Coverage Report

Created: 2026-02-14 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/base/gdevdflt.c
Line
Count
Source
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
/* Default device implementation */
17
#include "math_.h"
18
#include "memory_.h"
19
#include "gx.h"
20
#include "gsstruct.h"
21
#include "gxobj.h"
22
#include "gserrors.h"
23
#include "gsropt.h"
24
#include "gxcomp.h"
25
#include "gxdevice.h"
26
#include "gxdevsop.h"
27
#include "gdevp14.h"        /* Needed to patch up the procs after compositor creation */
28
#include "gstrans.h"        /* For gs_pdf14trans_t */
29
#include "gxgstate.h"       /* for gs_image_state_s */
30
31
32
/* defined in gsdpram.c */
33
int gx_default_get_param(gx_device *dev, char *Param, void *list);
34
35
/* ---------------- Default device procedures ---------------- */
36
37
/*
38
 * Set a color model polarity to be additive or subtractive. In either
39
 * case, indicate an error (and don't modify the polarity) if the current
40
 * setting differs from the desired and is not GX_CINFO_POLARITY_UNKNOWN.
41
 */
42
static void
43
set_cinfo_polarity(gx_device * dev, gx_color_polarity_t new_polarity)
44
12.7M
{
45
#ifdef DEBUG
46
    /* sanity check */
47
    if (new_polarity == GX_CINFO_POLARITY_UNKNOWN) {
48
        dmprintf(dev->memory, "set_cinfo_polarity: illegal operand\n");
49
        return;
50
    }
51
#endif
52
    /*
53
     * The meory devices assume that single color devices are gray.
54
     * This may not be true if SeparationOrder is specified.  Thus only
55
     * change the value if the current value is unknown.
56
     */
57
12.7M
    if (dev->color_info.polarity == GX_CINFO_POLARITY_UNKNOWN)
58
0
        dev->color_info.polarity = new_polarity;
59
12.7M
}
60
61
static gx_color_index
62
(*get_encode_color(gx_device *dev))(gx_device *, const gx_color_value *)
63
177M
{
64
177M
    dev_proc_encode_color(*encode_proc);
65
66
    /* use encode_color if it has been provided */
67
177M
    if ((encode_proc = dev_proc(dev, encode_color)) == 0) {
68
12.7M
        if (dev->color_info.num_components == 1                          &&
69
12.6M
            dev_proc(dev, map_rgb_color) != 0) {
70
8.90M
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
71
8.90M
            encode_proc = gx_backwards_compatible_gray_encode;
72
8.90M
        } else  if ( (dev->color_info.num_components == 3    )           &&
73
73.2k
             (encode_proc = dev_proc(dev, map_rgb_color)) != 0  )
74
73.2k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
75
3.73M
        else if ( dev->color_info.num_components == 4                    &&
76
0
                 (encode_proc = dev_proc(dev, map_cmyk_color)) != 0   )
77
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_SUBTRACTIVE);
78
12.7M
    }
79
80
    /*
81
     * If no encode_color procedure at this point, the color model had
82
     * better be monochrome (though not necessarily bi-level). In this
83
     * case, it is assumed to be additive, as that is consistent with
84
     * the pre-DeviceN code.
85
     *
86
     * If this is not the case, then the color model had better be known
87
     * to be separable and linear, for there is no other way to derive
88
     * an encoding. This is the case even for weakly linear and separable
89
     * color models with a known polarity.
90
     */
91
177M
    if (encode_proc == 0) {
92
3.73M
        if (dev->color_info.num_components == 1 && dev->color_info.depth != 0) {
93
3.73M
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
94
3.73M
            if (dev->color_info.max_gray == (1 << dev->color_info.depth) - 1)
95
3.73M
                encode_proc = gx_default_gray_fast_encode;
96
0
            else
97
0
                encode_proc = gx_default_gray_encode;
98
3.73M
            dev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
99
3.73M
        } else if (colors_are_separable_and_linear(&dev->color_info)) {
100
0
            gx_color_value  max_gray = dev->color_info.max_gray;
101
0
            gx_color_value  max_color = dev->color_info.max_color;
102
103
0
            if ( (max_gray & (max_gray + 1)) == 0  &&
104
0
                 (max_color & (max_color + 1)) == 0  )
105
                /* NB should be gx_default_fast_encode_color */
106
0
                encode_proc = gx_default_encode_color;
107
0
            else
108
0
                encode_proc = gx_default_encode_color;
109
0
        }
110
3.73M
    }
111
112
177M
    return encode_proc;
113
177M
}
114
115
/*
116
 * Determine if a color model has the properties of a DeviceRGB
117
 * color model. This procedure is, in all likelihood, high-grade
118
 * overkill, but since this is not a performance sensitive area
119
 * no harm is done.
120
 *
121
 * Since there is little benefit to checking the values 0, 1, or
122
 * 1/2, we use the values 1/4, 1/3, and 3/4 in their place. We
123
 * compare the results to see if the intensities match to within
124
 * a tolerance of .01, which is arbitrarily selected.
125
 */
126
127
static bool
128
is_like_DeviceRGB(gx_device * dev)
129
12.7M
{
130
12.7M
    frac                            cm_comp_fracs[3];
131
12.7M
    int                             i;
132
12.7M
    const gx_device                *cmdev;
133
12.7M
    const gx_cm_color_map_procs    *cmprocs;
134
135
12.7M
    if ( dev->color_info.num_components != 3                   ||
136
73.2k
         dev->color_info.polarity != GX_CINFO_POLARITY_ADDITIVE  )
137
12.6M
        return false;
138
139
73.2k
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
140
141
    /* check the values 1/4, 1/3, and 3/4 */
142
73.2k
    cmprocs->map_rgb(cmdev, 0, frac_1 / 4, frac_1 / 3, 3 * frac_1 / 4, cm_comp_fracs);
143
144
    /* verify results to .01 */
145
73.2k
    cm_comp_fracs[0] -= frac_1 / 4;
146
73.2k
    cm_comp_fracs[1] -= frac_1 / 3;
147
73.2k
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
148
73.2k
    for ( i = 0;
149
292k
           i < 3                            &&
150
219k
           -frac_1 / 100 < cm_comp_fracs[i] &&
151
219k
           cm_comp_fracs[i] < frac_1 / 100;
152
219k
          i++ )
153
219k
        ;
154
73.2k
    return i == 3;
155
12.7M
}
156
157
/*
158
 * Similar to is_like_DeviceRGB, but for DeviceCMYK.
159
 */
160
static bool
161
is_like_DeviceCMYK(gx_device * dev)
162
0
{
163
0
    frac                            cm_comp_fracs[4];
164
0
    int                             i;
165
0
    const gx_device                *cmdev;
166
0
    const gx_cm_color_map_procs    *cmprocs;
167
168
0
    if ( dev->color_info.num_components != 4                      ||
169
0
         dev->color_info.polarity != GX_CINFO_POLARITY_SUBTRACTIVE  )
170
0
        return false;
171
172
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
173
    /* check the values 1/4, 1/3, 3/4, and 1/8 */
174
175
0
    cmprocs->map_cmyk(cmdev,
176
0
                      frac_1 / 4,
177
0
                      frac_1 / 3,
178
0
                      3 * frac_1 / 4,
179
0
                      frac_1 / 8,
180
0
                      cm_comp_fracs);
181
182
    /* verify results to .01 */
183
0
    cm_comp_fracs[0] -= frac_1 / 4;
184
0
    cm_comp_fracs[1] -= frac_1 / 3;
185
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
186
0
    cm_comp_fracs[3] -= frac_1 / 8;
187
0
    for ( i = 0;
188
0
           i < 4                            &&
189
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
190
0
           cm_comp_fracs[i] < frac_1 / 100;
191
0
          i++ )
192
0
        ;
193
0
    return i == 4;
194
0
}
195
196
/*
197
 * Two default decode_color procedures to use for monochrome devices.
198
 * These will make use of the map_color_rgb routine, and use the first
199
 * component of the returned value or its inverse.
200
 */
201
static int
202
gx_default_1_add_decode_color(
203
    gx_device *     dev,
204
    gx_color_index  color,
205
    gx_color_value  cv[1] )
206
0
{
207
0
    gx_color_value  rgb[3];
208
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
209
210
0
    cv[0] = rgb[0];
211
0
    return code;
212
0
}
213
214
static int
215
gx_default_1_sub_decode_color(
216
    gx_device *     dev,
217
    gx_color_index  color,
218
    gx_color_value  cv[1] )
219
0
{
220
0
    gx_color_value  rgb[3];
221
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
222
223
0
    cv[0] = gx_max_color_value - rgb[0];
224
0
    return code;
225
0
}
226
227
/*
228
 * A default decode_color procedure for DeviceCMYK color models.
229
 *
230
 * There is no generally accurate way of decode a DeviceCMYK color using
231
 * the map_color_rgb method. Unfortunately, there are many older devices
232
 * employ the DeviceCMYK color model but don't provide a decode_color
233
 * method. The code below works on the assumption of full undercolor
234
 * removal and black generation. This may not be accurate, but is the
235
 * best that can be done in the general case without other information.
236
 */
237
static int
238
gx_default_cmyk_decode_color(
239
    gx_device *     dev,
240
    gx_color_index  color,
241
    gx_color_value  cv[4] )
242
0
{
243
    /* The device may have been determined to be 'separable'. */
244
0
    if (colors_are_separable_and_linear(&dev->color_info))
245
0
        return gx_default_decode_color(dev, color, cv);
246
0
    else {
247
0
        int i, code = dev_proc(dev, map_color_rgb)(dev, color, cv);
248
0
        gx_color_value min_val = gx_max_color_value;
249
250
0
        for (i = 0; i < 3; i++) {
251
0
            if ((cv[i] = gx_max_color_value - cv[i]) < min_val)
252
0
                min_val = cv[i];
253
0
        }
254
0
        for (i = 0; i < 3; i++)
255
0
            cv[i] -= min_val;
256
0
        cv[3] = min_val;
257
258
0
        return code;
259
0
    }
260
0
}
261
262
/*
263
 * Special case default color decode routine for a canonical 1-bit per
264
 * component DeviceCMYK color model.
265
 */
266
static int
267
gx_1bit_cmyk_decode_color(
268
    gx_device *     dev,
269
    gx_color_index  color,
270
    gx_color_value  cv[4] )
271
0
{
272
0
    cv[0] = ((color & 0x8) != 0 ? gx_max_color_value : 0);
273
0
    cv[1] = ((color & 0x4) != 0 ? gx_max_color_value : 0);
274
0
    cv[2] = ((color & 0x2) != 0 ? gx_max_color_value : 0);
275
0
    cv[3] = ((color & 0x1) != 0 ? gx_max_color_value : 0);
276
0
    return 0;
277
0
}
278
279
static int
280
(*get_decode_color(gx_device * dev))(gx_device *, gx_color_index, gx_color_value *)
281
177M
{
282
    /* if a method has already been provided, use it */
283
177M
    if (dev_proc(dev, decode_color) != 0)
284
164M
        return dev_proc(dev, decode_color);
285
286
    /*
287
     * If a map_color_rgb method has been provided, we may be able to use it.
288
     * Currently this will always be the case, as a default value will be
289
     * provided this method. While this default may not be correct, we are not
290
     * introducing any new errors by using it.
291
     */
292
12.7M
    if (dev_proc(dev, map_color_rgb) != 0) {
293
294
        /* if the device has a DeviceRGB color model, use map_color_rgb */
295
12.7M
        if (is_like_DeviceRGB(dev))
296
73.2k
            return dev_proc(dev, map_color_rgb);
297
298
        /* If separable ande linear then use default */
299
12.6M
        if (colors_are_separable_and_linear(&dev->color_info))
300
3.73M
            return &gx_default_decode_color;
301
302
        /* gray devices can be handled based on their polarity */
303
8.90M
        if ( dev->color_info.num_components == 1 &&
304
8.90M
             dev->color_info.gray_index == 0       )
305
8.90M
            return dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE
306
8.90M
                       ? &gx_default_1_add_decode_color
307
8.90M
                       : &gx_default_1_sub_decode_color;
308
309
        /*
310
         * There is no accurate way to decode colors for cmyk devices
311
         * using the map_color_rgb procedure. Unfortunately, this cases
312
         * arises with some frequency, so it is useful not to generate an
313
         * error in this case. The mechanism below assumes full undercolor
314
         * removal and black generation, which may not be accurate but are
315
         * the  best that can be done in the general case in the absence of
316
         * other information.
317
         *
318
         * As a hack to handle certain common devices, if the map_rgb_color
319
         * routine is cmyk_1bit_map_color_rgb, we provide a direct one-bit
320
         * decoder.
321
         */
322
0
        if (is_like_DeviceCMYK(dev)) {
323
0
            if (dev_proc(dev, map_color_rgb) == cmyk_1bit_map_color_rgb)
324
0
                return &gx_1bit_cmyk_decode_color;
325
0
            else
326
0
                return &gx_default_cmyk_decode_color;
327
0
        }
328
0
    }
329
330
    /*
331
     * The separable and linear case will already have been handled by
332
     * code in gx_device_fill_in_procs, so at this point we can only hope
333
     * the device doesn't use the decode_color method.
334
     */
335
0
    if (colors_are_separable_and_linear(&dev->color_info))
336
0
        return &gx_default_decode_color;
337
0
    else
338
0
        return &gx_error_decode_color;
339
0
}
340
341
/*
342
 * If a device has a linear and separable encode color function then
343
 * set up the comp_bits, comp_mask, and comp_shift fields.  Note:  This
344
 * routine assumes that the colorant shift factor decreases with the
345
 * component number.  See check_device_separable() for a general routine.
346
 */
347
void
348
set_linear_color_bits_mask_shift(gx_device * dev)
349
90.0k
{
350
90.0k
    int i;
351
90.0k
    byte gray_index = dev->color_info.gray_index;
352
90.0k
    gx_color_value max_gray = dev->color_info.max_gray;
353
90.0k
    gx_color_value max_color = dev->color_info.max_color;
354
90.0k
    int num_components = dev->color_info.num_components;
355
356
1.20M
#define comp_bits (dev->color_info.comp_bits)
357
603k
#define comp_mask (dev->color_info.comp_mask)
358
1.71M
#define comp_shift (dev->color_info.comp_shift)
359
90.0k
    comp_shift[num_components - 1] = 0;
360
603k
    for ( i = num_components - 1 - 1; i >= 0; i-- ) {
361
512k
        comp_shift[i] = comp_shift[i + 1] +
362
512k
            ( i == gray_index ? ilog2(max_gray + 1) : ilog2(max_color + 1) );
363
512k
    }
364
693k
    for ( i = 0; i < num_components; i++ ) {
365
603k
        comp_bits[i] = ( i == gray_index ?
366
54.9k
                         ilog2(max_gray + 1) :
367
603k
                         ilog2(max_color + 1) );
368
603k
        comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1)
369
603k
                                               << comp_shift[i];
370
603k
    }
371
90.0k
#undef comp_bits
372
90.0k
#undef comp_mask
373
90.0k
#undef comp_shift
374
90.0k
}
375
376
/* Determine if a number is a power of two.  Works only for integers. */
377
225M
#define is_power_of_two(x) ((((x) - 1) & (x)) == 0)
378
379
/* A brutish way to check if we are a HT device */
380
bool
381
device_is_contone(gx_device* pdev)
382
3.75M
{
383
3.75M
    if ((float)pdev->color_info.depth / (float)pdev->color_info.num_components >= 8)
384
665k
        return true;
385
3.09M
    return false;
386
3.75M
}
387
388
/*
389
 * This routine attempts to determine if a device's encode_color procedure
390
 * produces gx_color_index values which are 'separable'.  A 'separable' value
391
 * means two things.  Each colorant has a group of bits in the gx_color_index
392
 * value which is associated with the colorant.  These bits are separate.
393
 * I.e. no bit is associated with more than one colorant.  If a colorant has
394
 * a value of zero then the bits associated with that colorant are zero.
395
 * These criteria allows the graphics library to build gx_color_index values
396
 * from the colorant values and not using the encode_color routine. This is
397
 * useful and necessary for overprinting, halftoning more
398
 * than four colorants, and the fast shading logic.  However this information
399
 * is not setup by the default device macros.  Thus we attempt to derive this
400
 * information.
401
 *
402
 * This routine can be fooled.  However it usually errors on the side of
403
 * assuing that a device is not separable.  In this case it does not create
404
 * any new problems.  In theory it can be fooled into believing that a device
405
 * is separable when it is not.  However we do not know of any real cases that
406
 * will fool it.
407
 */
408
void
409
check_device_separable(gx_device * dev)
410
201M
{
411
201M
    int i, j;
412
201M
    gx_device_color_info * pinfo = &(dev->color_info);
413
201M
    int num_components = pinfo->num_components;
414
201M
    byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS];
415
201M
    byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS];
416
201M
    gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS];
417
201M
    gx_color_index color_index;
418
201M
    gx_color_index current_bits = 0;
419
201M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
420
421
    /* If this is already known then we do not need to do anything. */
422
201M
    if (pinfo->separable_and_linear != GX_CINFO_UNKNOWN_SEP_LIN)
423
116M
        return;
424
    /* If there is not an encode_color_routine then we cannot proceed. */
425
84.2M
    if (dev_proc(dev, encode_color) == NULL)
426
8.90M
        return;
427
    /*
428
     * If these values do not check then we should have an error.  However
429
     * we do not know what to do so we are simply exitting and hoping that
430
     * the device will clean up its values.
431
     */
432
75.3M
    if (pinfo->gray_index < num_components &&
433
75.2M
        (!pinfo->dither_grays || pinfo->dither_grays != (pinfo->max_gray + 1)))
434
0
            return;
435
75.3M
    if ((num_components > 1 || pinfo->gray_index != 0) &&
436
84.8k
        (!pinfo->dither_colors || pinfo->dither_colors != (pinfo->max_color + 1)))
437
0
        return;
438
    /*
439
     * If dither_grays or dither_colors is not a power of two then we assume
440
     * that the device is not separable.  In theory this not a requirement
441
     * but it has been true for all of the devices that we have seen so far.
442
     * This assumption also makes the logic in the next section easier.
443
     */
444
75.3M
    if (!is_power_of_two(pinfo->dither_grays)
445
75.3M
                    || !is_power_of_two(pinfo->dither_colors))
446
0
        return;
447
    /*
448
     * Use the encode_color routine to try to verify that the device is
449
     * separable and to determine the shift count, etc. for each colorant.
450
     */
451
75.3M
    color_index = dev_proc(dev, encode_color)(dev, colorants);
452
75.3M
    if (color_index != 0)
453
74.6M
        return;    /* Exit if zero colorants produce a non zero index */
454
1.55M
    for (i = 0; i < num_components; i++) {
455
        /* Check this colorant = max with all others = 0 */
456
2.23M
        for (j = 0; j < num_components; j++)
457
1.37M
            colorants[j] = 0;
458
862k
        colorants[i] = gx_max_color_value;
459
862k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
460
862k
        if (color_index == 0)  /* If no bits then we have a problem */
461
1
            return;
462
862k
        if (color_index & current_bits)  /* Check for overlapping bits */
463
0
            return;
464
862k
        current_bits |= color_index;
465
862k
        comp_mask[i] = color_index;
466
        /* Determine the shift count for the colorant */
467
2.90M
        for (j = 0; (color_index & 1) == 0 && color_index != 0; j++)
468
2.03M
            color_index >>= 1;
469
862k
        comp_shift[i] = j;
470
        /* Determine the bit count for the colorant */
471
3.67M
        for (j = 0; color_index != 0; j++) {
472
2.80M
            if ((color_index & 1) == 0) /* check for non-consecutive bits */
473
0
                return;
474
2.80M
            color_index >>= 1;
475
2.80M
        }
476
862k
        comp_bits[i] = j;
477
        /*
478
         * We could verify that the bit count matches the dither_grays or
479
         * dither_colors values, but this is not really required unless we
480
         * are halftoning.  Thus we are allowing for non equal colorant sizes.
481
         */
482
        /* Check for overlap with other colorant if they are all maxed */
483
2.23M
        for (j = 0; j < num_components; j++)
484
1.37M
            colorants[j] = gx_max_color_value;
485
862k
        colorants[i] = 0;
486
862k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
487
862k
        if (color_index & comp_mask[i])  /* Check for overlapping bits */
488
0
            return;
489
862k
    }
490
    /* If we get to here then the device is very likely to be separable. */
491
693k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN;
492
1.55M
    for (i = 0; i < num_components; i++) {
493
862k
        pinfo->comp_shift[i] = comp_shift[i];
494
862k
        pinfo->comp_bits[i] = comp_bits[i];
495
862k
        pinfo->comp_mask[i] = comp_mask[i];
496
862k
    }
497
    /*
498
     * The 'gray_index' value allows one colorant to have a different number
499
     * of shades from the remainder.  Since the default macros only guess at
500
     * an appropriate value, we are setting its value based upon the data that
501
     * we just determined.  Note:  In some cases the macros set max_gray to 0
502
     * and dither_grays to 1.  This is not valid so ignore this case.
503
     */
504
693k
    for (i = 0; i < num_components; i++) {
505
693k
        int dither = 1 << comp_bits[i];
506
507
693k
        if (pinfo->dither_grays != 1 && dither == pinfo->dither_grays) {
508
693k
            pinfo->gray_index = i;
509
693k
            break;
510
693k
        }
511
693k
    }
512
693k
}
513
#undef is_power_of_two
514
515
/*
516
 * This routine attempts to determine if a device's encode_color procedure
517
 * produces values that are in keeping with "the standard encoding".
518
 * i.e. that given by pdf14_encode_color.
519
 *
520
 * It works by first checking to see if we are separable_and_linear. If not
521
 * we cannot hope to be the standard encoding.
522
 *
523
 * Then, we check to see if we are a dev device - if so, we must be
524
 * compatible.
525
 *
526
 * Failing that it checks to see if the encoding uses the appropriate
527
 * bit ranges for each individual color.
528
 *
529
 * If those (quick) tests pass, then we try the slower test of checking
530
 * the encodings. We can do this far faster than an exhaustive check, by
531
 * relying on the separability and linearity - we only need to check 256
532
 * possible values.
533
 *
534
 * The one tricky section there is to avoid the special case for
535
 * gx_no_color_index_value (which can occur when we have a 32bit
536
 * gx_color_index type, and a 4 component device, such as cmyk).
537
 * We allow the encoding to be off in the lower bits for that case.
538
 */
539
void check_device_compatible_encoding(gx_device *dev)
540
154M
{
541
154M
    gx_device_color_info * pinfo = &(dev->color_info);
542
154M
    int num_components = pinfo->num_components;
543
154M
    gx_color_index mul, color_index;
544
154M
    int i, j;
545
154M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS];
546
154M
    bool deep = device_is_deep(dev);
547
548
154M
    if (pinfo->separable_and_linear == GX_CINFO_UNKNOWN_SEP_LIN)
549
37.4M
        check_device_separable(dev);
550
154M
    if (pinfo->separable_and_linear != GX_CINFO_SEP_LIN)
551
154M
        return;
552
553
65.1k
    if (dev_proc(dev, ret_devn_params)(dev) != NULL) {
554
        /* We know all devn devices are compatible. */
555
36.6k
        pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
556
36.6k
        return;
557
36.6k
    }
558
559
    /* Do the superficial quick checks */
560
91.5k
    for (i = 0; i < num_components; i++) {
561
63.1k
        int shift = (num_components-1-i)*(8<<deep);
562
63.1k
        if (pinfo->comp_shift[i] != shift)
563
0
            goto bad;
564
63.1k
        if (pinfo->comp_bits[i] != 8<<deep)
565
0
            goto bad;
566
63.1k
        if (pinfo->comp_mask[i] != ((gx_color_index)(deep ? 65535 : 255))<<shift)
567
0
            goto bad;
568
63.1k
    }
569
570
    /* OK, now we are going to be slower. */
571
28.4k
    mul = 0;
572
91.5k
    for (i = 0; i < num_components; i++) {
573
63.1k
        mul = (mul<<(8<<deep)) | 1;
574
63.1k
    }
575
    /* In the deep case, we don't exhaustively test */
576
7.27M
    for (i = 0; i < 255; i++) {
577
23.3M
        for (j = 0; j < num_components; j++)
578
16.0M
            colorants[j] = i*257;
579
7.24M
        color_index = dev_proc(dev, encode_color)(dev, colorants);
580
7.24M
        if (color_index != i*mul*(deep ? 257 : 1) && (i*mul*(deep ? 257 : 1) != gx_no_color_index_value))
581
0
            goto bad;
582
7.24M
    }
583
    /* If we reach here, then every value matched, except possibly the last one.
584
     * We'll allow that to differ just in the lowest bits. */
585
28.4k
    if ((color_index | mul) != 255*mul*(deep ? 257 : 1))
586
0
        goto bad;
587
588
28.4k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
589
28.4k
    return;
590
0
bad:
591
0
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_NON_STANDARD;
592
0
}
593
594
int gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth);
595
596
/* Fill in NULL procedures in a device procedure record. */
597
void
598
gx_device_fill_in_procs(register gx_device * dev)
599
177M
{
600
177M
    fill_dev_proc(dev, open_device, gx_default_open_device);
601
177M
    fill_dev_proc(dev, get_initial_matrix, gx_default_get_initial_matrix);
602
177M
    fill_dev_proc(dev, sync_output, gx_default_sync_output);
603
177M
    fill_dev_proc(dev, output_page, gx_default_output_page);
604
177M
    fill_dev_proc(dev, close_device, gx_default_close_device);
605
    /* see below for map_rgb_color */
606
177M
    fill_dev_proc(dev, map_color_rgb, gx_default_map_color_rgb);
607
    /* NOT fill_rectangle */
608
177M
    fill_dev_proc(dev, copy_mono, gx_default_copy_mono);
609
177M
    fill_dev_proc(dev, copy_color, gx_default_copy_color);
610
177M
    fill_dev_proc(dev, get_params, gx_default_get_params);
611
177M
    fill_dev_proc(dev, put_params, gx_default_put_params);
612
    /* see below for map_cmyk_color */
613
177M
    fill_dev_proc(dev, get_page_device, gx_default_get_page_device);
614
177M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
615
177M
    fill_dev_proc(dev, copy_alpha, gx_default_copy_alpha);
616
177M
    fill_dev_proc(dev, fill_path, gx_default_fill_path);
617
177M
    fill_dev_proc(dev, stroke_path, gx_default_stroke_path);
618
177M
    fill_dev_proc(dev, fill_mask, gx_default_fill_mask);
619
177M
    fill_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid);
620
177M
    fill_dev_proc(dev, fill_parallelogram, gx_default_fill_parallelogram);
621
177M
    fill_dev_proc(dev, fill_triangle, gx_default_fill_triangle);
622
177M
    fill_dev_proc(dev, draw_thin_line, gx_default_draw_thin_line);
623
177M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
624
177M
    fill_dev_proc(dev, strip_tile_rectangle, gx_default_strip_tile_rectangle);
625
177M
    fill_dev_proc(dev, strip_copy_rop2, gx_default_strip_copy_rop2);
626
177M
    fill_dev_proc(dev, strip_tile_rect_devn, gx_default_strip_tile_rect_devn);
627
177M
    fill_dev_proc(dev, get_clipping_box, gx_default_get_clipping_box);
628
177M
    fill_dev_proc(dev, begin_typed_image, gx_default_begin_typed_image);
629
177M
    fill_dev_proc(dev, get_bits_rectangle, gx_default_get_bits_rectangle);
630
177M
    fill_dev_proc(dev, composite, gx_default_composite);
631
177M
    fill_dev_proc(dev, get_hardware_params, gx_default_get_hardware_params);
632
177M
    fill_dev_proc(dev, text_begin, gx_default_text_begin);
633
634
177M
    set_dev_proc(dev, encode_color, get_encode_color(dev));
635
177M
    if (dev->color_info.num_components == 3)
636
47.8M
        set_dev_proc(dev, map_rgb_color, dev_proc(dev, encode_color));
637
177M
    if (dev->color_info.num_components == 4)
638
53.8M
        set_dev_proc(dev, map_cmyk_color, dev_proc(dev, encode_color));
639
640
177M
    if (colors_are_separable_and_linear(&dev->color_info)) {
641
52.5M
        fill_dev_proc(dev, encode_color, gx_default_encode_color);
642
52.5M
        fill_dev_proc(dev, map_cmyk_color, gx_default_encode_color);
643
52.5M
        fill_dev_proc(dev, map_rgb_color, gx_default_encode_color);
644
124M
    } else {
645
        /* if it isn't set now punt */
646
124M
        fill_dev_proc(dev, encode_color, gx_error_encode_color);
647
124M
        fill_dev_proc(dev, map_cmyk_color, gx_error_encode_color);
648
124M
        fill_dev_proc(dev, map_rgb_color, gx_error_encode_color);
649
124M
    }
650
651
    /*
652
     * Fill in the color mapping procedures and the component index
653
     * assignment procedure if they have not been provided by the client.
654
     *
655
     * Because it is difficult to provide default encoding procedures
656
     * that handle level inversion, this code needs to check both
657
     * the number of components and the polarity of color model.
658
     */
659
177M
    switch (dev->color_info.num_components) {
660
75.6M
    case 1:     /* DeviceGray or DeviceInvertGray */
661
        /*
662
         * If not gray then the device must provide the color
663
         * mapping procs.
664
         */
665
75.6M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
666
75.6M
            fill_dev_proc( dev,
667
75.6M
                       get_color_mapping_procs,
668
75.6M
                       gx_default_DevGray_get_color_mapping_procs );
669
75.6M
        } else
670
5.58k
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
671
75.6M
        fill_dev_proc( dev,
672
75.6M
                       get_color_comp_index,
673
75.6M
                       gx_default_DevGray_get_color_comp_index );
674
75.6M
        break;
675
676
47.8M
    case 3:
677
47.8M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
678
47.8M
            fill_dev_proc( dev,
679
47.8M
                       get_color_mapping_procs,
680
47.8M
                       gx_default_DevRGB_get_color_mapping_procs );
681
47.8M
            fill_dev_proc( dev,
682
47.8M
                       get_color_comp_index,
683
47.8M
                       gx_default_DevRGB_get_color_comp_index );
684
47.8M
        } else {
685
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
686
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
687
0
        }
688
47.8M
        break;
689
690
53.8M
    case 4:
691
53.8M
        fill_dev_proc(dev, get_color_mapping_procs, gx_default_DevCMYK_get_color_mapping_procs);
692
53.8M
        fill_dev_proc(dev, get_color_comp_index, gx_default_DevCMYK_get_color_comp_index);
693
53.8M
        break;
694
97.7k
    default:    /* Unknown color model - set error handlers */
695
97.7k
        if (dev_proc(dev, get_color_mapping_procs) == NULL) {
696
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
697
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
698
0
        }
699
177M
    }
700
701
177M
    set_dev_proc(dev, decode_color, get_decode_color(dev));
702
177M
    fill_dev_proc(dev, get_profile, gx_default_get_profile);
703
177M
    fill_dev_proc(dev, set_graphics_type_tag, gx_default_set_graphics_type_tag);
704
705
177M
    fill_dev_proc(dev, fill_rectangle_hl_color, gx_default_fill_rectangle_hl_color);
706
177M
    fill_dev_proc(dev, include_color_space, gx_default_include_color_space);
707
177M
    fill_dev_proc(dev, fill_linear_color_scanline, gx_default_fill_linear_color_scanline);
708
177M
    fill_dev_proc(dev, fill_linear_color_trapezoid, gx_default_fill_linear_color_trapezoid);
709
177M
    fill_dev_proc(dev, fill_linear_color_triangle, gx_default_fill_linear_color_triangle);
710
177M
    fill_dev_proc(dev, update_spot_equivalent_colors, gx_default_update_spot_equivalent_colors);
711
177M
    fill_dev_proc(dev, ret_devn_params, gx_default_ret_devn_params);
712
177M
    fill_dev_proc(dev, fillpage, gx_default_fillpage);
713
177M
    fill_dev_proc(dev, copy_alpha_hl_color, gx_default_no_copy_alpha_hl_color);
714
715
177M
    fill_dev_proc(dev, begin_transparency_group, gx_default_begin_transparency_group);
716
177M
    fill_dev_proc(dev, end_transparency_group, gx_default_end_transparency_group);
717
718
177M
    fill_dev_proc(dev, begin_transparency_mask, gx_default_begin_transparency_mask);
719
177M
    fill_dev_proc(dev, end_transparency_mask, gx_default_end_transparency_mask);
720
177M
    fill_dev_proc(dev, discard_transparency_layer, gx_default_discard_transparency_layer);
721
722
177M
    fill_dev_proc(dev, push_transparency_state, gx_default_push_transparency_state);
723
177M
    fill_dev_proc(dev, pop_transparency_state, gx_default_pop_transparency_state);
724
725
177M
    fill_dev_proc(dev, put_image, gx_default_put_image);
726
727
177M
    fill_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
728
177M
    fill_dev_proc(dev, copy_planes, gx_default_copy_planes);
729
177M
    fill_dev_proc(dev, process_page, gx_default_process_page);
730
177M
    fill_dev_proc(dev, transform_pixel_region, gx_default_transform_pixel_region);
731
177M
    fill_dev_proc(dev, fill_stroke_path, gx_default_fill_stroke_path);
732
177M
    fill_dev_proc(dev, lock_pattern, gx_default_lock_pattern);
733
177M
}
734
735
736
int
737
gx_default_open_device(gx_device * dev)
738
596k
{
739
    /* Initialize the separable status if not known. */
740
596k
    check_device_separable(dev);
741
596k
    return 0;
742
596k
}
743
744
/* Get the initial matrix for a device with inverted Y. */
745
/* This includes essentially all printers and displays. */
746
/* Supports LeadingEdge, but no margins or viewports */
747
void
748
gx_default_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
749
89.6M
{
750
    /* NB this device has no paper margins */
751
89.6M
    double fs_res = dev->HWResolution[0] / 72.0;
752
89.6M
    double ss_res = dev->HWResolution[1] / 72.0;
753
754
89.6M
    switch(dev->LeadingEdge & LEADINGEDGE_MASK) {
755
0
    case 1: /* 90 degrees */
756
0
        pmat->xx = 0;
757
0
        pmat->xy = -ss_res;
758
0
        pmat->yx = -fs_res;
759
0
        pmat->yy = 0;
760
0
        pmat->tx = (float)dev->width;
761
0
        pmat->ty = (float)dev->height;
762
0
        break;
763
0
    case 2: /* 180 degrees */
764
0
        pmat->xx = -fs_res;
765
0
        pmat->xy = 0;
766
0
        pmat->yx = 0;
767
0
        pmat->yy = ss_res;
768
0
        pmat->tx = (float)dev->width;
769
0
        pmat->ty = 0;
770
0
        break;
771
0
    case 3: /* 270 degrees */
772
0
        pmat->xx = 0;
773
0
        pmat->xy = ss_res;
774
0
        pmat->yx = fs_res;
775
0
        pmat->yy = 0;
776
0
        pmat->tx = 0;
777
0
        pmat->ty = 0;
778
0
        break;
779
0
    default:
780
89.6M
    case 0:
781
89.6M
        pmat->xx = fs_res;
782
89.6M
        pmat->xy = 0;
783
89.6M
        pmat->yx = 0;
784
89.6M
        pmat->yy = -ss_res;
785
89.6M
        pmat->tx = 0;
786
89.6M
        pmat->ty = (float)dev->height;
787
        /****** tx/y is WRONG for devices with ******/
788
        /****** arbitrary initial matrix ******/
789
89.6M
        break;
790
89.6M
    }
791
89.6M
}
792
/* Get the initial matrix for a device with upright Y. */
793
/* This includes just a few printers and window systems. */
794
void
795
gx_upright_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
796
3.99M
{
797
3.99M
    pmat->xx = dev->HWResolution[0] / 72.0; /* x_pixels_per_inch */
798
3.99M
    pmat->xy = 0;
799
3.99M
    pmat->yx = 0;
800
3.99M
    pmat->yy = dev->HWResolution[1] / 72.0; /* y_pixels_per_inch */
801
    /****** tx/y is WRONG for devices with ******/
802
    /****** arbitrary initial matrix ******/
803
3.99M
    pmat->tx = 0;
804
3.99M
    pmat->ty = 0;
805
3.99M
}
806
807
int
808
gx_default_sync_output(gx_device * dev) /* lgtm [cpp/useless-expression] */
809
1.39M
{
810
1.39M
    return 0;
811
1.39M
}
812
813
int
814
gx_default_output_page(gx_device * dev, int num_copies, int flush)
815
16
{
816
16
    int code = dev_proc(dev, sync_output)(dev);
817
818
16
    if (code >= 0)
819
16
        code = gx_finish_output_page(dev, num_copies, flush);
820
16
    return code;
821
16
}
822
823
int
824
gx_default_close_device(gx_device * dev)
825
1.03M
{
826
1.03M
    return 0;
827
1.03M
}
828
829
gx_device *
830
gx_default_get_page_device(gx_device * dev)
831
665k
{
832
665k
    return NULL;
833
665k
}
834
gx_device *
835
gx_page_device_get_page_device(gx_device * dev)
836
39.4M
{
837
39.4M
    return dev;
838
39.4M
}
839
840
int
841
gx_default_get_alpha_bits(gx_device * dev, graphics_object_type type)
842
65.6M
{
843
65.6M
    return (type == go_text ? dev->color_info.anti_alias.text_bits :
844
65.6M
            dev->color_info.anti_alias.graphics_bits);
845
65.6M
}
846
847
void
848
gx_default_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
849
54.5M
{
850
54.5M
    pbox->p.x = 0;
851
54.5M
    pbox->p.y = 0;
852
54.5M
    pbox->q.x = int2fixed(dev->width);
853
54.5M
    pbox->q.y = int2fixed(dev->height);
854
54.5M
}
855
void
856
gx_get_largest_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
857
682
{
858
682
    pbox->p.x = min_fixed;
859
682
    pbox->p.y = min_fixed;
860
682
    pbox->q.x = max_fixed;
861
682
    pbox->q.y = max_fixed;
862
682
}
863
864
int
865
gx_no_composite(gx_device * dev, gx_device ** pcdev,
866
                        const gs_composite_t * pcte,
867
                        gs_gstate * pgs, gs_memory_t * memory,
868
                        gx_device *cdev)
869
0
{
870
0
    return_error(gs_error_unknownerror);  /* not implemented */
871
0
}
872
int
873
gx_default_composite(gx_device * dev, gx_device ** pcdev,
874
                             const gs_composite_t * pcte,
875
                             gs_gstate * pgs, gs_memory_t * memory,
876
                             gx_device *cdev)
877
12.4M
{
878
12.4M
    return pcte->type->procs.create_default_compositor
879
12.4M
        (pcte, pcdev, dev, pgs, memory);
880
12.4M
}
881
int
882
gx_null_composite(gx_device * dev, gx_device ** pcdev,
883
                          const gs_composite_t * pcte,
884
                          gs_gstate * pgs, gs_memory_t * memory,
885
                          gx_device *cdev)
886
0
{
887
0
    *pcdev = dev;
888
0
    return 0;
889
0
}
890
891
/*
892
 * Default handler for creating a compositor device when writing the clist. */
893
int
894
gx_default_composite_clist_write_update(const gs_composite_t *pcte, gx_device * dev,
895
                gx_device ** pcdev, gs_gstate * pgs, gs_memory_t * mem)
896
673k
{
897
673k
    *pcdev = dev;   /* Do nothing -> return the same device */
898
673k
    return 0;
899
673k
}
900
901
/* Default handler for adjusting a compositor's CTM. */
902
int
903
gx_default_composite_adjust_ctm(gs_composite_t *pcte, int x0, int y0, gs_gstate *pgs)
904
89.9M
{
905
89.9M
    return 0;
906
89.9M
}
907
908
/*
909
 * Default check for closing compositor.
910
 */
911
gs_compositor_closing_state
912
gx_default_composite_is_closing(const gs_composite_t *this, gs_composite_t **pcte, gx_device *dev)
913
0
{
914
0
    return COMP_ENQUEUE;
915
0
}
916
917
/*
918
 * Default check whether a next operation is friendly to the compositor.
919
 */
920
bool
921
gx_default_composite_is_friendly(const gs_composite_t *this, byte cmd0, byte cmd1)
922
987k
{
923
987k
    return false;
924
987k
}
925
926
/*
927
 * Default handler for updating the clist device when reading a compositing
928
 * device.
929
 */
930
int
931
gx_default_composite_clist_read_update(gs_composite_t *pxcte, gx_device * cdev,
932
                gx_device * tdev, gs_gstate * pgs, gs_memory_t * mem)
933
89.9M
{
934
89.9M
    return 0;     /* Do nothing */
935
89.9M
}
936
937
/*
938
 * Default handler for get_cropping returns no cropping.
939
 */
940
int
941
gx_default_composite_get_cropping(const gs_composite_t *pxcte, int *ry, int *rheight,
942
                                  int cropping_min, int cropping_max)
943
673k
{
944
673k
    return 0;     /* No cropping. */
945
673k
}
946
947
int
948
gx_default_initialize_device(gx_device *dev)
949
0
{
950
0
    return 0;
951
0
}
952
953
int
954
gx_default_dev_spec_op(gx_device *pdev, int dev_spec_op, void *data, int size)
955
347M
{
956
347M
    switch(dev_spec_op) {
957
0
        case gxdso_form_begin:
958
0
        case gxdso_form_end:
959
50.3k
        case gxdso_pattern_can_accum:
960
50.3k
        case gxdso_pattern_start_accum:
961
50.3k
        case gxdso_pattern_finish_accum:
962
128k
        case gxdso_pattern_load:
963
3.11M
        case gxdso_pattern_shading_area:
964
4.07M
        case gxdso_pattern_is_cpath_accum:
965
4.07M
        case gxdso_pattern_handles_clip_path:
966
4.12M
        case gxdso_is_pdf14_device:
967
90.3M
        case gxdso_supports_devn:
968
90.3M
        case gxdso_supports_hlcolor:
969
90.7M
        case gxdso_supports_saved_pages:
970
90.7M
        case gxdso_needs_invariant_palette:
971
91.0M
        case gxdso_supports_iccpostrender:
972
91.7M
        case gxdso_supports_alpha:
973
91.9M
        case gxdso_pdf14_sep_device:
974
93.3M
        case gxdso_supports_pattern_transparency:
975
93.3M
        case gxdso_overprintsim_state:
976
93.5M
        case gxdso_skip_icc_component_validation:
977
93.5M
            return 0;
978
263
        case gxdso_pattern_shfill_doesnt_need_path:
979
263
            return (dev_proc(pdev, fill_path) == gx_default_fill_path);
980
29.9M
        case gxdso_is_std_cmyk_1bit:
981
29.9M
            return (dev_proc(pdev, map_cmyk_color) == cmyk_1bit_map_cmyk_color);
982
0
        case gxdso_interpolate_antidropout:
983
0
            return pdev->color_info.use_antidropout_downscaler;
984
1.14M
        case gxdso_interpolate_threshold:
985
1.14M
            if ((pdev->color_info.num_components == 1 &&
986
416k
                 pdev->color_info.max_gray < 15) ||
987
888k
                (pdev->color_info.num_components > 1 &&
988
730k
                 pdev->color_info.max_color < 15)) {
989
                /* If we are a limited color device (i.e. we are halftoning)
990
                 * then only interpolate if we are upscaling by at least 4 */
991
611k
                return 4;
992
611k
            }
993
535k
            return 0; /* Otherwise no change */
994
4.88M
        case gxdso_get_dev_param:
995
4.88M
            {
996
4.88M
                dev_param_req_t *request = (dev_param_req_t *)data;
997
4.88M
                return gx_default_get_param(pdev, request->Param, request->list);
998
1.14M
            }
999
2.73M
        case gxdso_current_output_device:
1000
2.73M
            {
1001
2.73M
                *(gx_device **)data = pdev;
1002
2.73M
                return 0;
1003
1.14M
            }
1004
35.8k
        case gxdso_copy_color_is_fast:
1005
35.8k
            return (dev_proc(pdev, copy_color) != gx_default_copy_color);
1006
580k
        case gxdso_is_encoding_direct:
1007
580k
            if (pdev->color_info.depth != 8 * pdev->color_info.num_components)
1008
0
                return 0;
1009
580k
            return (dev_proc(pdev, encode_color) == gx_default_encode_color ||
1010
580k
                    dev_proc(pdev, encode_color) == gx_default_rgb_map_rgb_color);
1011
        /* Just ignore information about events */
1012
0
        case gxdso_event_info:
1013
0
            return 0;
1014
12.6M
        case gxdso_overprint_active:
1015
12.6M
            return 0;
1016
347M
    }
1017
347M
    return_error(gs_error_undefined);
1018
347M
}
1019
1020
int
1021
gx_default_fill_rectangle_hl_color(gx_device *pdev,
1022
    const gs_fixed_rect *rect,
1023
    const gs_gstate *pgs, const gx_drawing_color *pdcolor,
1024
    const gx_clip_path *pcpath)
1025
6
{
1026
6
    return_error(gs_error_rangecheck);
1027
6
}
1028
1029
int
1030
gx_default_include_color_space(gx_device *pdev, gs_color_space *cspace,
1031
        const byte *res_name, int name_length)
1032
0
{
1033
0
    return 0;
1034
0
}
1035
1036
/*
1037
 * If a device wants to determine an equivalent color for its spot colors then
1038
 * it needs to implement this method.  See comments at the start of
1039
 * src/gsequivc.c.
1040
 */
1041
int
1042
gx_default_update_spot_equivalent_colors(gx_device *pdev, const gs_gstate * pgs, const gs_color_space *pcs)
1043
2.21k
{
1044
2.21k
    return 0;
1045
2.21k
}
1046
1047
/*
1048
 * If a device wants to determine implement support for spot colors then
1049
 * it needs to implement this method.
1050
 */
1051
gs_devn_params *
1052
gx_default_ret_devn_params(gx_device *pdev)
1053
145M
{
1054
145M
    return NULL;
1055
145M
}
1056
1057
int
1058
gx_default_process_page(gx_device *dev, gx_process_page_options_t *options)
1059
0
{
1060
0
    gs_int_rect rect;
1061
0
    int code = 0;
1062
0
    void *buffer = NULL;
1063
1064
    /* Possible future improvements in here could be given by us dividing the
1065
     * page up into n chunks, and spawning a thread per chunk to do the
1066
     * process_fn call on. n could be given by NumRenderingThreads. This
1067
     * would give us multi-core advantages even without clist. */
1068
0
    if (options->init_buffer_fn) {
1069
0
        code = options->init_buffer_fn(options->arg, dev, dev->memory, dev->width, dev->height, &buffer);
1070
0
        if (code < 0)
1071
0
            return code;
1072
0
    }
1073
1074
0
    rect.p.x = 0;
1075
0
    rect.p.y = 0;
1076
0
    rect.q.x = dev->width;
1077
0
    rect.q.y = dev->height;
1078
0
    if (options->process_fn)
1079
0
        code = options->process_fn(options->arg, dev, dev, &rect, buffer);
1080
0
    if (code >= 0 && options->output_fn)
1081
0
        code = options->output_fn(options->arg, dev, buffer);
1082
1083
0
    if (options->free_buffer_fn)
1084
0
        options->free_buffer_fn(options->arg, dev, dev->memory, buffer);
1085
1086
0
    return code;
1087
0
}
1088
1089
int
1090
gx_default_begin_transparency_group(gx_device *dev, const gs_transparency_group_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1091
0
{
1092
0
    return 0;
1093
0
}
1094
1095
int
1096
gx_default_end_transparency_group(gx_device *dev, gs_gstate *pgs)
1097
0
{
1098
0
    return 0;
1099
0
}
1100
1101
int
1102
gx_default_begin_transparency_mask(gx_device *dev, const gx_transparency_mask_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1103
0
{
1104
0
    return 0;
1105
0
}
1106
1107
int
1108
gx_default_end_transparency_mask(gx_device *dev, gs_gstate *pgs)
1109
0
{
1110
0
    return 0;
1111
0
}
1112
1113
int
1114
gx_default_discard_transparency_layer(gx_device *dev, gs_gstate *pgs)
1115
0
{
1116
0
    return 0;
1117
0
}
1118
1119
int
1120
gx_default_push_transparency_state(gx_device *dev, gs_gstate *pgs)
1121
0
{
1122
0
    return 0;
1123
0
}
1124
1125
int
1126
gx_default_pop_transparency_state(gx_device *dev, gs_gstate *pgs)
1127
0
{
1128
0
    return 0;
1129
0
}
1130
1131
int
1132
gx_default_put_image(gx_device *dev, gx_device *mdev, const byte **buffers, int num_chan, int x, int y, int width, int height, int row_stride, int alpha_plane_index, int tag_plane_index)
1133
22.1k
{
1134
22.1k
    return_error(gs_error_undefined);
1135
22.1k
}
1136
1137
int
1138
gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth)
1139
0
{
1140
0
    return_error(gs_error_undefined);
1141
0
}
1142
1143
int
1144
gx_default_copy_planes(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, int plane_height)
1145
0
{
1146
0
    return_error(gs_error_undefined);
1147
0
}
1148
1149
/* ---------------- Default per-instance procedures ---------------- */
1150
1151
int
1152
gx_default_install(gx_device * dev, gs_gstate * pgs)
1153
788k
{
1154
788k
    return 0;
1155
788k
}
1156
1157
int
1158
gx_default_begin_page(gx_device * dev, gs_gstate * pgs)
1159
1.02M
{
1160
1.02M
    return 0;
1161
1.02M
}
1162
1163
int
1164
gx_default_end_page(gx_device * dev, int reason, gs_gstate * pgs)
1165
1.22M
{
1166
1.22M
    return (reason != 2 ? 1 : 0);
1167
1.22M
}
1168
1169
void
1170
gx_default_set_graphics_type_tag(gx_device *dev, gs_graphics_type_tag_t graphics_type_tag)
1171
4.31M
{
1172
    /* set the tag but carefully preserve GS_DEVICE_ENCODES_TAGS */
1173
4.31M
    dev->graphics_type_tag = (dev->graphics_type_tag & GS_DEVICE_ENCODES_TAGS) | graphics_type_tag;
1174
4.31M
}
1175
1176
/* ---------------- Device subclassing procedures ---------------- */
1177
1178
/* Non-obvious code. The 'dest_procs' is the 'procs' memory occupied by the original device that we decided to subclass,
1179
 * 'src_procs' is the newly allocated piece of memory, to which we have already copied the content of the
1180
 * original device (including the procs), prototype is the device structure prototype for the subclassing device.
1181
 * Here we copy the methods from the prototype to the original device procs memory *but* if the original (src_procs)
1182
 * device had a NULL method, we make the new device procs have a NULL method too.
1183
 * The reason for ths is ugly, there are some places in the graphics library which explicitly check for
1184
 * a device having a NULL method and take different code paths depending on the result.
1185
 * Now in general we expect subclassing devices to implement *every* method, so if we didn't copy
1186
 * over NULL methods present in the original source device then the code path could be inappropriate for
1187
 * that underlying (now subclassed) device.
1188
 */
1189
/* November 10th 2017 Restored the original behaviour of the device methods, they should now never be NULL.
1190
 * Howwever, there are still places in the code which take different code paths if the device method is (now)
1191
 * the default device method, rather than a device-specific method.
1192
 * So instead of checking for NULL, we now need to check against the default implementation, and *NOT* copy the
1193
 * prototype (subclass device) method if the original device had the default implementation.
1194
 * I suspect a combination of forwarding and subclassing devices will not work properly for this reason.
1195
 */
1196
int gx_copy_device_procs(gx_device *dest, const gx_device *src, const gx_device *pprototype)
1197
36.9k
{
1198
36.9k
    gx_device prototype = *pprototype;
1199
1200
    /* In the new (as of 2021) world, the prototype does not contain
1201
     * device procs. We need to call the 'initialize_device_procs'
1202
     * function to properly populate the procs array. We can't write to
1203
     * the const prototype pointer we are passed in, so copy it to a
1204
     * local block, and initialize that instead, */
1205
36.9k
    prototype.initialize_device_procs(&prototype);
1206
    /* Fill in missing entries with the global defaults */
1207
36.9k
    gx_device_fill_in_procs(&prototype);
1208
1209
36.9k
    if (dest->initialize_device_procs == NULL)
1210
0
       dest->initialize_device_procs = prototype.initialize_device_procs;
1211
1212
36.9k
    set_dev_proc(dest, initialize_device, dev_proc(&prototype, initialize_device));
1213
36.9k
    set_dev_proc(dest, open_device, dev_proc(&prototype, open_device));
1214
36.9k
    set_dev_proc(dest, get_initial_matrix, dev_proc(&prototype, get_initial_matrix));
1215
36.9k
    set_dev_proc(dest, sync_output, dev_proc(&prototype, sync_output));
1216
36.9k
    set_dev_proc(dest, output_page, dev_proc(&prototype, output_page));
1217
36.9k
    set_dev_proc(dest, close_device, dev_proc(&prototype, close_device));
1218
36.9k
    set_dev_proc(dest, map_rgb_color, dev_proc(&prototype, map_rgb_color));
1219
36.9k
    set_dev_proc(dest, map_color_rgb, dev_proc(&prototype, map_color_rgb));
1220
36.9k
    set_dev_proc(dest, fill_rectangle, dev_proc(&prototype, fill_rectangle));
1221
36.9k
    set_dev_proc(dest, copy_mono, dev_proc(&prototype, copy_mono));
1222
36.9k
    set_dev_proc(dest, copy_color, dev_proc(&prototype, copy_color));
1223
36.9k
    set_dev_proc(dest, get_params, dev_proc(&prototype, get_params));
1224
36.9k
    set_dev_proc(dest, put_params, dev_proc(&prototype, put_params));
1225
36.9k
    set_dev_proc(dest, map_cmyk_color, dev_proc(&prototype, map_cmyk_color));
1226
36.9k
    set_dev_proc(dest, get_page_device, dev_proc(&prototype, get_page_device));
1227
36.9k
    set_dev_proc(dest, get_alpha_bits, dev_proc(&prototype, get_alpha_bits));
1228
36.9k
    set_dev_proc(dest, copy_alpha, dev_proc(&prototype, copy_alpha));
1229
36.9k
    set_dev_proc(dest, fill_path, dev_proc(&prototype, fill_path));
1230
36.9k
    set_dev_proc(dest, stroke_path, dev_proc(&prototype, stroke_path));
1231
36.9k
    set_dev_proc(dest, fill_trapezoid, dev_proc(&prototype, fill_trapezoid));
1232
36.9k
    set_dev_proc(dest, fill_parallelogram, dev_proc(&prototype, fill_parallelogram));
1233
36.9k
    set_dev_proc(dest, fill_triangle, dev_proc(&prototype, fill_triangle));
1234
36.9k
    set_dev_proc(dest, draw_thin_line, dev_proc(&prototype, draw_thin_line));
1235
36.9k
    set_dev_proc(dest, strip_tile_rectangle, dev_proc(&prototype, strip_tile_rectangle));
1236
36.9k
    set_dev_proc(dest, get_clipping_box, dev_proc(&prototype, get_clipping_box));
1237
36.9k
    set_dev_proc(dest, begin_typed_image, dev_proc(&prototype, begin_typed_image));
1238
36.9k
    set_dev_proc(dest, get_bits_rectangle, dev_proc(&prototype, get_bits_rectangle));
1239
36.9k
    set_dev_proc(dest, composite, dev_proc(&prototype, composite));
1240
36.9k
    set_dev_proc(dest, get_hardware_params, dev_proc(&prototype, get_hardware_params));
1241
36.9k
    set_dev_proc(dest, text_begin, dev_proc(&prototype, text_begin));
1242
36.9k
    set_dev_proc(dest, discard_transparency_layer, dev_proc(&prototype, discard_transparency_layer));
1243
36.9k
    set_dev_proc(dest, get_color_mapping_procs, dev_proc(&prototype, get_color_mapping_procs));
1244
36.9k
    set_dev_proc(dest, get_color_comp_index, dev_proc(&prototype, get_color_comp_index));
1245
36.9k
    set_dev_proc(dest, encode_color, dev_proc(&prototype, encode_color));
1246
36.9k
    set_dev_proc(dest, decode_color, dev_proc(&prototype, decode_color));
1247
36.9k
    set_dev_proc(dest, fill_rectangle_hl_color, dev_proc(&prototype, fill_rectangle_hl_color));
1248
36.9k
    set_dev_proc(dest, include_color_space, dev_proc(&prototype, include_color_space));
1249
36.9k
    set_dev_proc(dest, fill_linear_color_scanline, dev_proc(&prototype, fill_linear_color_scanline));
1250
36.9k
    set_dev_proc(dest, fill_linear_color_trapezoid, dev_proc(&prototype, fill_linear_color_trapezoid));
1251
36.9k
    set_dev_proc(dest, fill_linear_color_triangle, dev_proc(&prototype, fill_linear_color_triangle));
1252
36.9k
    set_dev_proc(dest, update_spot_equivalent_colors, dev_proc(&prototype, update_spot_equivalent_colors));
1253
36.9k
    set_dev_proc(dest, ret_devn_params, dev_proc(&prototype, ret_devn_params));
1254
36.9k
    set_dev_proc(dest, fillpage, dev_proc(&prototype, fillpage));
1255
36.9k
    set_dev_proc(dest, push_transparency_state, dev_proc(&prototype, push_transparency_state));
1256
36.9k
    set_dev_proc(dest, pop_transparency_state, dev_proc(&prototype, pop_transparency_state));
1257
36.9k
    set_dev_proc(dest, dev_spec_op, dev_proc(&prototype, dev_spec_op));
1258
36.9k
    set_dev_proc(dest, get_profile, dev_proc(&prototype, get_profile));
1259
36.9k
    set_dev_proc(dest, strip_copy_rop2, dev_proc(&prototype, strip_copy_rop2));
1260
36.9k
    set_dev_proc(dest, strip_tile_rect_devn, dev_proc(&prototype, strip_tile_rect_devn));
1261
36.9k
    set_dev_proc(dest, process_page, dev_proc(&prototype, process_page));
1262
36.9k
    set_dev_proc(dest, transform_pixel_region, dev_proc(&prototype, transform_pixel_region));
1263
36.9k
    set_dev_proc(dest, fill_stroke_path, dev_proc(&prototype, fill_stroke_path));
1264
36.9k
    set_dev_proc(dest, lock_pattern, dev_proc(&prototype, lock_pattern));
1265
1266
    /*
1267
     * We absolutely must set the 'set_graphics_type_tag' to the default subclass one
1268
     * even if the subclassed device is using the default. This is because the
1269
     * default implementation sets a flag in the device structure, and if we
1270
     * copy the default method, we'll end up setting the flag in the subclassing device
1271
     * instead of the subclassed device!
1272
     */
1273
36.9k
    set_dev_proc(dest, set_graphics_type_tag, dev_proc(&prototype, set_graphics_type_tag));
1274
1275
    /* These are the routines whose existence is checked against the default at
1276
     * some point in the code. The code path differs when the device implements a
1277
     * method other than the default, so the subclassing device needs to ensure that
1278
     * if the subclassed device has one of these methods set to the default, we
1279
     * do not overwrite the default method.
1280
     */
1281
36.9k
    if (dev_proc(src, fill_mask) != gx_default_fill_mask)
1282
25.2k
        set_dev_proc(dest, fill_mask, dev_proc(&prototype, fill_mask));
1283
36.9k
    if (dev_proc(src, begin_transparency_group) != gx_default_begin_transparency_group)
1284
0
        set_dev_proc(dest, begin_transparency_group, dev_proc(&prototype, begin_transparency_group));
1285
36.9k
    if (dev_proc(src, end_transparency_group) != gx_default_end_transparency_group)
1286
0
        set_dev_proc(dest, end_transparency_group, dev_proc(&prototype, end_transparency_group));
1287
36.9k
    if (dev_proc(src, put_image) != gx_default_put_image)
1288
0
        set_dev_proc(dest, put_image, dev_proc(&prototype, put_image));
1289
36.9k
    if (dev_proc(src, copy_planes) != gx_default_copy_planes)
1290
0
        set_dev_proc(dest, copy_planes, dev_proc(&prototype, copy_planes));
1291
36.9k
    if (dev_proc(src, copy_alpha_hl_color) != gx_default_no_copy_alpha_hl_color)
1292
0
        set_dev_proc(dest, copy_alpha_hl_color, dev_proc(&prototype, copy_alpha_hl_color));
1293
1294
36.9k
    return 0;
1295
36.9k
}
1296
1297
int gx_device_subclass(gx_device *dev_to_subclass, gx_device *new_prototype, unsigned int private_data_size)
1298
36.9k
{
1299
36.9k
    gx_device *child_dev;
1300
36.9k
    void *psubclass_data;
1301
36.9k
    gs_memory_struct_type_t *a_std = NULL, *b_std = NULL;
1302
36.9k
    int dynamic = dev_to_subclass->stype_is_dynamic;
1303
36.9k
    char *ptr, *ptr1;
1304
1305
    /* If this happens we are stuffed, as there is no way to get hold
1306
     * of the original device's stype structure, which means we cannot
1307
     * allocate a replacement structure. Abort if so.
1308
     * Also abort if the new_prototype device struct is too large.
1309
     */
1310
36.9k
    if (!dev_to_subclass->stype ||
1311
36.9k
        dev_to_subclass->stype->ssize < new_prototype->params_size)
1312
6
        return_error(gs_error_VMerror);
1313
1314
    /* We make a 'stype' structure for our new device, and copy the old stype into it
1315
     * This means our new device will always have the 'stype_is_dynamic' flag set
1316
     */
1317
36.9k
    a_std = (gs_memory_struct_type_t *)
1318
36.9k
        gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*a_std),
1319
36.9k
                                 "gs_device_subclass(stype)");
1320
36.9k
    if (!a_std)
1321
0
        return_error(gs_error_VMerror);
1322
36.9k
    *a_std = *dev_to_subclass->stype;
1323
36.9k
    a_std->ssize = dev_to_subclass->params_size;
1324
1325
36.9k
    if (!dynamic) {
1326
36.9k
        b_std = (gs_memory_struct_type_t *)
1327
36.9k
            gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*b_std),
1328
36.9k
                                     "gs_device_subclass(stype)");
1329
36.9k
        if (!b_std) {
1330
0
            gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1331
0
            return_error(gs_error_VMerror);
1332
0
        }
1333
36.9k
    }
1334
1335
    /* Allocate a device structure for the new child device */
1336
36.9k
    child_dev = gs_alloc_struct_immovable(dev_to_subclass->memory->stable_memory, gx_device, a_std,
1337
36.9k
                                        "gs_device_subclass(device)");
1338
36.9k
    if (child_dev == 0) {
1339
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1340
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1341
0
        return_error(gs_error_VMerror);
1342
0
    }
1343
1344
    /* Make sure all methods are filled in, note this won't work for a forwarding device
1345
     * so forwarding devices will have to be filled in before being subclassed. This doesn't fill
1346
     * in the fill_rectangle proc, that gets done in the ultimate device's open proc.
1347
     */
1348
36.9k
    gx_device_fill_in_procs(dev_to_subclass);
1349
36.9k
    memcpy(child_dev, dev_to_subclass, dev_to_subclass->stype->ssize);
1350
36.9k
    child_dev->stype = a_std;
1351
36.9k
    child_dev->stype_is_dynamic = 1;
1352
1353
    /* At this point, the only counted reference to the child is from its parent, and we need it to use the right allocator */
1354
36.9k
    rc_init(child_dev, dev_to_subclass->memory->stable_memory, 1);
1355
1356
36.9k
    psubclass_data = (void *)gs_alloc_bytes(dev_to_subclass->memory->non_gc_memory, private_data_size, "subclass memory for subclassing device");
1357
36.9k
    if (psubclass_data == 0){
1358
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1359
        /* We *don't* want to run the finalize routine. This would free the stype and
1360
         * properly handle the icc_struct and PageList, but for devices with a custom
1361
         * finalize (eg psdcmyk) it might also free memory it had allocated, and we're
1362
         * still pointing at that memory in the parent.
1363
         */
1364
0
        a_std->finalize = NULL;
1365
0
        gs_set_object_type(dev_to_subclass->memory->stable_memory, child_dev, a_std);
1366
0
        gs_free_object(dev_to_subclass->memory->stable_memory, child_dev, "free subclass memory for subclassing device");
1367
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1368
0
        return_error(gs_error_VMerror);
1369
0
    }
1370
36.9k
    memset(psubclass_data, 0x00, private_data_size);
1371
1372
36.9k
    gx_copy_device_procs(dev_to_subclass, child_dev, new_prototype);
1373
36.9k
    dev_to_subclass->finalize = new_prototype->finalize;
1374
36.9k
    dev_to_subclass->dname = new_prototype->dname;
1375
36.9k
    if (dev_to_subclass->icc_struct)
1376
36.9k
        rc_increment(dev_to_subclass->icc_struct);
1377
36.9k
    if (dev_to_subclass->PageList)
1378
36.9k
        rc_increment(dev_to_subclass->PageList);
1379
36.9k
    if (dev_to_subclass->NupControl)
1380
36.9k
        rc_increment(dev_to_subclass->NupControl);
1381
1382
36.9k
    dev_to_subclass->page_procs = new_prototype->page_procs;
1383
36.9k
    gx_subclass_fill_in_page_procs(dev_to_subclass);
1384
1385
    /* In case the new device we're creating has already been initialised, copy
1386
     * its additional data.
1387
     */
1388
36.9k
    ptr = ((char *)dev_to_subclass) + sizeof(gx_device);
1389
36.9k
    ptr1 = ((char *)new_prototype) + sizeof(gx_device);
1390
36.9k
    memcpy(ptr, ptr1, new_prototype->params_size - sizeof(gx_device));
1391
1392
    /* If the original device's stype structure was dynamically allocated, we need
1393
     * to 'fixup' the contents, it's procs need to point to the new device's procs
1394
     * for instance.
1395
     */
1396
36.9k
    if (dynamic) {
1397
0
        if (new_prototype->stype) {
1398
0
            b_std = (gs_memory_struct_type_t *)dev_to_subclass->stype;
1399
0
            *b_std = *new_prototype->stype;
1400
0
            b_std->ssize = a_std->ssize;
1401
0
            dev_to_subclass->stype_is_dynamic = 1;
1402
0
        } else {
1403
0
            gs_free_const_object(child_dev->memory->non_gc_memory, dev_to_subclass->stype,
1404
0
                             "unsubclass");
1405
0
            dev_to_subclass->stype = NULL;
1406
0
            b_std = (gs_memory_struct_type_t *)new_prototype->stype;
1407
0
            dev_to_subclass->stype_is_dynamic = 0;
1408
0
        }
1409
0
    }
1410
36.9k
    else {
1411
36.9k
        *b_std = *new_prototype->stype;
1412
36.9k
        b_std->ssize = a_std->ssize;
1413
36.9k
        dev_to_subclass->stype_is_dynamic = 1;
1414
36.9k
    }
1415
36.9k
    dev_to_subclass->stype = b_std;
1416
    /* We have to patch up the "type" parameters that the memory manage/garbage
1417
     * collector will use, as well.
1418
     */
1419
36.9k
    gs_set_object_type(child_dev->memory, dev_to_subclass, b_std);
1420
1421
36.9k
    dev_to_subclass->subclass_data = psubclass_data;
1422
36.9k
    dev_to_subclass->child = child_dev;
1423
36.9k
    if (child_dev->parent) {
1424
0
        dev_to_subclass->parent = child_dev->parent;
1425
0
        child_dev->parent->child = dev_to_subclass;
1426
0
    }
1427
36.9k
    if (child_dev->child) {
1428
0
        child_dev->child->parent = child_dev;
1429
0
    }
1430
36.9k
    child_dev->parent = dev_to_subclass;
1431
1432
36.9k
    return 0;
1433
36.9k
}
1434
1435
void gx_device_unsubclass(gx_device *dev)
1436
0
{
1437
0
    generic_subclass_data *psubclass_data;
1438
0
    gx_device *parent, *child;
1439
0
    gs_memory_struct_type_t *a_std = 0, *b_std = 0;
1440
0
    int dynamic, ref_count;
1441
0
    gs_memory_t *rcmem;
1442
1443
    /* This should not happen... */
1444
0
    if (!dev)
1445
0
        return;
1446
1447
0
    ref_count = dev->rc.ref_count;
1448
0
    rcmem = dev->rc.memory;
1449
1450
0
    child = dev->child;
1451
0
    psubclass_data = (generic_subclass_data *)dev->subclass_data;
1452
0
    parent = dev->parent;
1453
0
    dynamic = dev->stype_is_dynamic;
1454
1455
    /* We need to account for the fact that we are removing ourselves from
1456
     * the device chain after a clist device has been pushed, due to a
1457
     * compositor action. Since we patched the clist 'composite'
1458
     * method (and target device) when it was pushed.
1459
     * A point to note; we *don't* want to change the forwarding device's
1460
     * 'target', because when we copy the child up to replace 'this' device
1461
     * we do still want the forwarding device to point here. NB its the *child*
1462
     * device that goes away.
1463
     */
1464
0
    if (psubclass_data != NULL && psubclass_data->forwarding_dev != NULL && psubclass_data->saved_compositor_method)
1465
0
        psubclass_data->forwarding_dev->procs.composite = psubclass_data->saved_compositor_method;
1466
1467
    /* If ths device's stype is dynamically allocated, keep a copy of it
1468
     * in case we might need it.
1469
     */
1470
0
    if (dynamic) {
1471
0
        a_std = (gs_memory_struct_type_t *)dev->stype;
1472
0
        if (child)
1473
0
            *a_std = *child->stype;
1474
0
    }
1475
1476
    /* If ths device has any private storage, free it now */
1477
0
    if (psubclass_data)
1478
0
        gs_free_object(dev->memory->non_gc_memory, psubclass_data, "gx_device_unsubclass");
1479
1480
    /* Copy the child device into ths device's memory */
1481
0
    if (child) {
1482
0
        b_std = (gs_memory_struct_type_t *)dev->stype;
1483
0
        rc_decrement(dev->icc_struct, "unsubclass device");
1484
0
        rc_increment(child->icc_struct);
1485
0
        memcpy(dev, child, child->stype->ssize);
1486
        /* Patch back the 'stype' in the memory manager */
1487
0
        gs_set_object_type(child->memory, dev, b_std);
1488
1489
0
        dev->stype = b_std;
1490
        /* The reference count of the subclassing device may have been
1491
         * changed (eg graphics states pointing to it) after we subclassed
1492
         * the device. We need to ensure that we do not overwrite this
1493
         * when we copy back the subclassed device.
1494
         */
1495
0
        dev->rc.ref_count = ref_count;
1496
0
        dev->rc.memory = rcmem;
1497
1498
        /* If we have a chain of devices, make sure the chain beyond the
1499
         * device we're unsubclassing doesn't get broken, we need to
1500
         * detach the lower chain and reattach it at the new highest level.
1501
         */
1502
0
        if (child->child)
1503
0
            child->child->parent = dev;
1504
0
        child->parent->child = child->child;
1505
0
    }
1506
1507
    /* How can we have a subclass device with no child ? Simples; when we
1508
     * hit the end of job restore, the devices are not freed in device
1509
     * chain order. To make sure we don't end up following stale pointers,
1510
     * when a device is freed we remove it from the chain and update
1511
     * any dangling pointers to NULL. When we later free the remaining
1512
     * devices it's possible that their child pointer can then be NULL.
1513
     */
1514
0
    if (child) {
1515
        /* We cannot afford to free the child device if its stype is not
1516
         * dynamic because we can't 'null' the finalise routine, and we
1517
         * cannot permit the device to be finalised because we have copied
1518
         * it up one level, not discarded it. (This shouldn't happen! Child
1519
         * devices are always created with a dynamic stype.) If this ever
1520
         * happens garbage collecton will eventually clean up the memory.
1521
         */
1522
0
        if (child->stype_is_dynamic) {
1523
            /* Make sure that nothing will try to follow the device chain,
1524
             * just security here. */
1525
0
            child->parent = NULL;
1526
0
            child->child = NULL;
1527
1528
            /* We *don't* want to run the finalize routine. This would free
1529
             * the stype and properly handle the icc_struct and PageList,
1530
             * but for devices with a custom finalize (eg psdcmyk) it might
1531
             * also free memory it had allocated, and we're still pointing
1532
             * at that memory in the parent. The indirection through a
1533
             * variable is just to get rid of const warnings.
1534
             */
1535
0
            b_std = (gs_memory_struct_type_t *)child->stype;
1536
0
            gs_free_const_object(dev->memory->non_gc_memory, b_std, "gs_device_unsubclass(stype)");
1537
            /* Make this into a generic device */
1538
0
            child->stype = &st_device;
1539
0
            child->stype_is_dynamic = false;
1540
1541
            /* We can't simply discard the child device, because there may be references to it elsewhere,
1542
               but equally, we really don't want it doing anything, so set the procs so actions are just discarded.
1543
             */
1544
0
            gx_copy_device_procs(child, (gx_device *)&gs_null_device, (gx_device *)&gs_null_device);
1545
1546
            /* Having changed the stype, we need to make sure the memory
1547
             * manager uses it. It keeps a copy in its own data structure,
1548
             * and would use that copy, which would mean it would call the
1549
             * finalize routine that we just patched out.
1550
             */
1551
0
            gs_set_object_type(dev->memory->stable_memory, child, child->stype);
1552
0
            child->finalize = NULL;
1553
            /* Now (finally) free the child memory */
1554
0
            rc_decrement(child, "gx_device_unsubclass(device)");
1555
0
        }
1556
0
    }
1557
0
    dev->parent = parent;
1558
1559
    /* If this device has a dynamic stype, we wnt to keep using it, but we copied
1560
     * the stype pointer from the child when we copied the rest of the device. So
1561
     * we update the stype pointer with the saved pointer to this device's stype.
1562
     */
1563
0
    if (dynamic) {
1564
0
        dev->stype = a_std;
1565
0
        dev->stype_is_dynamic = 1;
1566
0
    } else {
1567
0
        dev->stype_is_dynamic = 0;
1568
0
    }
1569
0
}
1570
1571
int gx_update_from_subclass(gx_device *dev)
1572
203k
{
1573
203k
    if (!dev->child)
1574
0
        return 0;
1575
1576
203k
    memcpy(&dev->color_info, &dev->child->color_info, sizeof(gx_device_color_info));
1577
203k
    memcpy(&dev->cached_colors, &dev->child->cached_colors, sizeof(gx_device_cached_colors_t));
1578
203k
    dev->max_fill_band = dev->child->max_fill_band;
1579
203k
    dev->width = dev->child->width;
1580
203k
    dev->height = dev->child->height;
1581
203k
    dev->pad = dev->child->pad;
1582
203k
    dev->log2_align_mod = dev->child->log2_align_mod;
1583
203k
    dev->max_fill_band = dev->child->max_fill_band;
1584
203k
    dev->num_planar_planes = dev->child->num_planar_planes;
1585
203k
    dev->LeadingEdge = dev->child->LeadingEdge;
1586
203k
    memcpy(&dev->ImagingBBox, &dev->child->ImagingBBox, sizeof(dev->child->ImagingBBox));
1587
203k
    dev->ImagingBBox_set = dev->child->ImagingBBox_set;
1588
203k
    memcpy(&dev->MediaSize, &dev->child->MediaSize, sizeof(dev->child->MediaSize));
1589
203k
    memcpy(&dev->HWResolution, &dev->child->HWResolution, sizeof(dev->child->HWResolution));
1590
203k
    memcpy(&dev->Margins, &dev->child->Margins, sizeof(dev->child->Margins));
1591
203k
    memcpy(&dev->HWMargins, &dev->child->HWMargins, sizeof(dev->child->HWMargins));
1592
203k
    dev->FirstPage = dev->child->FirstPage;
1593
203k
    dev->LastPage = dev->child->LastPage;
1594
203k
    dev->PageCount = dev->child->PageCount;
1595
203k
    dev->ShowpageCount = dev->child->ShowpageCount;
1596
203k
    dev->NumCopies = dev->child->NumCopies;
1597
203k
    dev->NumCopies_set = dev->child->NumCopies_set;
1598
203k
    dev->IgnoreNumCopies = dev->child->IgnoreNumCopies;
1599
203k
    dev->UseCIEColor = dev->child->UseCIEColor;
1600
203k
    dev->LockSafetyParams= dev->child->LockSafetyParams;
1601
203k
    dev->band_offset_x = dev->child->band_offset_y;
1602
203k
    dev->sgr = dev->child->sgr;
1603
203k
    dev->MaxPatternBitmap = dev->child->MaxPatternBitmap;
1604
203k
    dev->page_uses_transparency = dev->child->page_uses_transparency;
1605
203k
    memcpy(&dev->space_params, &dev->child->space_params, sizeof(gdev_space_params));
1606
203k
    dev->graphics_type_tag = dev->child->graphics_type_tag;
1607
1608
203k
    return 0;
1609
203k
}
1610
1611
int gx_subclass_composite(gx_device *dev, gx_device **pcdev, const gs_composite_t *pcte,
1612
    gs_gstate *pgs, gs_memory_t *memory, gx_device *cdev)
1613
0
{
1614
0
    pdf14_clist_device *p14dev;
1615
0
    generic_subclass_data *psubclass_data;
1616
0
    int code = 0;
1617
1618
0
    p14dev = (pdf14_clist_device *)dev;
1619
0
    psubclass_data = (generic_subclass_data *)p14dev->target->subclass_data;
1620
1621
0
    set_dev_proc(dev, composite, psubclass_data->saved_compositor_method);
1622
1623
0
    if (gs_is_pdf14trans_compositor(pcte) != 0 && strncmp(dev->dname, "pdf14clist", 10) == 0) {
1624
0
        const gs_pdf14trans_t * pdf14pct = (const gs_pdf14trans_t *) pcte;
1625
1626
0
        switch (pdf14pct->params.pdf14_op) {
1627
0
            case PDF14_POP_DEVICE:
1628
0
                {
1629
0
                    pdf14_clist_device *p14dev = (pdf14_clist_device *)dev;
1630
0
                    gx_device *subclass_device;
1631
1632
0
                    p14dev->target->color_info = p14dev->saved_target_color_info;
1633
0
                    if (p14dev->target->child) {
1634
0
                        p14dev->target->child->color_info = p14dev->saved_target_color_info;
1635
1636
0
                        set_dev_proc(p14dev->target->child, encode_color, p14dev->saved_target_encode_color);
1637
0
                        set_dev_proc(p14dev->target->child, decode_color, p14dev->saved_target_decode_color);
1638
0
                        set_dev_proc(p14dev->target->child, get_color_mapping_procs, p14dev->saved_target_get_color_mapping_procs);
1639
0
                        set_dev_proc(p14dev->target->child, get_color_comp_index, p14dev->saved_target_get_color_comp_index);
1640
0
                    }
1641
1642
0
                    pgs->get_cmap_procs = p14dev->save_get_cmap_procs;
1643
0
                    gx_set_cmap_procs(pgs, p14dev->target);
1644
1645
0
                    subclass_device = p14dev->target;
1646
0
                    p14dev->target = p14dev->target->child;
1647
1648
0
                    code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1649
1650
0
                    p14dev->target = subclass_device;
1651
1652
                    /* We return 0, rather than 1, as we have not created
1653
                     * a new compositor that wraps dev. */
1654
0
                    if (code == 1)
1655
0
                        code = 0;
1656
0
                    return code;
1657
0
                }
1658
0
                break;
1659
0
            default:
1660
0
                code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1661
0
                break;
1662
0
        }
1663
0
    } else {
1664
0
        code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1665
0
    }
1666
0
    set_dev_proc(dev, composite, gx_subclass_composite);
1667
0
    return code;
1668
0
}
1669
1670
typedef enum
1671
{
1672
    transform_pixel_region_portrait,
1673
    transform_pixel_region_landscape,
1674
    transform_pixel_region_skew
1675
} transform_pixel_region_posture;
1676
1677
typedef struct gx_default_transform_pixel_region_state_s gx_default_transform_pixel_region_state_t;
1678
1679
typedef int (gx_default_transform_pixel_region_render_fn)(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs);
1680
1681
struct gx_default_transform_pixel_region_state_s
1682
{
1683
    gs_memory_t *mem;
1684
    gx_dda_fixed_point pixels;
1685
    gx_dda_fixed_point rows;
1686
    gs_int_rect clip;
1687
    int w;
1688
    int h;
1689
    int spp;
1690
    transform_pixel_region_posture posture;
1691
    gs_logical_operation_t lop;
1692
    byte *line;
1693
    gx_default_transform_pixel_region_render_fn *render;
1694
};
1695
1696
static void
1697
get_portrait_y_extent(gx_default_transform_pixel_region_state_t *state, int *iy, int *ih)
1698
1.02M
{
1699
1.02M
    fixed y0, y1;
1700
1.02M
    gx_dda_fixed row = state->rows.y;
1701
1702
1.02M
    y0 = dda_current(row);
1703
1.02M
    dda_next(row);
1704
1.02M
    y1 = dda_current(row);
1705
1706
1.02M
    if (y1 < y0) {
1707
13.7k
        fixed t = y1; y1 = y0; y0 = t;
1708
13.7k
    }
1709
1710
1.02M
    *iy = fixed2int_pixround_perfect(y0);
1711
1.02M
    *ih = fixed2int_pixround_perfect(y1) - *iy;
1712
1.02M
}
1713
1714
static void
1715
get_landscape_x_extent(gx_default_transform_pixel_region_state_t *state, int *ix, int *iw)
1716
338
{
1717
338
    fixed x0, x1;
1718
338
    gx_dda_fixed row = state->rows.x;
1719
1720
338
    x0 = dda_current(row);
1721
338
    dda_next(row);
1722
338
    x1 = dda_current(row);
1723
1724
338
    if (x1 < x0) {
1725
0
        fixed t = x1; x1 = x0; x0 = t;
1726
0
    }
1727
1728
338
    *ix = fixed2int_pixround_perfect(x0);
1729
338
    *iw = fixed2int_pixround_perfect(x1) - *ix;
1730
338
}
1731
1732
static void
1733
get_skew_extents(gx_default_transform_pixel_region_state_t *state, fixed *w, fixed *h)
1734
6.08k
{
1735
6.08k
    fixed x0, x1, y0, y1;
1736
6.08k
    gx_dda_fixed_point row = state->rows;
1737
1738
6.08k
    x0 = dda_current(row.x);
1739
6.08k
    y0 = dda_current(row.y);
1740
6.08k
    dda_next(row.x);
1741
6.08k
    dda_next(row.y);
1742
6.08k
    x1 = dda_current(row.x);
1743
6.08k
    y1 = dda_current(row.y);
1744
1745
6.08k
    *w = x1-x0;
1746
6.08k
    *h = y1-y0;
1747
6.08k
}
1748
1749
static int
1750
transform_pixel_region_render_portrait(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1751
504k
{
1752
504k
    gs_logical_operation_t lop = state->lop;
1753
504k
    gx_dda_fixed_point pnext;
1754
504k
    int vci, vdi;
1755
504k
    int irun;     /* int x/rrun */
1756
504k
    int w = state->w;
1757
504k
    int h = state->h;
1758
504k
    int spp = state->spp;
1759
504k
    const byte *data = buffer[0] + data_x * spp;
1760
504k
    const byte *bufend = NULL;
1761
504k
    int code = 0;
1762
504k
    const byte *run = NULL;
1763
504k
    int k;
1764
504k
    gx_color_value *conc = &cmapper->conc[0];
1765
504k
    int to_rects;
1766
504k
    gx_cmapper_fn *mapper = cmapper->set_color;
1767
504k
    int minx, maxx;
1768
1769
504k
    if (h == 0)
1770
0
        return 0;
1771
1772
    /* Clip on Y */
1773
504k
    get_portrait_y_extent(state, &vci, &vdi);
1774
504k
    if (vci < state->clip.p.y)
1775
10.8k
        vdi += vci - state->clip.p.y, vci = state->clip.p.y;
1776
504k
    if (vci+vdi > state->clip.q.y)
1777
6.15k
        vdi = state->clip.q.y - vci;
1778
504k
    if (vdi <= 0)
1779
241k
        return 0;
1780
1781
262k
    pnext = state->pixels;
1782
262k
    dda_translate(pnext.x,  (-fixed_epsilon));
1783
262k
    irun = fixed2int_var_rounded(dda_current(pnext.x));
1784
262k
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1785
262k
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1786
262k
    to_rects = (dev->color_info.depth != spp*8);
1787
262k
    if (to_rects == 0) {
1788
253k
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1789
217k
            to_rects = 1;
1790
253k
    }
1791
1792
262k
    minx = state->clip.p.x;
1793
262k
    maxx = state->clip.q.x;
1794
262k
    bufend = data + w * spp;
1795
262k
    if (to_rects) {
1796
10.7M
        while (data < bufend) {
1797
            /* Find the length of the next run. It will either end when we hit
1798
             * the end of the source data, or when the pixel data differs. */
1799
10.5M
            run = data + spp;
1800
135M
            while (1) {
1801
135M
                dda_next(pnext.x);
1802
135M
                if (run >= bufend)
1803
227k
                    break;
1804
135M
                if (memcmp(run, data, spp))
1805
10.3M
                    break;
1806
124M
                run += spp;
1807
124M
            }
1808
            /* So we have a run of pixels from data to run that are all the same. */
1809
            /* This needs to be sped up */
1810
21.0M
            for (k = 0; k < spp; k++) {
1811
10.5M
                conc[k] = gx_color_value_from_byte(data[k]);
1812
10.5M
            }
1813
10.5M
            mapper(cmapper);
1814
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1815
10.5M
            {
1816
10.5M
                int xi = irun;
1817
10.5M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1818
1819
10.5M
                if (wi < 0)
1820
3.43k
                    xi += wi, wi = -wi;
1821
10.5M
                if (xi < minx)
1822
23.6k
                    wi += xi - minx, xi = minx;
1823
10.5M
                if (xi + wi > maxx)
1824
9.31k
                    wi = maxx - xi;
1825
10.5M
                if (wi > 0)
1826
8.04M
                    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1827
10.5M
                                                        &cmapper->devc, dev, lop);
1828
10.5M
            }
1829
10.5M
            if (code < 0)
1830
0
                goto err;
1831
10.5M
            data = run;
1832
10.5M
        }
1833
227k
    } else {
1834
35.8k
        int pending_left = irun;
1835
35.8k
        int pending_right;
1836
35.8k
        byte *out;
1837
35.8k
        int depth = spp;
1838
35.8k
        if (state->line == NULL) {
1839
273
            state->line = gs_alloc_bytes(state->mem,
1840
273
                                         (size_t)dev->width * depth,
1841
273
                                         "image line");
1842
273
            if (state->line == NULL)
1843
0
                return gs_error_VMerror;
1844
273
        }
1845
35.8k
        out = state->line;
1846
1847
35.8k
        if (minx < 0)
1848
0
            minx = 0;
1849
35.8k
        if (maxx > dev->width)
1850
0
            maxx = dev->width;
1851
1852
35.8k
        if (pending_left < minx)
1853
215
            pending_left = minx;
1854
35.6k
        else if (pending_left > maxx)
1855
0
            pending_left = maxx;
1856
35.8k
        pending_right = pending_left;
1857
1858
3.54M
        while (data < bufend) {
1859
            /* Find the length of the next run. It will either end when we hit
1860
             * the end of the source data, or when the pixel data differs. */
1861
3.51M
            run = data + spp;
1862
19.8M
            while (1) {
1863
19.8M
                dda_next(pnext.x);
1864
19.8M
                if (run >= bufend)
1865
35.8k
                    break;
1866
19.8M
                if (memcmp(run, data, spp))
1867
3.47M
                    break;
1868
16.3M
                run += spp;
1869
16.3M
            }
1870
            /* So we have a run of pixels from data to run that are all the same. */
1871
            /* This needs to be sped up */
1872
7.02M
            for (k = 0; k < spp; k++) {
1873
3.51M
                conc[k] = gx_color_value_from_byte(data[k]);
1874
3.51M
            }
1875
3.51M
            mapper(cmapper);
1876
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1877
3.51M
            {
1878
3.51M
                int xi = irun;
1879
3.51M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1880
1881
3.51M
                if (wi < 0)
1882
166
                    xi += wi, wi = -wi;
1883
1884
3.51M
                if (xi < minx)
1885
385
                    wi += xi - minx, xi = minx;
1886
3.51M
                if (xi + wi > maxx)
1887
82.5k
                    wi = maxx - xi;
1888
1889
3.51M
                if (wi > 0) {
1890
3.23M
                    if (color_is_pure(&cmapper->devc)) {
1891
3.23M
                        gx_color_index color = cmapper->devc.colors.pure;
1892
3.23M
                        int xii = xi * spp;
1893
1894
3.23M
                        if (pending_left > xi)
1895
166
                            pending_left = xi;
1896
3.23M
                        else
1897
3.23M
                            pending_right = xi + wi;
1898
18.1M
                        do {
1899
                            /* Excuse the double shifts below, that's to stop the
1900
                             * C compiler complaining if the color index type is
1901
                             * 32 bits. */
1902
18.1M
                            switch(depth)
1903
18.1M
                            {
1904
0
                            case 8: out[xii++] = ((color>>28)>>28) & 0xff;
1905
0
                            case 7: out[xii++] = ((color>>24)>>24) & 0xff;
1906
0
                            case 6: out[xii++] = ((color>>24)>>16) & 0xff;
1907
0
                            case 5: out[xii++] = ((color>>24)>>8) & 0xff;
1908
0
                            case 4: out[xii++] = (color>>24) & 0xff;
1909
0
                            case 3: out[xii++] = (color>>16) & 0xff;
1910
0
                            case 2: out[xii++] = (color>>8) & 0xff;
1911
18.1M
                            case 1: out[xii++] = color & 0xff;
1912
18.1M
                            }
1913
18.1M
                        } while (--wi != 0);
1914
3.23M
                    } else {
1915
0
                        if (pending_left != pending_right) {
1916
0
                            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1917
0
                            if (code < 0)
1918
0
                                goto err;
1919
0
                        }
1920
0
                        pending_left = pending_right = xi + (pending_left > xi ? 0 : wi);
1921
0
                        code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1922
0
                                                            &cmapper->devc, dev, lop);
1923
0
                    }
1924
3.23M
                }
1925
3.51M
                if (code < 0)
1926
0
                    goto err;
1927
3.51M
            }
1928
3.51M
            data = run;
1929
3.51M
        }
1930
35.8k
        if (pending_left != pending_right) {
1931
35.8k
            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1932
35.8k
            if (code < 0)
1933
0
                goto err;
1934
35.8k
        }
1935
35.8k
    }
1936
262k
    return 1;
1937
    /* Save position if error, in case we resume. */
1938
0
err:
1939
0
    buffer[0] = run;
1940
0
    return code;
1941
262k
}
1942
1943
static int
1944
transform_pixel_region_render_landscape(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1945
169
{
1946
169
    gs_logical_operation_t lop = state->lop;
1947
169
    gx_dda_fixed_point pnext;
1948
169
    int vci, vdi;
1949
169
    int irun;     /* int x/rrun */
1950
169
    int w = state->w;
1951
169
    int h = state->h;
1952
169
    int spp = state->spp;
1953
169
    const byte *data = buffer[0] + data_x * spp;
1954
169
    const byte *bufend = NULL;
1955
169
    int code = 0;
1956
169
    const byte *run;
1957
169
    int k;
1958
169
    gx_color_value *conc = &cmapper->conc[0];
1959
169
    int to_rects;
1960
169
    gx_cmapper_fn *mapper = cmapper->set_color;
1961
169
    int miny, maxy;
1962
1963
169
    if (h == 0)
1964
0
        return 0;
1965
1966
    /* Clip on X */
1967
169
    get_landscape_x_extent(state, &vci, &vdi);
1968
169
    if (vci < state->clip.p.x)
1969
0
        vdi += vci - state->clip.p.x, vci = state->clip.p.x;
1970
169
    if (vci+vdi > state->clip.q.x)
1971
0
        vdi = state->clip.q.x - vci;
1972
169
    if (vdi <= 0)
1973
159
        return 0;
1974
1975
10
    pnext = state->pixels;
1976
10
    dda_translate(pnext.x,  (-fixed_epsilon));
1977
10
    irun = fixed2int_var_rounded(dda_current(pnext.y));
1978
10
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1979
10
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1980
10
    to_rects = (dev->color_info.depth != spp*8);
1981
10
    if (to_rects == 0) {
1982
0
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1983
0
            to_rects = 1;
1984
0
    }
1985
1986
10
    miny = state->clip.p.y;
1987
10
    maxy = state->clip.q.y;
1988
10
    bufend = data + w * spp;
1989
64
    while (data < bufend) {
1990
        /* Find the length of the next run. It will either end when we hit
1991
         * the end of the source data, or when the pixel data differs. */
1992
54
        run = data + spp;
1993
70
        while (1) {
1994
70
            dda_next(pnext.y);
1995
70
            if (run >= bufend)
1996
10
                break;
1997
60
            if (memcmp(run, data, spp))
1998
44
                break;
1999
16
            run += spp;
2000
16
        }
2001
        /* So we have a run of pixels from data to run that are all the same. */
2002
        /* This needs to be sped up */
2003
108
        for (k = 0; k < spp; k++) {
2004
54
            conc[k] = gx_color_value_from_byte(data[k]);
2005
54
        }
2006
54
        mapper(cmapper);
2007
        /* Fill the region between irun and fixed2int_var_rounded(pnext.y) */
2008
54
        {              /* 90 degree rotated rectangle */
2009
54
            int yi = irun;
2010
54
            int hi = (irun = fixed2int_var_rounded(dda_current(pnext.y))) - yi;
2011
2012
54
            if (hi < 0)
2013
0
                yi += hi, hi = -hi;
2014
54
            if (yi < miny)
2015
0
                hi += yi - miny, yi = miny;
2016
54
            if (yi + hi > maxy)
2017
0
                hi = maxy - yi;
2018
54
            if (hi > 0)
2019
0
                code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
2020
54
                                                    &cmapper->devc, dev, lop);
2021
54
        }
2022
54
        if (code < 0)
2023
0
            goto err;
2024
54
        data = run;
2025
54
    }
2026
10
    return 1;
2027
    /* Save position if error, in case we resume. */
2028
0
err:
2029
0
    buffer[0] = run;
2030
0
    return code;
2031
10
}
2032
2033
static int
2034
transform_pixel_region_render_skew(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2035
6.08k
{
2036
6.08k
    gs_logical_operation_t lop = state->lop;
2037
6.08k
    gx_dda_fixed_point pnext;
2038
6.08k
    fixed xprev, yprev;
2039
6.08k
    fixed pdyx, pdyy;   /* edge of parallelogram */
2040
6.08k
    int w = state->w;
2041
6.08k
    int h = state->h;
2042
6.08k
    int spp = state->spp;
2043
6.08k
    const byte *data = buffer[0] + data_x * spp;
2044
6.08k
    fixed xpos;     /* x ditto */
2045
6.08k
    fixed ypos;     /* y ditto */
2046
6.08k
    const byte *bufend = data + w * spp;
2047
6.08k
    int code = 0;
2048
6.08k
    int k;
2049
6.08k
    byte initial_run[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
2050
6.08k
    const byte *prev = &initial_run[0];
2051
6.08k
    gx_cmapper_fn *mapper = cmapper->set_color;
2052
6.08k
    gx_color_value *conc = &cmapper->conc[0];
2053
2054
6.08k
    if (h == 0)
2055
0
        return 0;
2056
6.08k
    pnext = state->pixels;
2057
6.08k
    get_skew_extents(state, &pdyx, &pdyy);
2058
6.08k
    dda_translate(pnext.x,  (-fixed_epsilon));
2059
6.08k
    xprev = dda_current(pnext.x);
2060
6.08k
    yprev = dda_current(pnext.y);
2061
6.08k
    if_debug4m('b', dev->memory, "[b]y=? data_x=%d w=%d xt=%f yt=%f\n",
2062
6.08k
               data_x, w, fixed2float(xprev), fixed2float(yprev));
2063
6.08k
    initial_run[0] = ~data[0];  /* Force intial setting */
2064
1.17M
    while (data < bufend) {
2065
1.16M
        dda_next(pnext.x);
2066
1.16M
        dda_next(pnext.y);
2067
1.16M
        xpos = dda_current(pnext.x);
2068
1.16M
        ypos = dda_current(pnext.y);
2069
2070
1.16M
        if (memcmp(prev, data, spp) != 0)
2071
547k
        {
2072
            /* This needs to be sped up */
2073
1.09M
            for (k = 0; k < spp; k++) {
2074
547k
                conc[k] = gx_color_value_from_byte(data[k]);
2075
547k
            }
2076
547k
            mapper(cmapper);
2077
547k
        }
2078
        /* Fill the region between */
2079
        /* xprev/yprev and xpos/ypos */
2080
        /* Parallelogram */
2081
1.16M
        code = (*dev_proc(dev, fill_parallelogram))
2082
1.16M
                    (dev, xprev, yprev, xpos - xprev, ypos - yprev, pdyx, pdyy,
2083
1.16M
                     &cmapper->devc, lop);
2084
1.16M
        xprev = xpos;
2085
1.16M
        yprev = ypos;
2086
1.16M
        if (code < 0)
2087
0
            goto err;
2088
1.16M
        prev = data;
2089
1.16M
        data += spp;
2090
1.16M
    }
2091
6.08k
    return 1;
2092
    /* Save position if error, in case we resume. */
2093
0
err:
2094
    /* Only set buffer[0] if we've managed to set prev to something valid. */
2095
0
    if (prev != &initial_run[0]) buffer[0] = prev;
2096
0
    return code;
2097
6.08k
}
2098
2099
static int
2100
gx_default_transform_pixel_region_begin(gx_device *dev, int w, int h, int spp,
2101
                             const gx_dda_fixed_point *pixels, const gx_dda_fixed_point *rows,
2102
                             const gs_int_rect *clip, gs_logical_operation_t lop,
2103
                             gx_default_transform_pixel_region_state_t **statep)
2104
15.2k
{
2105
15.2k
    gx_default_transform_pixel_region_state_t *state;
2106
15.2k
    gs_memory_t *mem = dev->memory->non_gc_memory;
2107
2108
15.2k
    *statep = state = (gx_default_transform_pixel_region_state_t *)gs_alloc_bytes(mem, sizeof(gx_default_transform_pixel_region_state_t), "gx_default_transform_pixel_region_state_t");
2109
15.2k
    if (state == NULL)
2110
0
        return gs_error_VMerror;
2111
15.2k
    state->mem = mem;
2112
15.2k
    state->rows = *rows;
2113
15.2k
    state->pixels = *pixels;
2114
15.2k
    state->clip = *clip;
2115
15.2k
    state->w = w;
2116
15.2k
    state->h = h;
2117
15.2k
    state->spp = spp;
2118
15.2k
    state->lop = lop;
2119
15.2k
    state->line = NULL;
2120
2121
    /* FIXME: Consider sheers here too. Probably happens rarely enough not to be worth it. */
2122
15.2k
    if (rows->x.step.dQ == 0 && rows->x.step.dR == 0 && pixels->y.step.dQ == 0 && pixels->y.step.dR == 0)
2123
15.1k
        state->posture = transform_pixel_region_portrait;
2124
114
    else if (rows->y.step.dQ == 0 && rows->y.step.dR == 0 && pixels->x.step.dQ == 0 && pixels->x.step.dR == 0)
2125
2
        state->posture = transform_pixel_region_landscape;
2126
112
    else
2127
112
        state->posture = transform_pixel_region_skew;
2128
2129
15.2k
    if (state->posture == transform_pixel_region_portrait)
2130
15.1k
        state->render = transform_pixel_region_render_portrait;
2131
114
    else if (state->posture == transform_pixel_region_landscape)
2132
2
        state->render = transform_pixel_region_render_landscape;
2133
112
    else
2134
112
        state->render = transform_pixel_region_render_skew;
2135
2136
15.2k
    return 0;
2137
15.2k
}
2138
2139
static void
2140
step_to_next_line(gx_default_transform_pixel_region_state_t *state)
2141
529k
{
2142
529k
    fixed x = dda_current(state->rows.x);
2143
529k
    fixed y = dda_current(state->rows.y);
2144
2145
529k
    dda_next(state->rows.x);
2146
529k
    dda_next(state->rows.y);
2147
529k
    x = dda_current(state->rows.x) - x;
2148
529k
    y = dda_current(state->rows.y) - y;
2149
529k
    dda_translate(state->pixels.x, x);
2150
529k
    dda_translate(state->pixels.y, y);
2151
529k
}
2152
2153
static int
2154
gx_default_transform_pixel_region_data_needed(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2155
529k
{
2156
529k
    if (state->posture == transform_pixel_region_portrait) {
2157
523k
        int iy, ih;
2158
2159
523k
        get_portrait_y_extent(state, &iy, &ih);
2160
2161
523k
        if (iy + ih < state->clip.p.y || iy >= state->clip.q.y) {
2162
            /* Skip this line. */
2163
19.3k
            step_to_next_line(state);
2164
19.3k
            return 0;
2165
19.3k
        }
2166
523k
    } else if (state->posture == transform_pixel_region_landscape) {
2167
169
        int ix, iw;
2168
2169
169
        get_landscape_x_extent(state, &ix, &iw);
2170
2171
169
        if (ix + iw < state->clip.p.x || ix >= state->clip.q.x) {
2172
            /* Skip this line. */
2173
0
            step_to_next_line(state);
2174
0
            return 0;
2175
0
        }
2176
169
    }
2177
2178
510k
    return 1;
2179
529k
}
2180
2181
static int
2182
gx_default_transform_pixel_region_process_data(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2183
510k
{
2184
510k
    int ret = state->render(dev, state, buffer, data_x, cmapper, pgs);
2185
2186
510k
    step_to_next_line(state);
2187
510k
    return ret;
2188
510k
}
2189
2190
static int
2191
gx_default_transform_pixel_region_end(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2192
15.2k
{
2193
15.2k
    if (state) {
2194
15.2k
        gs_free_object(state->mem, state->line, "image line");
2195
15.2k
        gs_free_object(state->mem, state, "gx_default_transform_pixel_region_state_t");
2196
15.2k
    }
2197
15.2k
    return 0;
2198
15.2k
}
2199
2200
int
2201
gx_default_transform_pixel_region(gx_device *dev,
2202
                       transform_pixel_region_reason reason,
2203
                       transform_pixel_region_data *data)
2204
1.07M
{
2205
1.07M
    gx_default_transform_pixel_region_state_t *state = (gx_default_transform_pixel_region_state_t *)data->state;
2206
2207
1.07M
    switch (reason)
2208
1.07M
    {
2209
15.2k
    case transform_pixel_region_begin:
2210
15.2k
        return gx_default_transform_pixel_region_begin(dev, data->u.init.w, data->u.init.h, data->u.init.spp, data->u.init.pixels, data->u.init.rows, data->u.init.clip, data->u.init.lop, (gx_default_transform_pixel_region_state_t **)&data->state);
2211
529k
    case transform_pixel_region_data_needed:
2212
529k
        return gx_default_transform_pixel_region_data_needed(dev, state);
2213
510k
    case transform_pixel_region_process_data:
2214
510k
        return gx_default_transform_pixel_region_process_data(dev, state, data->u.process_data.buffer, data->u.process_data.data_x, data->u.process_data.cmapper, data->u.process_data.pgs);
2215
15.2k
    case transform_pixel_region_end:
2216
15.2k
        data->state = NULL;
2217
15.2k
        return gx_default_transform_pixel_region_end(dev, state);
2218
0
    default:
2219
0
        return gs_error_unknownerror;
2220
1.07M
    }
2221
1.07M
}