Coverage Report

Created: 2026-02-14 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/base/gxshade.c
Line
Count
Source
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Shading rendering support */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsrect.h"
22
#include "gxcspace.h"
23
#include "gscindex.h"
24
#include "gscie.h"    /* requires gscspace.h */
25
#include "gxdevcli.h"
26
#include "gxgstate.h"
27
#include "gxdht.h"    /* for computing # of different colors */
28
#include "gxpaint.h"
29
#include "gxshade.h"
30
#include "gxshade4.h"
31
#include "gsicc.h"
32
#include "gsicc_cache.h"
33
#include "gxcdevn.h"
34
#include "gximage.h"
35
36
/* Define a maximum smoothness value. */
37
/* smoothness > 0.2 produces severely blocky output. */
38
#define MAX_SMOOTHNESS 0.2
39
40
/* ================ Packed coordinate streams ================ */
41
42
/* Forward references */
43
static int cs_next_packed_value(shade_coord_stream_t *, int, uint *);
44
static int cs_next_array_value(shade_coord_stream_t *, int, uint *);
45
static int cs_next_packed_decoded(shade_coord_stream_t *, int,
46
                                   const float[2], float *);
47
static int cs_next_array_decoded(shade_coord_stream_t *, int,
48
                                  const float[2], float *);
49
static void cs_packed_align(shade_coord_stream_t *cs, int radix);
50
static void cs_array_align(shade_coord_stream_t *cs, int radix);
51
static bool cs_eod(const shade_coord_stream_t * cs);
52
53
/* Initialize a packed value stream. */
54
void
55
shade_next_init(shade_coord_stream_t * cs,
56
                const gs_shading_mesh_params_t * params,
57
                const gs_gstate * pgs)
58
1.62k
{
59
1.62k
    cs->params = params;
60
1.62k
    cs->pctm = &pgs->ctm;
61
1.62k
    if (data_source_is_stream(params->DataSource)) {
62
        /*
63
         * Rewind the data stream iff it is reusable -- either a reusable
64
         * file or a reusable string.
65
         */
66
1.62k
        stream *s = cs->s = params->DataSource.data.strm;
67
68
1.62k
        if ((s->file != 0 && s->file_limit != max_long) ||
69
1.62k
            (s->file == 0 && s->strm == 0)
70
1.62k
            )
71
1.62k
            sseek(s, 0);
72
1.62k
    } else {
73
0
        s_init(&cs->ds, NULL);
74
0
        sread_string(&cs->ds, params->DataSource.data.str.data,
75
0
                     params->DataSource.data.str.size);
76
0
        cs->s = &cs->ds;
77
0
    }
78
1.62k
    if (data_source_is_array(params->DataSource)) {
79
0
        cs->get_value = cs_next_array_value;
80
0
        cs->get_decoded = cs_next_array_decoded;
81
0
        cs->align = cs_array_align;
82
1.62k
    } else {
83
1.62k
        cs->get_value = cs_next_packed_value;
84
1.62k
        cs->get_decoded = cs_next_packed_decoded;
85
1.62k
        cs->align = cs_packed_align;
86
1.62k
    }
87
1.62k
    cs->is_eod = cs_eod;
88
1.62k
    cs->left = 0;
89
1.62k
    cs->ds_EOF = false;
90
1.62k
    cs->first_patch = 1;
91
1.62k
}
92
93
/* Check for the End-Of-Data state form a stream. */
94
static bool
95
cs_eod(const shade_coord_stream_t * cs)
96
630
{
97
630
    return cs->ds_EOF;
98
630
}
99
100
/* Get the next (integer) value from a packed value stream. */
101
/* 1 <= num_bits <= sizeof(uint) * 8. */
102
static int
103
cs_next_packed_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
104
30.6M
{
105
30.6M
    uint bits = cs->bits;
106
30.6M
    int left = cs->left;
107
108
30.6M
    if (left >= num_bits) {
109
        /* We can satisfy this request with the current buffered bits. */
110
9
        cs->left = left -= num_bits;
111
9
        *pvalue = (bits >> left) & ((1 << num_bits) - 1);
112
30.6M
    } else {
113
        /* We need more bits. */
114
30.6M
        int needed = num_bits - left;
115
30.6M
        uint value = bits & ((1 << left) - 1);  /* all the remaining bits */
116
117
121M
        for (; needed >= 8; needed -= 8) {
118
91.1M
            int b = sgetc(cs->s);
119
120
91.1M
            if (b < 0) {
121
1.26k
                cs->ds_EOF = true;
122
1.26k
                return_error(gs_error_rangecheck);
123
1.26k
            }
124
91.1M
            value = (value << 8) + b;
125
91.1M
        }
126
30.6M
        if (needed == 0) {
127
30.6M
            cs->left = 0;
128
30.6M
            *pvalue = value;
129
30.6M
        } else {
130
9
            int b = sgetc(cs->s);
131
132
9
            if (b < 0) {
133
0
                cs->ds_EOF = true;
134
0
                return_error(gs_error_rangecheck);
135
0
            }
136
9
            cs->bits = b;
137
9
            cs->left = left = 8 - needed;
138
9
            *pvalue = (value << needed) + (b >> left);
139
9
        }
140
30.6M
    }
141
30.6M
    return 0;
142
30.6M
}
143
144
/*
145
 * Get the next (integer) value from an unpacked array.  Note that
146
 * num_bits may be 0 if we are reading a coordinate or color value.
147
 */
148
static int
149
cs_next_array_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
150
0
{
151
0
    float value;
152
0
    uint read;
153
154
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
155
0
        read != sizeof(float)) {
156
0
        cs->ds_EOF = true;
157
0
        return_error(gs_error_rangecheck);
158
0
    }
159
0
    if (value < 0 || (num_bits != 0 && num_bits < sizeof(uint) * 8 &&
160
0
         value >= (1 << num_bits)) ||
161
0
        value != (uint)value
162
0
        )
163
0
        return_error(gs_error_rangecheck);
164
0
    *pvalue = (uint) value;
165
0
    return 0;
166
0
}
167
168
/* Get the next decoded floating point value. */
169
static int
170
cs_next_packed_decoded(shade_coord_stream_t * cs, int num_bits,
171
                       const float decode[2], float *pvalue)
172
29.9M
{
173
29.9M
    uint value;
174
29.9M
    int code = cs->get_value(cs, num_bits, &value);
175
29.9M
    double max_value = (double)(uint)
176
29.9M
        (num_bits == sizeof(uint) * 8 ? ~0 : ((1 << num_bits) - 1));
177
29.9M
    double dvalue = (double)value;
178
179
29.9M
    if (code < 0)
180
862
        return code;
181
29.9M
    *pvalue =
182
29.9M
        (decode == 0 ? dvalue / max_value :
183
29.9M
         decode[0] + dvalue * (decode[1] - decode[0]) / max_value);
184
29.9M
    return 0;
185
29.9M
}
186
187
/* Get the next floating point value from an array, without decoding. */
188
static int
189
cs_next_array_decoded(shade_coord_stream_t * cs, int num_bits,
190
                      const float decode[2], float *pvalue)
191
0
{
192
0
    float value;
193
0
    uint read;
194
195
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
196
0
        read != sizeof(float)
197
0
    ) {
198
0
        cs->ds_EOF = true;
199
0
        return_error(gs_error_rangecheck);
200
0
    }
201
0
    *pvalue = value;
202
0
    return 0;
203
0
}
204
205
static void
206
cs_packed_align(shade_coord_stream_t *cs, int radix)
207
2.49M
{
208
2.49M
    cs->left = cs->left / radix * radix;
209
2.49M
}
210
211
static void
212
cs_array_align(shade_coord_stream_t *cs, int radix)
213
0
{
214
0
}
215
216
/* Get the next flag value. */
217
/* Note that this always starts a new data byte. */
218
int
219
shade_next_flag(shade_coord_stream_t * cs, int BitsPerFlag)
220
681k
{
221
681k
    uint flag;
222
681k
    int code;
223
224
681k
    cs->left = 0;   /* start a new byte if packed */
225
681k
    code = cs->get_value(cs, BitsPerFlag, &flag);
226
681k
    return (code < 0 ? code : flag);
227
681k
}
228
229
/* Get one or more coordinate pairs. */
230
int
231
shade_next_coords(shade_coord_stream_t * cs, gs_fixed_point * ppt,
232
                  int num_points)
233
6.40M
{
234
6.40M
    int num_bits = cs->params->BitsPerCoordinate;
235
6.40M
    const float *decode = cs->params->Decode;
236
6.40M
    int code = 0;
237
6.40M
    int i;
238
239
16.7M
    for (i = 0; i < num_points; ++i) {
240
10.3M
        float x, y;
241
242
10.3M
        if ((code = cs->get_decoded(cs, num_bits, decode, &x)) < 0 ||
243
10.3M
            (code = cs->get_decoded(cs, num_bits, decode + 2, &y)) < 0 ||
244
10.3M
            (code = gs_point_transform2fixed(cs->pctm, x, y, &ppt[i])) < 0
245
10.3M
            )
246
678
            break;
247
10.3M
    }
248
6.40M
    return code;
249
6.40M
}
250
251
/* Get a color.  Currently all this does is look up Indexed colors. */
252
int
253
shade_next_color(shade_coord_stream_t * cs, float *pc)
254
3.66M
{
255
3.66M
    const float *decode = cs->params->Decode + 4; /* skip coord decode */
256
3.66M
    const gs_color_space *pcs = cs->params->ColorSpace;
257
3.66M
    gs_color_space_index index = gs_color_space_get_index(pcs);
258
3.66M
    int num_bits = cs->params->BitsPerComponent;
259
260
3.66M
    if (index == gs_color_space_index_Indexed) {
261
0
        int ncomp = gs_color_space_num_components(gs_cspace_base_space(pcs));
262
0
        int ci;
263
0
        float cf;
264
0
        int code = cs->get_decoded(cs, num_bits, decode, &cf);
265
0
        gs_client_color cc;
266
0
        int i;
267
268
0
        if (code < 0)
269
0
            return code;
270
0
        if (cf < 0)
271
0
            return_error(gs_error_rangecheck);
272
0
        ci = (int)cf;
273
0
        if (ci >= gs_cspace_indexed_num_entries(pcs))
274
0
            return_error(gs_error_rangecheck);
275
0
        code = gs_cspace_indexed_lookup(pcs, ci, &cc);
276
0
        if (code < 0)
277
0
            return code;
278
0
        for (i = 0; i < ncomp; ++i)
279
0
            pc[i] = cc.paint.values[i];
280
3.66M
    } else {
281
3.66M
        int i, code;
282
3.66M
        int ncomp = (cs->params->Function != 0 ? 1 :
283
3.66M
                     gs_color_space_num_components(pcs));
284
285
12.8M
        for (i = 0; i < ncomp; ++i) {
286
9.16M
            if ((code = cs->get_decoded(cs, num_bits, decode + i * 2, &pc[i])) < 0)
287
192
                return code;
288
9.16M
            if (cs->params->Function) {
289
1.79M
                gs_function_params_t *params = &cs->params->Function->params;
290
291
1.79M
                if (pc[i] < params->Domain[i + i])
292
0
                    pc[i] = params->Domain[i + i];
293
1.79M
                else if (pc[i] > params->Domain[i + i + 1])
294
54
                    pc[i] = params->Domain[i + i + 1];
295
1.79M
            }
296
9.16M
        }
297
3.66M
    }
298
3.65M
    return 0;
299
3.66M
}
300
301
/* Get the next vertex for a mesh element. */
302
int
303
shade_next_vertex(shade_coord_stream_t * cs, shading_vertex_t * vertex, patch_color_t *c)
304
1.86M
{   /* Assuming p->c == c, provides a non-const access. */
305
1.86M
    int code = shade_next_coords(cs, &vertex->p, 1);
306
307
1.86M
    if (code >= 0)
308
1.86M
        code = shade_next_color(cs, c->cc.paint.values);
309
1.86M
    if (code >= 0)
310
1.86M
        cs->align(cs, 8); /* CET 09-47J.PS SpecialTestI04Test01. */
311
1.86M
    return code;
312
1.86M
}
313
314
/* ================ Shading rendering ================ */
315
316
/* Initialize the common parts of the recursion state. */
317
int
318
shade_init_fill_state(shading_fill_state_t * pfs, const gs_shading_t * psh,
319
                      gx_device * dev, gs_gstate * pgs)
320
35.6k
{
321
35.6k
    const gs_color_space *pcs = psh->params.ColorSpace;
322
35.6k
    float max_error = min(pgs->smoothness, MAX_SMOOTHNESS);
323
35.6k
    bool is_lab;
324
35.6k
    bool cs_lin_test;
325
35.6k
    int code;
326
327
    /*
328
     * There's no point in trying to achieve smoothness beyond what
329
     * the device can implement, i.e., the number of representable
330
     * colors times the number of halftone levels.
331
     */
332
35.6k
    long num_colors =
333
35.6k
        max(dev->color_info.max_gray, dev->color_info.max_color) + 1;
334
35.6k
    const gs_range *ranges = 0;
335
35.6k
    int ci;
336
35.6k
    gsicc_rendering_param_t rendering_params;
337
338
35.6k
    pfs->cs_always_linear = false;
339
35.6k
    pfs->dev = dev;
340
35.6k
    pfs->pgs = pgs;
341
35.6k
top:
342
35.6k
    pfs->direct_space = pcs;
343
35.6k
    pfs->num_components = gs_color_space_num_components(pcs);
344
35.6k
    switch ( gs_color_space_get_index(pcs) )
345
35.6k
        {
346
0
        case gs_color_space_index_Indexed:
347
0
            pcs = gs_cspace_base_space(pcs);
348
0
            goto top;
349
0
        case gs_color_space_index_CIEDEFG:
350
0
            ranges = pcs->params.defg->RangeDEFG.ranges;
351
0
            break;
352
0
        case gs_color_space_index_CIEDEF:
353
0
            ranges = pcs->params.def->RangeDEF.ranges;
354
0
            break;
355
0
        case gs_color_space_index_CIEABC:
356
0
            ranges = pcs->params.abc->RangeABC.ranges;
357
0
            break;
358
0
        case gs_color_space_index_CIEA:
359
0
            ranges = &pcs->params.a->RangeA;
360
0
            break;
361
35.0k
        case gs_color_space_index_ICC:
362
35.0k
            ranges = pcs->cmm_icc_profile_data->Range.ranges;
363
35.0k
            break;
364
548
        default:
365
548
            break;
366
35.6k
        }
367
35.6k
    if (num_colors <= 32) {
368
        /****** WRONG FOR MULTI-PLANE HALFTONES ******/
369
3.59k
        num_colors *= pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
370
3.59k
    }
371
35.6k
    if (psh->head.type == 2 || psh->head.type == 3) {
372
34.1k
        max_error *= 0.25;
373
34.1k
        num_colors *= 2;
374
34.1k
    }
375
35.6k
    if (max_error < 1.0 / num_colors)
376
3.59k
        max_error = 1.0 / num_colors;
377
142k
    for (ci = 0; ci < pfs->num_components; ++ci)
378
106k
        pfs->cc_max_error[ci] =
379
106k
            (ranges == 0 ? max_error :
380
106k
             max_error * (ranges[ci].rmax - ranges[ci].rmin));
381
35.6k
    if (pgs->has_transparency && pgs->trans_device != NULL) {
382
4.38k
        pfs->trans_device = pgs->trans_device;
383
31.2k
    } else {
384
31.2k
        pfs->trans_device = dev;
385
31.2k
    }
386
    /* If the CS is PS based and we have not yet converted to the ICC form
387
       then go ahead and do that now */
388
35.6k
    if (gs_color_space_is_PSCIE(pcs) && pcs->icc_equivalent == NULL) {
389
0
        code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &(is_lab), pgs->memory);
390
0
        if (code < 0)
391
0
            return code;
392
0
    }
393
35.6k
    rendering_params.black_point_comp = pgs->blackptcomp;
394
35.6k
    rendering_params.graphics_type_tag = GS_VECTOR_TAG;
395
35.6k
    rendering_params.override_icc = false;
396
35.6k
    rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
397
35.6k
    rendering_params.rendering_intent = pgs->renderingintent;
398
35.6k
    rendering_params.cmm = gsCMM_DEFAULT;
399
    /* Grab the icc link transform that we need now */
400
35.6k
    if (pcs->cmm_icc_profile_data != NULL) {
401
35.0k
        pfs->icclink = gsicc_get_link(pgs, pgs->trans_device, pcs, NULL,
402
35.0k
                                      &rendering_params, pgs->memory);
403
35.0k
        if (pfs->icclink == NULL)
404
54
            return_error(gs_error_VMerror);
405
35.0k
    } else {
406
548
        if (pcs->icc_equivalent != NULL ) {
407
            /* We have a PS equivalent ICC profile.  We may need to go
408
               through special range adjustments in this case */
409
0
            pfs->icclink = gsicc_get_link(pgs, pgs->trans_device,
410
0
                                          pcs->icc_equivalent, NULL,
411
0
                                          &rendering_params, pgs->memory);
412
0
            if (pfs->icclink == NULL)
413
0
                return_error(gs_error_VMerror);
414
548
        } else {
415
548
            pfs->icclink = NULL;
416
548
        }
417
548
    }
418
    /* Two possible cases of interest here for performance.  One is that the
419
    * icclink is NULL, which could occur if the source space were DeviceN or
420
    * a separation color space, while at the same time, the output device
421
    * supports these colorants (e.g. a separation device).   The other case is
422
    * that the icclink is the identity.  This could happen for example if the
423
    * source space were CMYK and we are going out to a CMYK device. For both
424
    * of these cases we can avoid going through the standard
425
    * color mappings to determine linearity. This is true, provided that the
426
    * transfer function is linear.  It is likely that we can improve
427
    * things even in cases where the transfer function is nonlinear, but for
428
    * now, we will punt on those and let them go through the longer processing
429
    * steps */
430
35.5k
    if (pfs->icclink == NULL)
431
548
            cs_lin_test = !(using_alt_color_space((gs_gstate*)pgs));
432
35.0k
    else
433
35.0k
        cs_lin_test = pfs->icclink->is_identity;
434
435
35.5k
    if (cs_lin_test && !gx_has_transfer(pgs, dev->color_info.num_components)) {
436
26.3k
        pfs->cs_always_linear = true;
437
26.3k
    }
438
439
#ifdef IGNORE_SPEC_MATCH_ADOBE_SHADINGS
440
    /* Per the spec. If the source space is DeviceN or Separation and the
441
       colorants are not supported (i.e. if we are using the alternate tint
442
       transform) the interpolation should occur in the source space to
443
       accommodate non-linear tint transform functions.
444
       e.g. We had a case where the transform function
445
       was an increasing staircase. Including that function in the
446
       gradient smoothness calculation gave us severe quantization. AR on
447
       the other hand is doing the interpolation in device color space
448
       and has a smooth result for that case. So AR is not following the spec. The
449
       bit below solves the issues for Type 4 and Type 5 shadings as
450
       this will avoid interpolations in source space. Type 6 and Type 7 will still
451
       have interpolations in the source space even if pfs->cs_always_linear == true.
452
       So the approach below does not solve those issues. To do that
453
       without changing the shading code, we could make a linear
454
       approximation to the alternate tint transform, which would
455
       ensure smoothness like what AR provides.
456
    */
457
    if ((gs_color_space_get_index(pcs) == gs_color_space_index_DeviceN ||
458
        gs_color_space_get_index(pcs) == gs_color_space_index_Separation) &&
459
        using_alt_color_space((gs_gstate*)pgs) && (psh->head.type == 4 ||
460
        psh->head.type == 5)) {
461
        pfs->cs_always_linear = true;
462
    }
463
#endif
464
465
35.5k
    return 0;
466
35.6k
}
467
468
/* Fill one piece of a shading. */
469
int
470
shade_fill_path(const shading_fill_state_t * pfs, gx_path * ppath,
471
                gx_device_color * pdevc, const gs_fixed_point *fill_adjust)
472
0
{
473
0
    gx_fill_params params;
474
475
0
    params.rule = -1;   /* irrelevant */
476
0
    params.adjust = *fill_adjust;
477
0
    params.flatness = 0;  /* irrelevant */
478
0
    return (*dev_proc(pfs->dev, fill_path)) (pfs->dev, pfs->pgs, ppath,
479
                                             &params, pdevc, NULL);
480
0
}