transfer.gray->proc == &gs_identity_transfer) ? 0 : GX_DEVICE_COLOR_MAX_COMPONENTS;
1276
752M
    for (i = 0; i < GX_DEVICE_COLOR_MAX_COMPONENTS; i++)
1277
741M
        pgs->effective_transfer[i] = pgs->set_transfer.gray;    /* default */
1278
1279
    /* Check if we have a transfer functions from setcolortransfer */
1280
11.5M
    if (pgs->set_transfer.red) {
1281
833
        component_num = pgs->set_transfer.red_component_num;
1282
833
        if (component_num >= 0) {
1283
799
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1284
799
               non_id_count--;
1285
799
            pgs->effective_transfer[component_num] = pgs->set_transfer.red;
1286
799
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1287
799
               non_id_count++;
1288
799
        }
1289
833
    }
1290
11.5M
    if (pgs->set_transfer.green) {
1291
591
        component_num = pgs->set_transfer.green_component_num;
1292
591
        if (component_num >= 0) {
1293
557
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1294
557
               non_id_count--;
1295
557
            pgs->effective_transfer[component_num] = pgs->set_transfer.green;
1296
557
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1297
557
               non_id_count++;
1298
557
        }
1299
591
    }
1300
11.5M
    if (pgs->set_transfer.blue) {
1301
349
        component_num = pgs->set_transfer.blue_component_num;
1302
349
        if (component_num >= 0) {
1303
315
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1304
315
               non_id_count--;
1305
315
            pgs->effective_transfer[component_num] = pgs->set_transfer.blue;
1306
315
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1307
315
               non_id_count++;
1308
315
        }
1309
349
    }
1310
1311
    /* HT may not be initialized yet.  Only do if the target is a halftone device.
1312
       Per the spec, the HT is a self-contained description of a halftoning process.
1313
       We don't use any xfer function from the HT if we are not halftoning */
1314
11.5M
    if (pdht && !device_is_contone(pgs->device)) {
1315
1316
        /* Since the transfer function is pickled into the threshold array (if any)*/
1317
        /*  we need to free it so it can be reconstructed with the current transfer */
1318
4.24M
        porder = &(pdht->order);
1319
4.24M
        if (porder->threshold != NULL) {
1320
0
            gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
1321
0
                           "set_effective_transfer(threshold)");
1322
0
            porder->threshold = 0;
1323
0
        }
1324
15.4M
        for (i = 0; i < pdht->num_comp; i++) {
1325
11.2M
            pmap = pdht->components[i].corder.transfer;
1326
11.2M
            if (pmap != NULL) {
1327
0
                if (pgs->effective_transfer[i]->proc != &gs_identity_transfer)
1328
0
                    non_id_count--;
1329
0
                pgs->effective_transfer[i] = pmap;
1330
0
                if (pgs->effective_transfer[i]->proc != &gs_identity_transfer)
1331
0
                   non_id_count++;
1332
0
            }
1333
11.2M
            porder = &(pdht->components[i].corder);
1334
11.2M
            if (porder->threshold != NULL) {
1335
28
                gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
1336
28
                               "set_effective_transfer(threshold)");
1337
28
                porder->threshold = 0;
1338
28
            }
1339
11.2M
        }
1340
4.24M
    }
1341
1342
11.5M
    pgs->effective_transfer_non_identity_count = non_id_count;
1343
11.5M
}
1344
1345
void
1346
gx_set_effective_transfer(gs_gstate * pgs)
1347
833k
{
1348
833k
    gx_gstate_set_effective_xfer(pgs);
1349
833k
}
1350
1351
/* Check if the transfer function for a component is monotonic. */
1352
/* Used to determine if we can do fast halftoning   */
1353
bool
1354
gx_transfer_is_monotonic(const gs_gstate *pgs, int plane_index)
1355
196k
{
1356
196k
    if (pgs->effective_transfer[plane_index]->proc != gs_identity_transfer) {
1357
196k
        bool threshold_inverted;
1358
196k
        int t_level;
1359
196k
        frac mapped, prev;
1360
1361
196k
        prev = gx_map_color_frac(pgs, frac_0, effective_transfer[plane_index]);
1362
196k
        threshold_inverted = prev >
1363
196k
                             gx_map_color_frac(pgs, frac_1, effective_transfer[plane_index]);
1364
50.0M
        for (t_level = 1; t_level < 255; t_level++) {
1365
49.8M
            mapped = gx_map_color_frac(pgs, byte2frac(t_level), effective_transfer[plane_index]);
1366
49.8M
            if ((threshold_inverted && mapped > prev) ||
1367
49.8M
                (!threshold_inverted && mapped < prev))
1368
7
                return false;
1369
49.8M
            prev = mapped;
1370
49.8M
        }
1371
196k
    }
1372
196k
    return true;
1373
196k
}
1374
1375
/* This creates a threshold array from the tiles.  Threshold is allocated in
1376
   non-gc memory and is not known to the GC. The algorithm cycles through the
1377
   threshold values, computing the shade the same way as gx_render_device_DeviceN
1378
   so that the threshold matches the non-threshold halftoning.
1379
*/
1380
int
1381
gx_ht_construct_threshold( gx_ht_order *d_order, gx_device *dev,
1382
                           const gs_gstate * pgs, int plane_index)
1383
197k
{
1384
197k
    int i, j;
1385
197k
    unsigned char *thresh;
1386
197k
    gs_memory_t *memory = d_order ? d_order->data_memory->non_gc_memory : NULL;
1387
197k
    uint max_value;
1388
197k
    unsigned long hsize, nshades;
1389
197k
    int t_level;
1390
197k
    int row, col;
1391
197k
    int code;
1392
197k
    int num_repeat, shift, num_levels = d_order ? d_order->num_levels : 0;
1393
197k
    int row_kk, col_kk, kk;
1394
197k
    frac t_level_frac_color;
1395
197k
    int shade, base_shade = 0;
1396
197k
    bool have_transfer = false, threshold_inverted = false;
1397
1398
197k
    if (d_order == NULL) return -1;
1399
    /* We can have simple or complete orders.  Simple ones tile the threshold
1400
       with shifts.   To handle those we simply loop over the number of
1401
       repeats making sure to shift columns when we set our threshold values */
1402
197k
    num_repeat = d_order->full_height / d_order->height;
1403
197k
    shift = d_order->shift;
1404
1405
197k
    if (d_order->threshold != NULL) return 0;
1406
195k
    thresh = (byte *)gs_malloc(memory, (size_t)d_order->width * d_order->full_height, 1,
1407
195k
                              "gx_ht_construct_threshold");
1408
195k
    if (thresh == NULL) {
1409
0
        return -1 ;         /* error if allocation failed   */
1410
0
    }
1411
    /* Check if we need to apply a transfer function to the values */
1412
195k
    if (pgs->effective_transfer[plane_index]->proc != gs_identity_transfer) {
1413
195k
        have_transfer = true;
1414
195k
        threshold_inverted = gx_map_color_frac(pgs, frac_0, effective_transfer[plane_index]) >
1415
195k
                                gx_map_color_frac(pgs, frac_1, effective_transfer[plane_index]);
1416
195k
    }
1417
    /* Adjustments to ensure that we properly map our 256 levels into
1418
      the number of shades that we have in our halftone screen.  For example
1419
      if we have a 16x16 screen, we have 257 shadings that we can represent
1420
      if we have a  2x2  screen, we have 5 shadings that we can represent.
1421
      Calculations are performed to match what happens in the tile filling
1422
      code */
1423
195k
    max_value = (dev->color_info.gray_index == plane_index) ?
1424
194k
         dev->color_info.dither_grays - 1 :
1425
195k
         dev->color_info.dither_colors - 1;
1426
195k
    hsize = num_levels;
1427
195k
    nshades = hsize * max_value + 1;
1428
1429
    /* search upwards to find the correct value for the last threshold value */
1430
    /* Use this to initialize the threshold array (transition to all white) */
1431
195k
    t_level = 0;
1432
46.7M
    do {
1433
46.7M
        t_level++;
1434
46.7M
        t_level_frac_color = byte2frac(threshold_inverted ? 255 - t_level : t_level);
1435
46.7M
        if (have_transfer)
1436
46.7M
            t_level_frac_color = gx_map_color_frac(pgs, t_level_frac_color, effective_transfer[plane_index]);
1437
46.7M
        shade = t_level_frac_color * nshades / (frac_1_long + 1);
1438
46.7M
    } while (shade < num_levels && t_level < 255);
1439
    /* Initialize the thresholds to the lowest level that will be all white */
1440
7.36M
    for( i = 0; i < d_order->width * d_order->full_height; i++ ) {
1441
7.17M
        thresh[i] = t_level;
1442
7.17M
    }
1443
50.0M
    for (t_level = 1; t_level < 256; t_level++) {
1444
49.8M
        t_level_frac_color = byte2frac(threshold_inverted ? 255 - t_level : t_level);
1445
49.8M
        if (have_transfer)
1446
49.8M
            t_level_frac_color = gx_map_color_frac(pgs, t_level_frac_color, effective_transfer[plane_index]);
1447
49.8M
        shade = t_level_frac_color * nshades / (frac_1_long + 1);
1448
49.8M
        if (shade < num_levels && shade > base_shade) {
1449
3.32M
            if (d_order->levels[shade] > d_order->levels[base_shade]) {
1450
                /* Loop over the number of dots that we have to set in going
1451
                   to this new shade from the old shade */
1452
10.0M
                for (j = d_order->levels[base_shade]; j < d_order->levels[shade]; j++) {
1453
6.77M
                    gs_int_point ppt;
1454
6.77M
                    code = d_order->procs->bit_index(d_order, j, &ppt);
1455
6.77M
                    if (code < 0)
1456
0
                        return code;
1457
6.77M
                    row = ppt.y;
1458
6.77M
                    col = ppt.x;
1459
6.77M
                    if( col < (int)d_order->width ) {
1460
13.5M
                        for (kk = 0; kk < num_repeat; kk++) {
1461
6.77M
                            row_kk = row + kk * d_order->height;
1462
6.77M
                            col_kk = col + kk * shift;
1463
6.77M
                            col_kk = col_kk % d_order->width;
1464
6.77M
                            *(thresh + col_kk + (row_kk * d_order->width)) = t_level;
1465
6.77M
                        }
1466
6.77M
                    }
1467
6.77M
                }
1468
3.32M
            }
1469
3.32M
            base_shade = shade;
1470
3.32M
        }
1471
49.8M
    }
1472
195k
    d_order->threshold = thresh;
1473
195k
    d_order->threshold_inverted = threshold_inverted;
1474
195k
    if (dev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE) {
1475
22.6k
        for(i = 0; i < (int)d_order->height; i++ ) {
1476
241k
            for( j=(int)d_order->width-1; j>=0; j-- )
1477
221k
                *(thresh+j+(i*d_order->width)) = 255 - *(thresh+j+(i*d_order->width));
1478
20.1k
        }
1479
2.44k
    }
1480
#ifdef DEBUG
1481
    if ( gs_debug_c('h') ) {
1482
         dmprintf3(memory, "threshold array component %d [ %d x %d ]:\n",
1483
                  plane_index, (int)(d_order->full_height), (int)(d_order->width));
1484
         for( i=0; i<(int)d_order->full_height; i++ ) {
1485
            dmprintf1(memory, "row %3d= ", i);
1486
            for( j=0; j<(int)(d_order->width); j++ ) {
1487
                dmprintf1(memory, "%02x ", *(thresh+j+(i*d_order->width)) );
1488
                if ((j&31) == 31)
1489
                    dmprintf(memory, "\n         ");
1490
            }
1491
            if ((j&31) != 0)
1492
                dmprintf(memory, "\n");
1493
        }
1494
   }
1495
#endif
1496
/* Large screens are easier to see as images */
1497
#if DUMP_SCREENS
1498
    {
1499
        char file_name[50];
1500
        gp_file *fid;
1501
1502
        snprintf(file_name, 50, "Screen_From_Tiles_%dx%d.raw", d_order->width, d_order->full_height);
1503
        fid = gp_fopen(memory, file_name, "wb");
1504
        if (fid) {
1505
            gp_fwrite(thresh, sizeof(unsigned char), d_order->width * d_order->full_height, fid);
1506
            gp_fclose(fid);
1507
        }
1508
    }
1509
#endif
1510
1511
195k
    return 0;
1512
195k
}