Coverage Report

Created: 2025-12-31 07:31

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/psi/isave.c
Line
Count
Source
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Save/restore manager for Ghostscript interpreter */
18
#include "ghost.h"
19
#include "memory_.h"
20
#include "ierrors.h"
21
#include "gsexit.h"
22
#include "gsstruct.h"
23
#include "stream.h"   /* for linking for forgetsave */
24
#include "iastate.h"
25
#include "inamedef.h"
26
#include "iname.h"
27
#include "ipacked.h"
28
#include "isave.h"
29
#include "isstate.h"
30
#include "gsstate.h"
31
#include "store.h"    /* for ref_assign */
32
#include "ivmspace.h"
33
#include "igc.h"
34
#include "gsutil.h"   /* gs_next_ids prototype */
35
#include "icstate.h"
36
37
/* Structure descriptor */
38
private_st_alloc_save();
39
40
/* Define the maximum amount of data we are willing to scan repeatedly -- */
41
/* see below for details. */
42
static const long max_repeated_scan = 100000;
43
44
/* Define the minimum space for creating an inner clump. */
45
/* Must be at least sizeof(clump_head_t). */
46
static const long min_inner_clump_space = sizeof(clump_head_t) + 500;
47
48
/*
49
 * The logic for saving and restoring the state is complex.
50
 * Both the changes to individual objects, and the overall state
51
 * of the memory manager, must be saved and restored.
52
 */
53
54
/*
55
 * To save the state of the memory manager:
56
 *      Save the state of the current clump in which we are allocating.
57
 *      Shrink all clumps to their inner unallocated region.
58
 *      Save and reset the free block chains.
59
 * By doing this, we guarantee that no object older than the save
60
 * can be freed.
61
 *
62
 * To restore the state of the memory manager:
63
 *      Free all clumps newer than the save, and the descriptors for
64
 *        the inner clumps created by the save.
65
 *      Make current the clump that was current at the time of the save.
66
 *      Restore the state of the current clump.
67
 *
68
 * In addition to save ("start transaction") and restore ("abort transaction"),
69
 * we support forgetting a save ("commit transation").  To forget a save:
70
 *      Reassign to the next outer save all clumps newer than the save.
71
 *      Free the descriptors for the inners clump, updating their outer
72
 *        clumps to reflect additional allocations in the inner clumps.
73
 *      Concatenate the free block chains with those of the outer save.
74
 */
75
76
/*
77
 * For saving changes to individual objects, we add an "attribute" bit
78
 * (l_new) that logically belongs to the slot where the ref is stored,
79
 * not to the ref itself.  The bit means "the contents of this slot
80
 * have been changed, or the slot was allocated, since the last save."
81
 * To keep track of changes since the save, we associate a chain of
82
 * <slot, old_contents> pairs that remembers the old contents of slots.
83
 *
84
 * When creating an object, if the save level is non-zero:
85
 *      Set l_new in all slots.
86
 *
87
 * When storing into a slot, if the save level is non-zero:
88
 *      If l_new isn't set, save the address and contents of the slot
89
 *        on the current contents chain.
90
 *      Set l_new after storing the new value.
91
 *
92
 * To do a save:
93
 *      If the save level is non-zero:
94
 *              Reset l_new in all slots on the contents chain, and in all
95
 *                objects created since the previous save.
96
 *      Push the head of the contents chain, and reset the chain to empty.
97
 *
98
 * To do a restore:
99
 *      Check all the stacks to make sure they don't contain references
100
 *        to objects created since the save.
101
 *      Restore all the slots on the contents chain.
102
 *      Pop the contents chain head.
103
 *      If the save level is now non-zero:
104
 *              Scan the newly restored contents chain, and set l_new in all
105
 *                the slots it references.
106
 *              Scan all objects created since the previous save, and set
107
 *                l_new in all the slots of each object.
108
 *
109
 * To forget a save:
110
 *      If the save level is greater than 1:
111
 *              Set l_new as for a restore, per the next outer save.
112
 *              Concatenate the next outer contents chain to the end of
113
 *                the current one.
114
 *      If the save level is 1:
115
 *              Reset l_new as for a save.
116
 *              Free the contents chain.
117
 */
118
119
/*
120
 * A consequence of the foregoing algorithms is that the cost of a save is
121
 * proportional to the total amount of data allocated since the previous
122
 * save.  If a PostScript program reads in a large amount of setup code and
123
 * then uses save/restore heavily, each save/restore will be expensive.  To
124
 * mitigate this, we check to see how much data we have scanned at this save
125
 * level: if it is large, we do a second, invisible save.  This greatly
126
 * reduces the cost of inner saves, at the expense of possibly saving some
127
 * changes twice that otherwise would only have to be saved once.
128
 */
129
130
/*
131
 * The presence of global and local VM complicates the situation further.
132
 * There is a separate save chain and contents chain for each VM space.
133
 * When multiple contexts are fully implemented, save and restore will have
134
 * the following effects, according to the privacy status of the current
135
 * context's global and local VM:
136
 *      Private global, private local:
137
 *              The outermost save saves both global and local VM;
138
 *                otherwise, save only saves local VM.
139
 *      Shared global, private local:
140
 *              Save only saves local VM.
141
 *      Shared global, shared local:
142
 *              Save only saves local VM, and suspends all other contexts
143
 *                sharing the same local VM until the matching restore.
144
 * Since we do not currently implement multiple contexts, only the first
145
 * case is relevant.
146
 *
147
 * Note that when saving the contents of a slot, the choice of chain
148
 * is determined by the VM space in which the slot is allocated,
149
 * not by the current allocation mode.
150
 */
151
152
/* Tracing printout */
153
static void
154
print_save(const char *str, uint spacen, const alloc_save_t *sav)
155
2.84M
{
156
2.84M
  if_debug5('u', "[u]%s space %u "PRI_INTPTR": cdata = "PRI_INTPTR", id = %lu\n",\
157
2.84M
            str, spacen, (intptr_t)sav, (intptr_t)sav->client_data, (ulong)sav->id);
158
2.84M
}
159
160
/* A link to igcref.c . */
161
ptr_proc_reloc(igc_reloc_ref_ptr_nocheck, ref_packed);
162
163
static
164
CLEAR_MARKS_PROC(change_clear_marks)
165
34.9M
{
166
34.9M
    alloc_change_t *const ptr = (alloc_change_t *)vptr;
167
168
34.9M
    if (r_is_packed(&ptr->contents))
169
481k
        r_clear_pmark((ref_packed *) & ptr->contents);
170
34.4M
    else
171
34.4M
        r_clear_attrs(&ptr->contents, l_mark);
172
34.9M
}
173
static
174
137M
ENUM_PTRS_WITH(change_enum_ptrs, alloc_change_t *ptr) return 0;
175
34.4M
ENUM_PTR(0, alloc_change_t, next);
176
34.4M
case 1:
177
34.4M
    if (ptr->offset >= 0)
178
5
        ENUM_RETURN((byte *) ptr->where - ptr->offset);
179
34.4M
    else
180
34.4M
        if (ptr->offset != AC_OFFSET_ALLOCATED)
181
9.47M
            ENUM_RETURN_REF(ptr->where);
182
24.9M
        else {
183
            /* Don't enumerate ptr->where, because it
184
               needs a special processing with
185
               alloc_save__filter_changes. */
186
24.9M
            ENUM_RETURN(0);
187
24.9M
        }
188
34.4M
case 2:
189
34.4M
    ENUM_RETURN_REF(&ptr->contents);
190
137M
ENUM_PTRS_END
191
12.9M
static RELOC_PTRS_WITH(change_reloc_ptrs, alloc_change_t *ptr)
192
12.9M
{
193
12.9M
    RELOC_VAR(ptr->next);
194
12.9M
    switch (ptr->offset) {
195
0
        case AC_OFFSET_STATIC:
196
0
            break;
197
9.46M
        case AC_OFFSET_REF:
198
9.46M
            RELOC_REF_PTR_VAR(ptr->where);
199
9.46M
            break;
200
3.47M
        case AC_OFFSET_ALLOCATED:
201
            /* We know that ptr->where may point to an unmarked object
202
               because change_enum_ptrs skipped it,
203
               and we know it always points to same space
204
               because we took a special care when calling alloc_save_change_alloc.
205
               Therefore we must skip the check for the mark,
206
               which would happen if we call the regular relocation function
207
               igc_reloc_ref_ptr from RELOC_REF_PTR_VAR.
208
               Calling igc_reloc_ref_ptr_nocheck instead. */
209
3.47M
            { /* A sanity check. */
210
3.47M
                obj_header_t *pre = (obj_header_t *)ptr->where - 1;
211
212
3.47M
                if (pre->o_type != &st_refs)
213
0
                    gs_abort(gcst->heap);
214
3.47M
            }
215
3.47M
            if (ptr->where != 0 && !gcst->relocating_untraced)
216
2.98M
                ptr->where = igc_reloc_ref_ptr_nocheck(ptr->where, gcst);
217
3.47M
            break;
218
5
        default:
219
5
            {
220
5
                byte *obj = (byte *) ptr->where - ptr->offset;
221
222
5
                RELOC_VAR(obj);
223
5
                ptr->where = (ref_packed *) (obj + ptr->offset);
224
5
            }
225
5
            break;
226
12.9M
    }
227
12.9M
    if (r_is_packed(&ptr->contents))
228
481k
        r_clear_pmark((ref_packed *) & ptr->contents);
229
12.4M
    else {
230
12.4M
        RELOC_REF_VAR(ptr->contents);
231
12.4M
        r_clear_attrs(&ptr->contents, l_mark);
232
12.4M
    }
233
12.9M
}
234
12.9M
RELOC_PTRS_END
235
gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change",
236
                change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0);
237
238
/* Debugging printout */
239
#ifdef DEBUG
240
static void
241
alloc_save_print(const gs_memory_t *mem, alloc_change_t * cp, bool print_current)
242
{
243
    dmprintf2(mem, " "PRI_INTPTR"x: "PRI_INTPTR": ", (intptr_t) cp, (intptr_t) cp->where);
244
    if (r_is_packed(&cp->contents)) {
245
        if (print_current)
246
            dmprintf2(mem, "saved=%x cur=%x\n", *(ref_packed *) & cp->contents,
247
                      *cp->where);
248
        else
249
            dmprintf1(mem, "%x\n", *(ref_packed *) & cp->contents);
250
    } else {
251
        if (print_current)
252
            dmprintf6(mem, "saved=%x %x %lx cur=%x %x %lx\n",
253
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
254
                      (ulong) cp->contents.value.intval,
255
                      r_type_attrs((ref *) cp->where),
256
                      r_size((ref *) cp->where),
257
                      (ulong) ((ref *) cp->where)->value.intval);
258
        else
259
            dmprintf3(mem, "%x %x %lx\n",
260
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
261
                      (ulong) cp->contents.value.intval);
262
    }
263
}
264
#endif
265
266
/* Forward references */
267
static int  restore_resources(alloc_save_t *, gs_ref_memory_t *);
268
static void restore_free(gs_ref_memory_t *);
269
static int  save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned);
270
static int  save_set_new_changes(gs_ref_memory_t *, bool, bool);
271
static bool check_l_mark(void *obj);
272
273
/* Initialize the save/restore machinery. */
274
void
275
alloc_save_init(gs_dual_memory_t * dmem)
276
182k
{
277
182k
    alloc_set_not_in_save(dmem);
278
182k
}
279
280
/* Record that we are in a save. */
281
static void
282
alloc_set_masks(gs_dual_memory_t *dmem, uint new_mask, uint test_mask)
283
2.36M
{
284
2.36M
    int i;
285
2.36M
    gs_ref_memory_t *mem;
286
287
2.36M
    dmem->new_mask = new_mask;
288
2.36M
    dmem->test_mask = test_mask;
289
11.8M
    for (i = 0; i < countof(dmem->spaces.memories.indexed); ++i)
290
9.47M
        if ((mem = dmem->spaces.memories.indexed[i]) != 0) {
291
7.10M
            mem->new_mask = new_mask, mem->test_mask = test_mask;
292
7.10M
            if (mem->stable_memory != (gs_memory_t *)mem) {
293
4.73M
                mem = (gs_ref_memory_t *)mem->stable_memory;
294
4.73M
                mem->new_mask = new_mask, mem->test_mask = test_mask;
295
4.73M
            }
296
7.10M
        }
297
2.36M
}
298
void
299
alloc_set_in_save(gs_dual_memory_t *dmem)
300
1.43M
{
301
1.43M
    alloc_set_masks(dmem, l_new, l_new);
302
1.43M
}
303
304
/* Record that we are not in a save. */
305
void
306
alloc_set_not_in_save(gs_dual_memory_t *dmem)
307
929k
{
308
929k
    alloc_set_masks(dmem, 0, ~0);
309
929k
}
310
311
/* Save the state. */
312
static alloc_save_t *alloc_save_space(gs_ref_memory_t *mem,
313
                                       gs_dual_memory_t *dmem,
314
                                       ulong sid);
315
static void
316
alloc_free_save(gs_ref_memory_t *mem, alloc_save_t *save, const char *scn)
317
0
{
318
0
    gs_ref_memory_t save_mem;
319
0
    save_mem = mem->saved->state;
320
0
    gs_free_object((gs_memory_t *)mem, save, scn);
321
    /* Free any inner clump structures.  This is the easiest way to do it. */
322
0
    restore_free(mem);
323
    /* Restore the 'saved' state - this pulls our object off the linked
324
     * list of states. Without this we hit a SEGV in the gc later. */
325
0
    *mem = save_mem;
326
0
}
327
int
328
alloc_save_state(gs_dual_memory_t * dmem, void *cdata, ulong *psid)
329
1.24M
{
330
1.24M
    gs_ref_memory_t *lmem = dmem->space_local;
331
1.24M
    gs_ref_memory_t *gmem = dmem->space_global;
332
1.24M
    ulong sid = gs_next_ids((const gs_memory_t *)lmem->stable_memory, 2);
333
1.24M
    bool global =
334
1.24M
        lmem->save_level == 0 && gmem != lmem &&
335
182k
        gmem->num_contexts == 1;
336
1.24M
    alloc_save_t *gsave =
337
1.24M
        (global ? alloc_save_space(gmem, dmem, sid + 1) : (alloc_save_t *) 0);
338
1.24M
    alloc_save_t *lsave = alloc_save_space(lmem, dmem, sid);
339
340
1.24M
    if (lsave == 0 || (global && gsave == 0)) {
341
        /* Only 1 of lsave or gsave will have been allocated, but
342
         * nevertheless (in case things change in future), we free
343
         * lsave, then gsave, so they 'pop' correctly when restoring
344
         * the mem->saved states. */
345
0
        if (lsave != 0)
346
0
            alloc_free_save(lmem, lsave, "alloc_save_state(local save)");
347
0
        if (gsave != 0)
348
0
            alloc_free_save(gmem, gsave, "alloc_save_state(global save)");
349
0
        return_error(gs_error_VMerror);
350
0
    }
351
1.24M
    if (gsave != 0) {
352
182k
        gsave->client_data = 0;
353
182k
        print_save("save", gmem->space, gsave);
354
        /* Restore names when we do the local restore. */
355
182k
        lsave->restore_names = gsave->restore_names;
356
182k
        gsave->restore_names = false;
357
182k
    }
358
1.24M
    lsave->id = sid;
359
1.24M
    lsave->client_data = cdata;
360
1.24M
    print_save("save", lmem->space, lsave);
361
    /* Reset the l_new attribute in all slots.  The only slots that */
362
    /* can have the attribute set are the ones on the changes chain, */
363
    /* and ones in objects allocated since the last save. */
364
1.24M
    if (lmem->save_level > 1) {
365
1.05M
        ulong scanned;
366
1.05M
        int code = save_set_new(&lsave->state, false, true, &scanned);
367
368
1.05M
        if (code < 0)
369
0
            return code;
370
#if 0 /* Disable invisible save levels. */
371
        if ((lsave->state.total_scanned += scanned) > max_repeated_scan) {
372
            /* Do a second, invisible save. */
373
            alloc_save_t *rsave;
374
375
            rsave = alloc_save_space(lmem, dmem, 0L);
376
            if (rsave != 0) {
377
                rsave->client_data = cdata;
378
#if 0 /* Bug 688153 */
379
                rsave->id = lsave->id;
380
                print_save("save", lmem->space, rsave);
381
                lsave->id = 0;  /* mark as invisible */
382
                rsave->state.save_level--; /* ditto */
383
                lsave->client_data = 0;
384
#else
385
                rsave->id = 0;  /* mark as invisible */
386
                print_save("save", lmem->space, rsave);
387
                rsave->state.save_level--; /* ditto */
388
                rsave->client_data = 0;
389
#endif
390
                /* Inherit the allocated space count -- */
391
                /* we need this for triggering a GC. */
392
                print_save("save", lmem->space, lsave);
393
            }
394
        }
395
#endif
396
1.05M
    }
397
398
1.24M
    alloc_set_in_save(dmem);
399
1.24M
    *psid = sid;
400
1.24M
    return 0;
401
1.24M
}
402
/* Save the state of one space (global or local). */
403
static alloc_save_t *
404
alloc_save_space(gs_ref_memory_t * mem, gs_dual_memory_t * dmem, ulong sid)
405
1.42M
{
406
1.42M
    gs_ref_memory_t save_mem;
407
1.42M
    alloc_save_t *save;
408
1.42M
    clump_t *cp;
409
1.42M
    clump_t *new_cc = NULL;
410
1.42M
    clump_splay_walker sw;
411
412
1.42M
    save_mem = *mem;
413
1.42M
    alloc_close_clump(mem);
414
1.42M
    mem->cc = NULL;
415
1.42M
    gs_memory_status((gs_memory_t *) mem, &mem->previous_status);
416
1.42M
    ialloc_reset(mem);
417
418
    /* Create inner clumps wherever it's worthwhile. */
419
420
21.5M
    for (cp = clump_splay_walk_init(&sw, &save_mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
421
20.1M
        if (cp->ctop - cp->cbot > min_inner_clump_space) {
422
            /* Create an inner clump to cover only the unallocated part. */
423
9.25M
            clump_t *inner =
424
9.25M
                gs_raw_alloc_struct_immovable(mem->non_gc_memory, &st_clump,
425
9.25M
                                              "alloc_save_space(inner)");
426
427
9.25M
            if (inner == 0)
428
0
                break;   /* maybe should fail */
429
9.25M
            alloc_init_clump(inner, cp->cbot, cp->ctop, cp->sreloc != 0, cp);
430
9.25M
            alloc_link_clump(inner, mem);
431
9.25M
            if_debug2m('u', (gs_memory_t *)mem, "[u]inner clump: cbot="PRI_INTPTR" ctop="PRI_INTPTR"\n",
432
9.25M
                       (intptr_t) inner->cbot, (intptr_t) inner->ctop);
433
9.25M
            if (cp == save_mem.cc)
434
1.25M
                new_cc = inner;
435
9.25M
        }
436
20.1M
    }
437
1.42M
    mem->cc = new_cc;
438
1.42M
    alloc_open_clump(mem);
439
440
1.42M
    save = gs_alloc_struct((gs_memory_t *) mem, alloc_save_t,
441
1.42M
                           &st_alloc_save, "alloc_save_space(save)");
442
1.42M
    if_debug2m('u', (gs_memory_t *)mem, "[u]save space %u at "PRI_INTPTR"\n",
443
1.42M
               mem->space, (intptr_t) save);
444
1.42M
    if (save == 0) {
445
        /* Free the inner clump structures.  This is the easiest way. */
446
0
        restore_free(mem);
447
0
        *mem = save_mem;
448
0
        return 0;
449
0
    }
450
1.42M
    save->client_data = NULL;
451
1.42M
    save->state = save_mem;
452
1.42M
    save->spaces = dmem->spaces;
453
1.42M
    save->restore_names = (name_memory(mem) == (gs_memory_t *) mem);
454
1.42M
    save->is_current = (dmem->current == mem);
455
1.42M
    save->id = sid;
456
1.42M
    mem->saved = save;
457
1.42M
    if_debug2m('u', (gs_memory_t *)mem, "[u%u]file_save "PRI_INTPTR"\n",
458
1.42M
               mem->space, (intptr_t) mem->streams);
459
1.42M
    mem->streams = 0;
460
1.42M
    mem->total_scanned = 0;
461
1.42M
    mem->total_scanned_after_compacting = 0;
462
1.42M
    if (sid)
463
1.42M
        mem->save_level++;
464
1.42M
    return save;
465
1.42M
}
466
467
/* Record a state change that must be undone for restore, */
468
/* and mark it as having been saved. */
469
int
470
alloc_save_change_in(gs_ref_memory_t *mem, const ref * pcont,
471
                  ref_packed * where, client_name_t cname)
472
2.40G
{
473
2.40G
    register alloc_change_t *cp;
474
475
2.40G
    if (mem->new_mask == 0)
476
2.39G
        return 0;    /* no saving */
477
6.83M
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
478
6.83M
                         &st_alloc_change, "alloc_save_change");
479
6.83M
    if (cp == 0)
480
0
        return -1;
481
6.83M
    cp->next = mem->changes;
482
6.83M
    cp->where = where;
483
6.83M
    if (pcont == NULL)
484
0
        cp->offset = AC_OFFSET_STATIC;
485
6.83M
    else if (r_is_array(pcont) || r_has_type(pcont, t_dictionary))
486
6.83M
        cp->offset = AC_OFFSET_REF;
487
5
    else if (r_is_struct(pcont))
488
5
        cp->offset = (byte *) where - (byte *) pcont->value.pstruct;
489
0
    else {
490
0
        if_debug3('u', "Bad type %u for save!  pcont = "PRI_INTPTR", where = "PRI_INTPTR"\n",
491
0
                 r_type(pcont), (intptr_t) pcont, (intptr_t) where);
492
0
        gs_abort((const gs_memory_t *)mem);
493
0
    }
494
6.83M
    if (r_is_packed(where))
495
636k
        *(ref_packed *)&cp->contents = *where;
496
6.19M
    else {
497
6.19M
        ref_assign_inline(&cp->contents, (ref *) where);
498
6.19M
        r_set_attrs((ref *) where, l_new);
499
6.19M
    }
500
6.83M
    mem->changes = cp;
501
#ifdef DEBUG
502
    if (gs_debug_c('U')) {
503
        dmlprintf1((const gs_memory_t *)mem, "[U]save(%s)", client_name_string(cname));
504
        alloc_save_print((const gs_memory_t *)mem, cp, false);
505
    }
506
#endif
507
6.83M
    return 0;
508
6.83M
}
509
int
510
alloc_save_change(gs_dual_memory_t * dmem, const ref * pcont,
511
                  ref_packed * where, client_name_t cname)
512
2.40G
{
513
2.40G
    gs_ref_memory_t *mem =
514
2.40G
        (pcont == NULL ? dmem->space_local :
515
2.40G
         dmem->spaces_indexed[r_space(pcont) >> r_space_shift]);
516
517
2.40G
    return alloc_save_change_in(mem, pcont, where, cname);
518
2.40G
}
519
520
/* Allocate a structure for recording an allocation event. */
521
int
522
alloc_save_change_alloc(gs_ref_memory_t *mem, client_name_t cname, alloc_change_t **pcp)
523
251M
{
524
251M
    register alloc_change_t *cp;
525
526
251M
    if (mem->new_mask == 0)
527
216M
        return 0;    /* no saving */
528
35.1M
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
529
35.1M
                         &st_alloc_change, "alloc_save_change");
530
35.1M
    if (cp == 0)
531
0
        return_error(gs_error_VMerror);
532
35.1M
    cp->next = mem->changes;
533
35.1M
    cp->where = 0;
534
35.1M
    cp->offset = AC_OFFSET_ALLOCATED;
535
35.1M
    make_null(&cp->contents);
536
35.1M
    *pcp = cp;
537
35.1M
    return 1;
538
35.1M
}
539
540
/* Remove an AC_OFFSET_ALLOCATED element. */
541
void
542
alloc_save_remove(gs_ref_memory_t *mem, ref_packed *obj, client_name_t cname)
543
114k
{
544
114k
    alloc_change_t **cpp = &mem->changes;
545
546
7.68M
    for (; *cpp != NULL;) {
547
7.56M
        alloc_change_t *cp = *cpp;
548
549
7.56M
        if (cp->offset == AC_OFFSET_ALLOCATED && cp->where == obj) {
550
66.5k
            if (mem->scan_limit == cp)
551
0
                mem->scan_limit = cp->next;
552
66.5k
            *cpp = cp->next;
553
66.5k
            gs_free_object((gs_memory_t *)mem, cp, "alloc_save_remove");
554
66.5k
        } else
555
7.50M
            cpp = &(*cpp)->next;
556
7.56M
    }
557
114k
}
558
559
/* Filter save change lists. */
560
static inline void
561
alloc_save__filter_changes_in_space(gs_ref_memory_t *mem)
562
7.39M
{
563
    /* This is a special function, which is called
564
       from the garbager after setting marks and before collecting
565
       unused space. Therefore it just resets marks for
566
       elements being released instead releasing them really. */
567
7.39M
    alloc_change_t **cpp = &mem->changes;
568
569
41.2M
    for (; *cpp != NULL; ) {
570
33.8M
        alloc_change_t *cp = *cpp;
571
572
33.8M
        if (cp->offset == AC_OFFSET_ALLOCATED && !check_l_mark(cp->where)) {
573
21.4M
            obj_header_t *pre = (obj_header_t *)cp - 1;
574
575
21.4M
            *cpp = cp->next;
576
21.4M
            cp->where = 0;
577
21.4M
            if (mem->scan_limit == cp)
578
119k
                mem->scan_limit = cp->next;
579
21.4M
            o_set_unmarked(pre);
580
21.4M
        } else
581
12.3M
            cpp = &(*cpp)->next;
582
33.8M
    }
583
7.39M
}
584
585
/* Filter save change lists. */
586
void
587
alloc_save__filter_changes(gs_ref_memory_t *memory)
588
1.86M
{
589
1.86M
    gs_ref_memory_t *mem = memory;
590
591
9.25M
    for  (; mem; mem = &mem->saved->state)
592
7.39M
        alloc_save__filter_changes_in_space(mem);
593
1.86M
}
594
595
/* Return (the id of) the innermost externally visible save object, */
596
/* i.e., the innermost save with a non-zero ID. */
597
ulong
598
alloc_save_current_id(const gs_dual_memory_t * dmem)
599
1.24M
{
600
1.24M
    const alloc_save_t *save = dmem->space_local->saved;
601
602
1.24M
    while (save != 0 && save->id == 0)
603
0
        save = save->state.saved;
604
1.24M
    if (save)
605
1.24M
        return save->id;
606
607
    /* This should never happen, if it does, return a totally
608
     * impossible value.
609
     */
610
0
    return (ulong)-1;
611
1.24M
}
612
alloc_save_t *
613
alloc_save_current(const gs_dual_memory_t * dmem)
614
1.24M
{
615
1.24M
    return alloc_find_save(dmem, alloc_save_current_id(dmem));
616
1.24M
}
617
618
/* Test whether a reference would be invalidated by a restore. */
619
bool
620
alloc_is_since_save(const void *vptr, const alloc_save_t * save)
621
8.82M
{
622
    /* A reference postdates a save iff it is in a clump allocated */
623
    /* since the save (including any carried-over inner clumps). */
624
625
8.82M
    const char *const ptr = (const char *)vptr;
626
8.82M
    register gs_ref_memory_t *mem = save->space_local;
627
628
8.82M
    if_debug2m('U', (gs_memory_t *)mem, "[U]is_since_save "PRI_INTPTR", "PRI_INTPTR":\n",
629
8.82M
               (intptr_t) ptr, (intptr_t) save);
630
8.82M
    if (mem->saved == 0) { /* This is a special case, the final 'restore' from */
631
        /* alloc_restore_all. */
632
182k
        return true;
633
182k
    }
634
    /* Check against clumps allocated since the save. */
635
    /* (There may have been intermediate saves as well.) */
636
8.64M
    for (;; mem = &mem->saved->state) {
637
8.64M
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking mem="PRI_INTPTR"\n", (intptr_t) mem);
638
8.64M
        if (ptr_is_within_mem_clumps(ptr, mem)) {
639
32
            if_debug0m('U', (gs_memory_t *)mem, "[U+]found\n");
640
32
            return true;
641
32
        }
642
8.64M
        if_debug1m('U', (gs_memory_t *)mem, "[U-]not in any chunks belonging to "PRI_INTPTR"\n", (intptr_t) mem);
643
8.64M
        if (mem->saved == save) { /* We've checked all the more recent saves, */
644
            /* must be OK. */
645
8.63M
            break;
646
8.63M
        }
647
8.64M
    }
648
649
    /*
650
     * If we're about to do a global restore (a restore to the level 0),
651
     * and there is only one context using this global VM
652
     * (the normal case, in which global VM is saved by the
653
     * outermost save), we also have to check the global save.
654
     * Global saves can't be nested, which makes things easy.
655
     */
656
8.63M
    if (save->state.save_level == 0 /* Restoring to save level 0 - see bug 688157, 688161 */ &&
657
194k
        (mem = save->space_global) != save->space_local &&
658
194k
        save->space_global->num_contexts == 1
659
8.63M
        ) {
660
194k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking global mem="PRI_INTPTR"\n", (intptr_t) mem);
661
194k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
662
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]  found\n");
663
0
            return true;
664
0
        }
665
194k
    }
666
8.63M
    return false;
667
668
8.63M
#undef ptr
669
8.63M
}
670
671
/* Test whether a name would be invalidated by a restore. */
672
bool
673
alloc_name_is_since_save(const gs_memory_t *mem,
674
                         const ref * pnref, const alloc_save_t * save)
675
359k
{
676
359k
    const name_string_t *pnstr;
677
678
359k
    if (!save->restore_names)
679
359k
        return false;
680
0
    pnstr = names_string_inline(mem->gs_lib_ctx->gs_name_table, pnref);
681
0
    if (pnstr->foreign_string)
682
0
        return false;
683
0
    return alloc_is_since_save(pnstr->string_bytes, save);
684
0
}
685
bool
686
alloc_name_index_is_since_save(const gs_memory_t *mem,
687
                               uint nidx, const alloc_save_t *save)
688
0
{
689
0
    const name_string_t *pnstr;
690
691
0
    if (!save->restore_names)
692
0
        return false;
693
0
    pnstr = names_index_string_inline(mem->gs_lib_ctx->gs_name_table, nidx);
694
0
    if (pnstr->foreign_string)
695
0
        return false;
696
0
    return alloc_is_since_save(pnstr->string_bytes, save);
697
0
}
698
699
/* Check whether any names have been created since a given save */
700
/* that might be released by the restore. */
701
bool
702
alloc_any_names_since_save(const alloc_save_t * save)
703
1.42M
{
704
1.42M
    return save->restore_names;
705
1.42M
}
706
707
/* Get the saved state with a given ID. */
708
alloc_save_t *
709
alloc_find_save(const gs_dual_memory_t * dmem, ulong sid)
710
3.37M
{
711
3.37M
    alloc_save_t *sprev = dmem->space_local->saved;
712
713
3.37M
    if (sid == 0)
714
0
        return 0;   /* invalid id */
715
109M
    while (sprev != 0) {
716
109M
        if (sprev->id == sid)
717
3.37M
            return sprev;
718
106M
        sprev = sprev->state.saved;
719
106M
    }
720
0
    return 0;
721
3.37M
}
722
723
/* Get the client data from a saved state. */
724
void *
725
alloc_save_client_data(const alloc_save_t * save)
726
1.24M
{
727
1.24M
    return save->client_data;
728
1.24M
}
729
730
/*
731
 * Do one step of restoring the state.  The client is responsible for
732
 * calling alloc_find_save to get the save object, and for ensuring that
733
 * there are no surviving pointers for which alloc_is_since_save is true.
734
 * Return true if the argument was the innermost save, in which case
735
 * this is the last (or only) step.
736
 * Note that "one step" may involve multiple internal steps,
737
 * if this is the outermost restore (which requires restoring both local
738
 * and global VM) or if we created extra save levels to reduce scanning.
739
 */
740
static void restore_finalize(gs_ref_memory_t *);
741
static void restore_space(gs_ref_memory_t *, gs_dual_memory_t *);
742
743
int
744
alloc_restore_step_in(gs_dual_memory_t *dmem, alloc_save_t * save)
745
1.24M
{
746
    /* Get save->space_* now, because the save object will be freed. */
747
1.24M
    gs_ref_memory_t *lmem = save->space_local;
748
1.24M
    gs_ref_memory_t *gmem = save->space_global;
749
1.24M
    gs_ref_memory_t *mem = lmem;
750
1.24M
    alloc_save_t *sprev;
751
1.24M
    int code;
752
753
    /* Finalize all objects before releasing resources or undoing changes. */
754
1.24M
    do {
755
1.24M
        ulong sid;
756
757
1.24M
        sprev = mem->saved;
758
1.24M
        sid = sprev->id;
759
1.24M
        restore_finalize(mem);  /* finalize objects */
760
1.24M
        mem = &sprev->state;
761
1.24M
        if (sid != 0)
762
1.24M
            break;
763
1.24M
    }
764
1.24M
    while (sprev != save);
765
1.24M
    if (mem->save_level == 0) {
766
        /* This is the outermost save, which might also */
767
        /* need to restore global VM. */
768
182k
        mem = gmem;
769
182k
        if (mem != lmem && mem->saved != 0) {
770
182k
            restore_finalize(mem);
771
182k
        }
772
182k
    }
773
774
    /* Do one (externally visible) step of restoring the state. */
775
1.24M
    mem = lmem;
776
1.24M
    do {
777
1.24M
        ulong sid;
778
779
1.24M
        sprev = mem->saved;
780
1.24M
        sid = sprev->id;
781
1.24M
        code = restore_resources(sprev, mem); /* release other resources */
782
1.24M
        if (code < 0)
783
0
            return code;
784
1.24M
        restore_space(mem, dmem); /* release memory */
785
1.24M
        if (sid != 0)
786
1.24M
            break;
787
1.24M
    }
788
1.24M
    while (sprev != save);
789
790
1.24M
    if (mem->save_level == 0) {
791
        /* This is the outermost save, which might also */
792
        /* need to restore global VM. */
793
182k
        mem = gmem;
794
182k
        if (mem != lmem && mem->saved != 0) {
795
182k
            code = restore_resources(mem->saved, mem);
796
182k
            if (code < 0)
797
0
                return code;
798
182k
            restore_space(mem, dmem);
799
182k
        }
800
182k
        alloc_set_not_in_save(dmem);
801
1.05M
    } else {     /* Set the l_new attribute in all slots that are now new. */
802
1.05M
        ulong scanned;
803
804
1.05M
        code = save_set_new(mem, true, false, &scanned);
805
1.05M
        if (code < 0)
806
0
            return code;
807
1.05M
    }
808
809
1.24M
    return sprev == save;
810
1.24M
}
811
/* Restore the memory of one space, by undoing changes and freeing */
812
/* memory allocated since the save. */
813
static void
814
restore_space(gs_ref_memory_t * mem, gs_dual_memory_t *dmem)
815
1.42M
{
816
1.42M
    alloc_save_t *save = mem->saved;
817
1.42M
    alloc_save_t saved;
818
819
1.42M
    print_save("restore", mem->space, save);
820
821
    /* Undo changes since the save. */
822
1.42M
    {
823
1.42M
        register alloc_change_t *cp = mem->changes;
824
825
21.8M
        while (cp) {
826
#ifdef DEBUG
827
            if (gs_debug_c('U')) {
828
                dmlputs((const gs_memory_t *)mem, "[U]restore");
829
                alloc_save_print((const gs_memory_t *)mem, cp, true);
830
            }
831
#endif
832
20.4M
            if (cp->offset == AC_OFFSET_ALLOCATED)
833
20.4M
                DO_NOTHING;
834
6.83M
            else
835
6.83M
            if (r_is_packed(&cp->contents))
836
636k
                *cp->where = *(ref_packed *) & cp->contents;
837
6.19M
            else
838
6.19M
                ref_assign_inline((ref *) cp->where, &cp->contents);
839
20.4M
            cp = cp->next;
840
20.4M
        }
841
1.42M
    }
842
843
    /* Free memory allocated since the save. */
844
    /* Note that this frees all clumps except the inner ones */
845
    /* belonging to this level. */
846
1.42M
    saved = *save;
847
1.42M
    restore_free(mem);
848
849
    /* Restore the allocator state. */
850
1.42M
    {
851
1.42M
        int num_contexts = mem->num_contexts; /* don't restore */
852
853
1.42M
        *mem = saved.state;
854
1.42M
        mem->num_contexts = num_contexts;
855
1.42M
    }
856
1.42M
    alloc_open_clump(mem);
857
858
    /* Make the allocator current if it was current before the save. */
859
1.42M
    if (saved.is_current) {
860
1.24M
        dmem->current = mem;
861
1.24M
        dmem->current_space = mem->space;
862
1.24M
    }
863
1.42M
}
864
865
/* Restore to the initial state, releasing all resources. */
866
/* The allocator is no longer usable after calling this routine! */
867
int
868
alloc_restore_all(i_ctx_t *i_ctx_p)
869
182k
{
870
    /*
871
     * Save the memory pointers, since freeing space_local will also
872
     * free dmem itself.
873
     */
874
182k
    gs_ref_memory_t *lmem = idmemory->space_local;
875
182k
    gs_ref_memory_t *gmem = idmemory->space_global;
876
182k
    gs_ref_memory_t *smem = idmemory->space_system;
877
878
182k
    gs_ref_memory_t *mem;
879
182k
    int code;
880
881
    /* Restore to a state outside any saves. */
882
1.28M
    while (lmem->save_level != 0) {
883
1.10M
        vm_save_t *vmsave = alloc_save_client_data(alloc_save_current(idmemory));
884
1.10M
        if (vmsave->gsave) {
885
1.10M
            gs_grestoreall_for_restore(i_ctx_p->pgs, vmsave->gsave);
886
1.10M
        }
887
1.10M
        vmsave->gsave = 0;
888
1.10M
        code = alloc_restore_step_in(idmemory, lmem->saved);
889
890
1.10M
        if (code < 0)
891
0
            return code;
892
1.10M
    }
893
894
    /* Finalize memory. */
895
182k
    restore_finalize(lmem);
896
182k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
897
182k
        restore_finalize(mem);
898
182k
    if (gmem != lmem && gmem->num_contexts == 1) {
899
182k
        restore_finalize(gmem);
900
182k
        if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
901
182k
            restore_finalize(mem);
902
182k
    }
903
182k
    restore_finalize(smem);
904
905
    /* Release resources other than memory, using fake */
906
    /* save and memory objects. */
907
182k
    {
908
182k
        alloc_save_t empty_save;
909
910
182k
        empty_save.spaces = idmemory->spaces;
911
182k
        empty_save.restore_names = false; /* don't bother to release */
912
182k
        code = restore_resources(&empty_save, NULL);
913
182k
        if (code < 0)
914
0
            return code;
915
182k
    }
916
917
    /* Finally, release memory. */
918
182k
    restore_free(lmem);
919
182k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
920
182k
        restore_free(mem);
921
182k
    if (gmem != lmem) {
922
182k
        if (!--(gmem->num_contexts)) {
923
182k
            restore_free(gmem);
924
182k
            if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
925
182k
                restore_free(mem);
926
182k
        }
927
182k
    }
928
182k
    restore_free(smem);
929
182k
    return 0;
930
182k
}
931
932
/*
933
 * Finalize objects that will be freed by a restore.
934
 * Note that we must temporarily disable the freeing operations
935
 * of the allocator while doing this.
936
 */
937
static void
938
restore_finalize(gs_ref_memory_t * mem)
939
2.33M
{
940
2.33M
    clump_t *cp;
941
2.33M
    clump_splay_walker sw;
942
943
2.33M
    alloc_close_clump(mem);
944
2.33M
    gs_enable_free((gs_memory_t *) mem, false);
945
39.8M
    for (cp = clump_splay_walk_bwd_init(&sw, mem); cp != 0; cp = clump_splay_walk_bwd(&sw)) {
946
324M
        SCAN_CLUMP_OBJECTS(cp)
947
324M
            DO_ALL
948
324M
            struct_proc_finalize((*finalize)) =
949
324M
            pre->o_type->finalize;
950
324M
        if (finalize != 0) {
951
10.9M
            if_debug2m('u', (gs_memory_t *)mem, "[u]restore finalizing %s "PRI_INTPTR"\n",
952
10.9M
                       struct_type_name_string(pre->o_type),
953
10.9M
                       (intptr_t) (pre + 1));
954
10.9M
            (*finalize) ((gs_memory_t *) mem, pre + 1);
955
10.9M
        }
956
324M
        END_OBJECTS_SCAN
957
37.5M
    }
958
2.33M
    gs_enable_free((gs_memory_t *) mem, true);
959
2.33M
}
960
961
/* Release resources for a restore */
962
static int
963
restore_resources(alloc_save_t * sprev, gs_ref_memory_t * mem)
964
1.60M
{
965
1.60M
    int code;
966
#ifdef DEBUG
967
    if (mem) {
968
        /* Note restoring of the file list. */
969
        if_debug4m('u', (gs_memory_t *)mem, "[u%u]file_restore "PRI_INTPTR" => "PRI_INTPTR" for "PRI_INTPTR"\n",
970
                   mem->space, (intptr_t)mem->streams,
971
                   (intptr_t)sprev->state.streams, (intptr_t)sprev);
972
    }
973
#endif
974
975
    /* Remove entries from font and character caches. */
976
1.60M
    code = font_restore(sprev);
977
1.60M
    if (code < 0)
978
0
        return code;
979
980
    /* Adjust the name table. */
981
1.60M
    if (sprev->restore_names)
982
0
        names_restore(mem->gs_lib_ctx->gs_name_table, sprev);
983
1.60M
    return 0;
984
1.60M
}
985
986
/* Release memory for a restore. */
987
static void
988
restore_free(gs_ref_memory_t * mem)
989
2.33M
{
990
    /* Free clumps allocated since the save. */
991
2.33M
    gs_free_all((gs_memory_t *) mem);
992
2.33M
}
993
994
/* Forget a save, by merging this level with the next outer one. */
995
static void file_forget_save(gs_ref_memory_t *);
996
static void combine_space(gs_ref_memory_t *);
997
static void forget_changes(gs_ref_memory_t *);
998
int
999
alloc_forget_save_in(gs_dual_memory_t *dmem, alloc_save_t * save)
1000
0
{
1001
0
    gs_ref_memory_t *mem = save->space_local;
1002
0
    alloc_save_t *sprev;
1003
0
    ulong scanned;
1004
0
    int code;
1005
1006
0
    print_save("forget_save", mem->space, save);
1007
1008
    /* Iteratively combine the current level with the previous one. */
1009
0
    do {
1010
0
        sprev = mem->saved;
1011
0
        if (sprev->id != 0)
1012
0
            mem->save_level--;
1013
0
        if (mem->save_level != 0) {
1014
0
            alloc_change_t *chp = mem->changes;
1015
1016
0
            code = save_set_new(&sprev->state, true, false, &scanned);
1017
0
            if (code < 0)
1018
0
                return code;
1019
            /* Concatenate the changes chains. */
1020
0
            if (chp == 0)
1021
0
                mem->changes = sprev->state.changes;
1022
0
            else {
1023
0
                while (chp->next != 0)
1024
0
                    chp = chp->next;
1025
0
                chp->next = sprev->state.changes;
1026
0
            }
1027
0
            file_forget_save(mem);
1028
0
            combine_space(mem); /* combine memory */
1029
0
        } else {
1030
0
            forget_changes(mem);
1031
0
            code = save_set_new(mem, false, false, &scanned);
1032
0
            if (code < 0)
1033
0
                return code;
1034
0
            file_forget_save(mem);
1035
0
            combine_space(mem); /* combine memory */
1036
            /* This is the outermost save, which might also */
1037
            /* need to combine global VM. */
1038
0
            mem = save->space_global;
1039
0
            if (mem != save->space_local && mem->saved != 0) {
1040
0
                forget_changes(mem);
1041
0
                code = save_set_new(mem, false, false, &scanned);
1042
0
                if (code < 0)
1043
0
                    return code;
1044
0
                file_forget_save(mem);
1045
0
                combine_space(mem);
1046
0
            }
1047
0
            alloc_set_not_in_save(dmem);
1048
0
            break;   /* must be outermost */
1049
0
        }
1050
0
    }
1051
0
    while (sprev != save);
1052
0
    return 0;
1053
0
}
1054
/* Combine the clumps of the next outer level with those of the current one, */
1055
/* and free the bookkeeping structures. */
1056
static void
1057
combine_space(gs_ref_memory_t * mem)
1058
0
{
1059
0
    alloc_save_t *saved = mem->saved;
1060
0
    gs_ref_memory_t *omem = &saved->state;
1061
0
    clump_t *cp;
1062
0
    clump_splay_walker sw;
1063
1064
0
    alloc_close_clump(mem);
1065
0
    for (cp = clump_splay_walk_init(&sw, mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
1066
0
        if (cp->outer == 0)
1067
0
            alloc_link_clump(cp, omem);
1068
0
        else {
1069
0
            clump_t *outer = cp->outer;
1070
1071
0
            outer->inner_count--;
1072
0
            if (mem->cc == cp)
1073
0
                mem->cc = outer;
1074
0
            if (mem->cfreed.cp == cp)
1075
0
                mem->cfreed.cp = outer;
1076
            /* "Free" the header of the inner clump, */
1077
            /* and any immediately preceding gap left by */
1078
            /* the GC having compacted the outer clump. */
1079
0
            {
1080
0
                obj_header_t *hp = (obj_header_t *) outer->cbot;
1081
1082
0
                hp->o_pad = 0;
1083
0
                hp->o_alone = 0;
1084
0
                hp->o_size = (char *)(cp->chead + 1)
1085
0
                    - (char *)(hp + 1);
1086
0
                hp->o_type = &st_bytes;
1087
                /* The following call is probably not safe. */
1088
#if 0       /* **************** */
1089
                gs_free_object((gs_memory_t *) mem,
1090
                               hp + 1, "combine_space(header)");
1091
#endif /* **************** */
1092
0
            }
1093
            /* Update the outer clump's allocation pointers. */
1094
0
            outer->cbot = cp->cbot;
1095
0
            outer->rcur = cp->rcur;
1096
0
            outer->rtop = cp->rtop;
1097
0
            outer->ctop = cp->ctop;
1098
0
            outer->has_refs |= cp->has_refs;
1099
0
            gs_free_object(mem->non_gc_memory, cp,
1100
0
                           "combine_space(inner)");
1101
0
        }
1102
0
    }
1103
    /* Update relevant parts of allocator state. */
1104
0
    mem->root = omem->root;
1105
0
    mem->allocated += omem->allocated;
1106
0
    mem->gc_allocated += omem->allocated;
1107
0
    mem->lost.objects += omem->lost.objects;
1108
0
    mem->lost.refs += omem->lost.refs;
1109
0
    mem->lost.strings += omem->lost.strings;
1110
0
    mem->saved = omem->saved;
1111
0
    mem->previous_status = omem->previous_status;
1112
0
    {       /* Concatenate free lists. */
1113
0
        int i;
1114
1115
0
        for (i = 0; i < num_freelists; i++) {
1116
0
            obj_header_t *olist = omem->freelists[i];
1117
0
            obj_header_t *list = mem->freelists[i];
1118
1119
0
            if (olist == 0);
1120
0
            else if (list == 0)
1121
0
                mem->freelists[i] = olist;
1122
0
            else {
1123
0
                while (*(obj_header_t **) list != 0)
1124
0
                    list = *(obj_header_t **) list;
1125
0
                *(obj_header_t **) list = olist;
1126
0
            }
1127
0
        }
1128
0
        if (omem->largest_free_size > mem->largest_free_size)
1129
0
            mem->largest_free_size = omem->largest_free_size;
1130
0
    }
1131
0
    gs_free_object((gs_memory_t *) mem, saved, "combine_space(saved)");
1132
0
    alloc_open_clump(mem);
1133
0
}
1134
/* Free the changes chain for a level 0 .forgetsave, */
1135
/* resetting the l_new flag in the changed refs. */
1136
static void
1137
forget_changes(gs_ref_memory_t * mem)
1138
0
{
1139
0
    register alloc_change_t *chp = mem->changes;
1140
0
    alloc_change_t *next;
1141
1142
0
    for (; chp; chp = next) {
1143
0
        ref_packed *prp = chp->where;
1144
1145
0
        if_debug1m('U', (gs_memory_t *)mem, "[U]forgetting change "PRI_INTPTR"\n", (intptr_t) chp);
1146
0
        if (chp->offset == AC_OFFSET_ALLOCATED)
1147
0
            DO_NOTHING;
1148
0
        else
1149
0
        if (!r_is_packed(prp))
1150
0
            r_clear_attrs((ref *) prp, l_new);
1151
0
        next = chp->next;
1152
0
        gs_free_object((gs_memory_t *) mem, chp, "forget_changes");
1153
0
    }
1154
0
    mem->changes = 0;
1155
0
}
1156
/* Update the streams list when forgetting a save. */
1157
static void
1158
file_forget_save(gs_ref_memory_t * mem)
1159
0
{
1160
0
    const alloc_save_t *save = mem->saved;
1161
0
    stream *streams = mem->streams;
1162
0
    stream *saved_streams = save->state.streams;
1163
1164
0
    if_debug4m('u', (gs_memory_t *)mem, "[u%d]file_forget_save "PRI_INTPTR" + "PRI_INTPTR" for "PRI_INTPTR"\n",
1165
0
               mem->space, (intptr_t) streams, (intptr_t) saved_streams,
1166
0
               (intptr_t) save);
1167
0
    if (streams == 0)
1168
0
        mem->streams = saved_streams;
1169
0
    else if (saved_streams != 0) {
1170
0
        while (streams->next != 0)
1171
0
            streams = streams->next;
1172
0
        streams->next = saved_streams;
1173
0
        saved_streams->prev = streams;
1174
0
    }
1175
0
}
1176
1177
static inline int
1178
mark_allocated(void *obj, bool to_new, uint *psize)
1179
15.6M
{
1180
15.6M
    obj_header_t *pre = (obj_header_t *)obj - 1;
1181
15.6M
    uint size = pre_obj_contents_size(pre);
1182
15.6M
    ref_packed *prp = (ref_packed *) (pre + 1);
1183
15.6M
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1184
#ifdef ALIGNMENT_ALIASING_BUG
1185
                ref *rpref;
1186
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1187
#else
1188
3.08G
# define RP_REF(rp) ((ref *)rp)
1189
15.6M
#endif
1190
1191
15.6M
    if (pre->o_type != &st_refs) {
1192
        /* Must not happen. */
1193
0
        if_debug0('u', "Wrong object type when expected a ref.\n");
1194
0
        return_error(gs_error_Fatal);
1195
0
    }
1196
    /* We know that every block of refs ends with */
1197
    /* a full-size ref, so we only need the end check */
1198
    /* when we encounter one of those. */
1199
15.6M
    if (to_new)
1200
591M
        while (1) {
1201
591M
            if (r_is_packed(prp))
1202
34.7M
                prp++;
1203
556M
            else {
1204
556M
                RP_REF(prp)->tas.type_attrs |= l_new;
1205
556M
                prp += packed_per_ref;
1206
556M
                if (prp >= next)
1207
5.17M
                    break;
1208
556M
            }
1209
591M
    } else
1210
2.71G
        while (1) {
1211
2.71G
            if (r_is_packed(prp))
1212
184M
                prp++;
1213
2.53G
            else {
1214
2.53G
                RP_REF(prp)->tas.type_attrs &= ~l_new;
1215
2.53G
                prp += packed_per_ref;
1216
2.53G
                if (prp >= next)
1217
10.4M
                    break;
1218
2.53G
            }
1219
2.71G
        }
1220
15.6M
#undef RP_REF
1221
15.6M
    *psize = size;
1222
15.6M
    return 0;
1223
15.6M
}
1224
1225
/* Check if a block contains refs marked by garbager. */
1226
static bool
1227
check_l_mark(void *obj)
1228
24.4M
{
1229
24.4M
    obj_header_t *pre = (obj_header_t *)obj - 1;
1230
24.4M
    uint size = pre_obj_contents_size(pre);
1231
24.4M
    ref_packed *prp = (ref_packed *) (pre + 1);
1232
24.4M
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1233
#ifdef ALIGNMENT_ALIASING_BUG
1234
                ref *rpref;
1235
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1236
#else
1237
24.4M
# define RP_REF(rp) ((ref *)rp)
1238
24.4M
#endif
1239
1240
    /* We know that every block of refs ends with */
1241
    /* a full-size ref, so we only need the end check */
1242
    /* when we encounter one of those. */
1243
38.0G
    while (1) {
1244
38.0G
        if (r_is_packed(prp)) {
1245
571M
            if (r_has_pmark(prp))
1246
16.3k
                return true;
1247
571M
            prp++;
1248
37.5G
        } else {
1249
37.5G
            if (r_has_attr(RP_REF(prp), l_mark))
1250
2.96M
                return true;
1251
37.5G
            prp += packed_per_ref;
1252
37.5G
            if (prp >= next)
1253
21.4M
                return false;
1254
37.5G
        }
1255
38.0G
    }
1256
24.4M
#undef RP_REF
1257
24.4M
}
1258
1259
/* Set or reset the l_new attribute in every relevant slot. */
1260
/* This includes every slot on the current change chain, */
1261
/* and every (ref) slot allocated at this save level. */
1262
/* Return the number of bytes of data scanned. */
1263
static int
1264
save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned)
1265
2.11M
{
1266
2.11M
    ulong scanned = 0;
1267
2.11M
    int code;
1268
1269
    /* Handle the change chain. */
1270
2.11M
    code = save_set_new_changes(mem, to_new, set_limit);
1271
2.11M
    if (code < 0)
1272
0
        return code;
1273
1274
    /* Handle newly allocated ref objects. */
1275
7.62M
    SCAN_MEM_CLUMPS(mem, cp) {
1276
7.62M
        if (cp->has_refs) {
1277
1.92M
            bool has_refs = false;
1278
1.92M
            bool no_outer_clump = !(cp->outer != NULL && cp->ctop - cp->cbot > min_inner_clump_space);
1279
26.6M
            SCAN_CLUMP_OBJECTS(cp)
1280
26.6M
                DO_ALL
1281
26.6M
                if_debug3m('U', (gs_memory_t *)mem, "[U]set_new scan("PRI_INTPTR"(%u), %d)\n",
1282
26.6M
                           (intptr_t) pre, size, to_new);
1283
26.6M
            if (pre->o_type == &st_refs) {
1284
                /* These are refs, scan them. */
1285
8.09M
                ref_packed *prp = (ref_packed *) (pre + 1);
1286
8.09M
                uint size;
1287
                /* In order to avoid the garbager unnecessarily scanning for refs that may
1288
                   not exist, we reset the "has_refs" flag if we're doing a save (and leave
1289
                   it alone during a restore. This generally works because when we get here
1290
                   during a save, we've already created the inner clump, and during a restore,
1291
                   we've already restored to the outer clump.
1292
                   Where is goes wrong is when there isn't sufficient space left in the clump
1293
                   for any new allocations, so we won't have created the inner clump, and then
1294
                   the flag isn't retained. Spot that above, and only meddle with the flag here if
1295
                   an inner clump has been created.
1296
                 */
1297
8.09M
                has_refs = true && (to_new | no_outer_clump);
1298
8.09M
                code = mark_allocated(prp, to_new, &size);
1299
8.09M
                if (code < 0)
1300
0
                    return code;
1301
8.09M
                scanned += size;
1302
8.09M
            } else
1303
18.5M
                scanned += sizeof(obj_header_t);
1304
26.6M
            END_OBJECTS_SCAN
1305
1.92M
                cp->has_refs = has_refs;
1306
1.92M
        }
1307
7.62M
    }
1308
7.62M
    END_CLUMPS_SCAN
1309
2.11M
    if_debug2m('u', (gs_memory_t *)mem, "[u]set_new (%s) scanned %ld\n",
1310
2.11M
               (to_new ? "restore" : "save"), scanned);
1311
2.11M
    *pscanned = scanned;
1312
2.11M
    return 0;
1313
2.11M
}
1314
1315
/* Drop redundant elements from the changes list and set l_new. */
1316
static void
1317
drop_redundant_changes(gs_ref_memory_t * mem)
1318
18
{
1319
18
    register alloc_change_t *chp = mem->changes, *chp_back = NULL, *chp_forth;
1320
1321
    /* As we are trying to throw away redundant changes in an allocator instance
1322
       that has already been "saved", the active clump has already been "closed"
1323
       by alloc_save_space(). Using such an allocator (for example, by calling
1324
       gs_free_object() with it) can leave it in an unstable state, causing
1325
       problems for the garbage collector (specifically, the clump validator code).
1326
       So, before we might use it, open the current clump, and then close it again
1327
       when we're done.
1328
     */
1329
18
    alloc_open_clump(mem);
1330
1331
    /* First reverse the list and set all. */
1332
1.76k
    for (; chp; chp = chp_forth) {
1333
1.74k
        chp_forth = chp->next;
1334
1.74k
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1335
50
            ref_packed *prp = chp->where;
1336
1337
50
            if (!r_is_packed(prp)) {
1338
46
                ref *const rp = (ref *)prp;
1339
1340
46
                rp->tas.type_attrs |= l_new;
1341
46
            }
1342
50
        }
1343
1.74k
        chp->next = chp_back;
1344
1.74k
        chp_back = chp;
1345
1.74k
    }
1346
18
    mem->changes = chp_back;
1347
18
    chp_back = NULL;
1348
    /* Then filter, reset and reverse again. */
1349
1.76k
    for (chp = mem->changes; chp; chp = chp_forth) {
1350
1.74k
        chp_forth = chp->next;
1351
1.74k
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1352
50
            ref_packed *prp = chp->where;
1353
1354
50
            if (!r_is_packed(prp)) {
1355
46
                ref *const rp = (ref *)prp;
1356
1357
46
                if ((rp->tas.type_attrs & l_new) == 0) {
1358
4
                    if (mem->scan_limit == chp)
1359
0
                        mem->scan_limit = chp_back;
1360
4
                    if (mem->changes == chp)
1361
0
                        mem->changes = chp_back;
1362
4
                    gs_free_object((gs_memory_t *)mem, chp, "alloc_save_remove");
1363
4
                    continue;
1364
4
                } else
1365
42
                    rp->tas.type_attrs &= ~l_new;
1366
46
            }
1367
50
        }
1368
1.73k
        chp->next = chp_back;
1369
1.73k
        chp_back = chp;
1370
1.73k
    }
1371
18
    mem->changes = chp_back;
1372
1373
18
    alloc_close_clump(mem);
1374
18
}
1375
1376
/* Set or reset the l_new attribute on the changes chain. */
1377
static int
1378
save_set_new_changes(gs_ref_memory_t * mem, bool to_new, bool set_limit)
1379
2.11M
{
1380
2.11M
    register alloc_change_t *chp;
1381
2.11M
    register uint new = (to_new ? l_new : 0);
1382
2.11M
    ulong scanned = 0;
1383
1384
2.11M
    if (!to_new && mem->total_scanned_after_compacting > max_repeated_scan * 16) {
1385
18
        mem->total_scanned_after_compacting = 0;
1386
18
        drop_redundant_changes(mem);
1387
18
    }
1388
12.8M
    for (chp = mem->changes; chp; chp = chp->next) {
1389
10.7M
        if (chp->offset == AC_OFFSET_ALLOCATED) {
1390
7.53M
            if (chp->where != 0) {
1391
7.53M
                uint size;
1392
7.53M
                int code = mark_allocated((void *)chp->where, to_new, &size);
1393
1394
7.53M
                if (code < 0)
1395
0
                    return code;
1396
7.53M
                scanned += size;
1397
7.53M
            }
1398
7.53M
        } else {
1399
3.21M
            ref_packed *prp = chp->where;
1400
1401
3.21M
            if_debug3m('U', (gs_memory_t *)mem, "[U]set_new "PRI_INTPTR": ("PRI_INTPTR", %d)\n",
1402
3.21M
                       (intptr_t)chp, (intptr_t)prp, new);
1403
3.21M
            if (!r_is_packed(prp)) {
1404
3.19M
                ref *const rp = (ref *) prp;
1405
1406
3.19M
                rp->tas.type_attrs =
1407
3.19M
                    (rp->tas.type_attrs & ~l_new) + new;
1408
3.19M
            }
1409
3.21M
        }
1410
10.7M
        if (mem->scan_limit == chp)
1411
16.5k
            break;
1412
10.7M
    }
1413
2.11M
    if (set_limit) {
1414
1.05M
        mem->total_scanned_after_compacting += scanned;
1415
1.05M
        if (scanned  + mem->total_scanned >= max_repeated_scan) {
1416
9.35k
            mem->scan_limit = mem->changes;
1417
9.35k
            mem->total_scanned = 0;
1418
9.35k
        } else
1419
1.04M
            mem->total_scanned += scanned;
1420
1.05M
    }
1421
2.11M
    return 0;
1422
2.11M
}
1423
1424
gs_memory_t *
1425
gs_save_any_memory(const alloc_save_t *save)
1426
1.60M
{
1427
1.60M
    return((gs_memory_t *)save->space_local);
1428
1.60M
}