Coverage Report

Created: 2026-02-14 07:09

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/ghostpdl/base/gxstroke.c
Line
Count
Source
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
138M
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
5.25M
{
110
5.25M
    const subpath *psub;
111
5.25M
    const segment *pseg;
112
5.25M
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
5.25M
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
5.25M
    double expand = pgs->line_params.half_width;
115
5.25M
    int result = 1;
116
117
5.25M
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
5.25M
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
5.25M
    if (pgs->line_params.start_cap == gs_cap_square ||
124
5.16M
        pgs->line_params.end_cap == gs_cap_square)
125
96.1k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
5.25M
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
794k
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
5.25M
        ) {
131
4.50M
        bool must_be_closed =
132
4.50M
            !(pgs->line_params.start_cap == gs_cap_square ||
133
4.40M
              pgs->line_params.start_cap == gs_cap_round  ||
134
2.18M
              pgs->line_params.end_cap   == gs_cap_square ||
135
2.18M
              pgs->line_params.end_cap   == gs_cap_round  ||
136
2.18M
              pgs->line_params.dash_cap  == gs_cap_square ||
137
2.18M
              pgs->line_params.dash_cap  == gs_cap_round);
138
4.50M
        gs_fixed_point prev;
139
140
4.50M
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
13.7M
        for (pseg = (const segment *)psub; pseg;
142
9.25M
             prev = pseg->pt, pseg = pseg->next
143
4.50M
             )
144
11.1M
            switch (pseg->type) {
145
4.16M
            case s_start:
146
4.16M
                if (((const subpath *)pseg)->curve_count ||
147
3.88M
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
4.16M
                    )
149
682k
                    goto not_exact;
150
3.48M
                break;
151
5.81M
            case s_line:
152
5.81M
            case s_dash:
153
6.94M
            case s_line_close:
154
6.94M
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
1.16M
                    goto not_exact;
156
5.77M
                break;
157
5.77M
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
11.1M
            }
161
2.65M
        result = 0;             /* exact result */
162
2.65M
    }
163
5.25M
not_exact:
164
5.25M
    if (result) {
165
2.60M
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
2.19M
            (psub == 0 || (pseg = psub->next) == 0 ||
167
1.81M
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
2.60M
            DO_NOTHING;
169
569k
        else {
170
569k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
569k
            if (pgs->line_params.curve_join >= 0)
173
53
                factor = max(factor, join_expansion_factor(pgs,
174
569k
                                (gs_line_join)pgs->line_params.curve_join));
175
569k
            expand *= factor;
176
569k
        }
177
2.60M
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
5.25M
    {
181
5.25M
        float exx = expand * cx;
182
5.25M
        float exy = expand * cy;
183
5.25M
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
5.25M
        if (code < 0)
186
449k
            return code;
187
4.80M
        code = set_float2fixed_vars(ppt->y, exy);
188
4.80M
        if (code < 0)
189
171k
            return code;
190
4.80M
    }
191
192
4.63M
    return result;
193
4.80M
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
569k
{
197
569k
    switch (join) {
198
456k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
200
    case gs_join_triangle: return 2.0;
200
112k
    default: return 1.0;
201
569k
    }
202
569k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
179M
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
179M
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
93.6M
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
98.4k
{
342
98.4k
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
98.4k
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
98.4k
    gx_device_cpath_accum adev;
345
98.4k
    gx_device_color devc;
346
98.4k
    gx_clip_path stroke_as_clip_path;
347
98.4k
    int code;
348
98.4k
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
98.4k
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
98.4k
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
98.4k
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
98.4k
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
98.4k
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
98.4k
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
98.4k
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
98.4k
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
98.4k
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
98.4k
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
98.4k
    gs_set_logical_op_inline(pgs, save_lop);
368
98.4k
    if (code >= 0)
369
98.4k
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
98.4k
        gs_fixed_rect clip_box, shading_box;
373
98.4k
        gs_int_rect cb;
374
98.4k
        gx_device_clip cdev;
375
376
98.4k
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
98.4k
        if (gx_dc_is_pattern2_color(pdevc) &&
382
280
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
98.4k
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
98.4k
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
98.4k
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
98.4k
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
98.4k
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
98.4k
        code = pdevc->type->fill_rectangle(pdevc,
392
98.4k
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
98.4k
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
98.4k
        gx_destroy_clip_device_on_stack(&cdev);
395
98.4k
    }
396
98.4k
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
98.4k
    return code;
399
98.4k
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
3.52M
{
408
3.52M
    if (gx_dc_is_pattern2_color(pdevc) ||
409
3.51M
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
3.42M
        (gx_dc_is_pattern1_color(pdevc) &&
411
1.53k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
98.4k
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
98.4k
                                                         pdevc, pcpath);
414
3.42M
    else
415
3.42M
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
3.42M
                                   pdevc, pcpath);
417
3.52M
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
111M
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
111M
     (final || lop_is_idempotent(pgs->log_op))) {\
425
68.7M
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
68.7M
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
68.7M
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
68.7M
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
68.7M
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
68.7M
    if ( code < 0 ) goto exit;\
434
68.7M
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
68.7M
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
3.52M
{
509
3.52M
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
3.52M
    bool traditional = CPSI_mode | params->traditional;
511
3.52M
    stroke_line_proc_t line_proc =
512
3.52M
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
3.52M
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
3.52M
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
3.52M
    gs_fixed_rect ibox, cbox;
516
3.52M
    gx_device_clip cdev;
517
3.52M
    gx_device *dev = pdev;
518
3.52M
    int code = 0;
519
3.52M
    gx_fill_params fill_params;
520
3.52M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
3.52M
    int dash_count = pgs_lp->dash.pattern_size;
522
3.52M
    gx_path fpath, dpath;
523
3.52M
    gx_path stroke_path_body;
524
3.52M
    gx_path stroke_path_reverse;
525
3.52M
    gx_path *to_path_reverse = NULL;
526
3.52M
    const gx_path *spath;
527
3.52M
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
3.52M
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
3.52M
    int uniform;
535
3.52M
    bool reflected;
536
3.52M
    orientation orient =
537
3.52M
        (
538
3.52M
#ifdef OPTIMIZE_ORIENTATION
539
3.52M
         is_fzero2(xy, yx) ?
540
2.76M
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
2.76M
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
2.76M
          orient_portrait) :
543
3.52M
         is_fzero2(xx, yy) ?
544
33.1k
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
33.1k
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
33.1k
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
753k
#endif
550
753k
         (uniform = 0,
551
720k
          reflected = xy * yx > xx * yy,
552
720k
          orient_other));
553
3.52M
    const segment_notes not_first = sn_not_first;
554
3.52M
    gs_line_join curve_join =
555
3.52M
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
3.52M
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
2.07M
            gs_join_bevel : pgs_lp->join);
558
3.52M
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
3.52M
    bool always_thin;
560
3.52M
    double line_width_and_scale;
561
3.52M
    double device_line_width_scale = 0; /* Quiet compiler. */
562
3.52M
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
3.52M
    const subpath *psub;
564
3.52M
    gs_matrix initial_matrix;
565
3.52M
    bool initial_matrix_reflected, flattened_path = false;
566
3.52M
    note_flags flags;
567
568
3.52M
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
3.52M
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
3.52M
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
3.52M
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
3.52M
    {
595
3.52M
        gs_fixed_point expansion;
596
597
3.52M
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
595k
            ibox.p.x = ibox.p.y = min_fixed;
600
595k
            ibox.q.x = ibox.q.y = max_fixed;
601
2.92M
        } else {
602
2.92M
            expansion.x += pgs->fill_adjust.x;
603
2.92M
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
2.92M
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
2.92M
                        ibox.p.x - expansion.x);
610
2.92M
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
2.92M
                        ibox.p.y - expansion.y);
612
2.92M
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
2.92M
                        ibox.q.x + expansion.x);
614
2.92M
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
2.92M
                        ibox.q.y + expansion.y);
616
2.92M
        }
617
3.52M
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
3.52M
    if (pcpath)
620
1.50M
        gx_cpath_inner_box(pcpath, &cbox);
621
2.01M
    else if (pdevc)
622
2.01M
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
1.14k
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
1.14k
        cbox = ibox;
626
1.14k
    }
627
3.52M
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
2.31M
        gs_fixed_rect bbox;
631
632
2.31M
        if (pcpath) {
633
1.10M
            gx_cpath_outer_box(pcpath, &bbox);
634
1.10M
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
1.10M
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
1.10M
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
1.10M
            rect_intersect(ibox, bbox);
638
1.10M
        } else
639
2.31M
            rect_intersect(ibox, cbox);
640
2.31M
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
816k
            return 0;
643
816k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
1.49M
        if (pcpath && line_proc == stroke_fill) {
664
348k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
348k
            cdev.max_fill_band = pdev->max_fill_band;
666
348k
            dev = (gx_device *)&cdev;
667
348k
        }
668
1.49M
    }
669
2.70M
    fill_params.rule = gx_rule_winding_number;
670
2.70M
    fill_params.flatness = pgs->flatness;
671
2.70M
    if (line_width < 0)
672
0
        line_width = -line_width;
673
2.70M
    line_width_and_scale = line_width * (double)int2fixed(1);
674
2.70M
    if (is_fzero(line_width))
675
65.6k
        always_thin = true;
676
2.63M
    else {
677
2.63M
        float xa, ya;
678
679
2.63M
        switch (orient) {
680
2.35M
            case orient_portrait:
681
2.35M
                xa = xx, ya = yy;
682
2.35M
                goto sat;
683
19.0k
            case orient_landscape:
684
19.0k
                xa = xy, ya = yx;
685
2.37M
              sat:
686
2.37M
                if (xa < 0)
687
46.8k
                    xa = -xa;
688
2.37M
                if (ya < 0)
689
1.47M
                    ya = -ya;
690
2.37M
                always_thin = (max(xa, ya) * line_width < 0.5);
691
2.37M
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
1.21M
                    device_line_width_scale = line_width_and_scale * xa;
693
1.21M
                }
694
2.37M
                break;
695
264k
            default:
696
264k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
264k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
264k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
264k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
264k
                                          )
712
264k
                                     )/2;
713
714
264k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
264k
                }
716
2.63M
        }
717
2.63M
    }
718
2.70M
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
2.70M
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
2.70M
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
2.70M
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
2.48M
        if (!ppath->first_subpath) {
739
359k
            if (dev == (gx_device *)&cdev)
740
51.1k
                gx_destroy_clip_device_on_stack(&cdev);
741
359k
            return 0;
742
359k
        }
743
2.12M
        spath = ppath;
744
2.12M
    } else {
745
222k
        gx_path_init_local(&fpath, ppath->memory);
746
222k
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
222k
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
222k
        spath = &fpath;
753
222k
        flattened_path = true;
754
222k
    }
755
2.34M
    if (dash_count) {
756
21.7k
        float max_dash_len = 0;
757
21.7k
        float expand_squared;
758
21.7k
        int i;
759
21.7k
        float adjust = (float)pgs->fill_adjust.x;
760
21.7k
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
61.8k
        for (i = 0; i < dash_count; i++) {
763
40.1k
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
23.6k
                max_dash_len = pgs_lp->dash.pattern[i];
765
40.1k
        }
766
21.7k
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
21.7k
        if (expand_squared < 0)
768
10.5k
            expand_squared = -expand_squared;
769
21.7k
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
21.7k
        if (pgs->line_params.half_width > 1)
773
1.91k
            adjust /= pgs->line_params.half_width;
774
21.7k
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
21.7k
            gx_path_init_local(&dpath, ppath->memory);
776
21.7k
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
21.7k
            if (code < 0)
778
0
                goto exf;
779
21.7k
            spath = &dpath;
780
21.7k
        } else {
781
6
            dash_count = 0;
782
6
        }
783
21.7k
    }
784
2.34M
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
2.34M
        to_path = &stroke_path_body;
787
2.34M
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
2.34M
    }
789
2.34M
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
9.02M
    for (psub = spath->first_subpath; psub != 0;) {
794
6.68M
        int index = 0;
795
6.68M
        const segment *pseg = (const segment *)psub;
796
6.68M
        fixed x = pseg->pt.x;
797
6.68M
        fixed y = pseg->pt.y;
798
6.68M
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
6.68M
        partial_line pl, pl_prev, pl_first;
800
6.68M
        bool zero_length = true;
801
6.68M
        int pseg_notes = pseg->notes;
802
803
6.68M
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
115M
        while ((pseg = pseg->next) != 0 &&
810
113M
               pseg->type != s_start
811
109M
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
109M
            fixed sx, udx, sy, udy;
815
109M
            bool is_dash_segment;
816
817
109M
            pseg_notes = pseg->notes;
818
819
109M
         d2:is_dash_segment = false;
820
109M
         d1:if (pseg->type == s_dash) {
821
179k
                dash_segment *pd = (dash_segment *)pseg;
822
823
179k
                sx = pd->pt.x;
824
179k
                sy = pd->pt.y;
825
179k
                udx = pd->tangent.x;
826
179k
                udy = pd->tangent.y;
827
179k
                is_dash_segment = true;
828
109M
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
109M
            } else {
835
109M
                sx = pseg->pt.x;
836
109M
                sy = pseg->pt.y;
837
109M
                udx = sx - x;
838
109M
                udy = sy - y;
839
109M
            }
840
109M
            zero_length &= ((udx | udy) == 0);
841
109M
            pl.o.p.x = x, pl.o.p.y = y;
842
109M
          d:flags = (((pseg_notes & sn_not_first) ?
843
94.8M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
109M
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
109M
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
109M
                     (flags & ~nf_all_from_arc));
847
109M
            pl.e.p.x = sx, pl.e.p.y = sy;
848
109M
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
1.02M
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
604k
                {
856
604k
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
204k
                        continue;
858
400k
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
400k
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
315k
                                  (pseg->notes & ~sn_not_first) :
866
400k
                                  pseg->notes);
867
400k
                    goto d2;
868
604k
                }
869
                /* Check for a degenerate subpath. */
870
593k
                while ((pseg = pseg->next) != 0 &&
871
401k
                       pseg->type != s_start
872
417k
                    ) {
873
190k
                    if (is_dash_segment)
874
2.00k
                        break;
875
188k
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
188k
                    sx = pseg->pt.x, udx = sx - x;
878
188k
                    sy = pseg->pt.y, udy = sy - y;
879
188k
                    if (udx | udy) {
880
12.4k
                        zero_length = false;
881
12.4k
                        goto d;
882
12.4k
                    }
883
188k
                }
884
405k
                if (pgs_lp->dot_length == 0 &&
885
405k
                    pgs_lp->start_cap != gs_cap_round &&
886
25.2k
                    pgs_lp->end_cap != gs_cap_round &&
887
25.2k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
21.3k
                    break;
893
21.3k
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
383k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
383k
                    const segment *end = psub->last;
906
907
383k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
204k
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
383k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
383k
                if ((udx | udy) == 0) {
917
204k
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
204k
                        udx = fixed_1;
920
204k
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
204k
                }
925
383k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
377k
                    double scale = device_dot_length /
927
377k
                                hypot((double)udx, (double)udy);
928
377k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
377k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
343k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
343k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
377k
                    udx1 = (fixed) (udx * scale);
944
377k
                    udy1 = (fixed) (udy * scale);
945
377k
                    sx = x + udx1;
946
377k
                    sy = y + udy1;
947
377k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
383k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
383k
                if (!is_dash_segment)
953
204k
                    goto d;
954
179k
                pl.e.p.x = sx;
955
179k
                pl.e.p.y = sy;
956
179k
            }
957
108M
            pl.vector.x = udx;
958
108M
            pl.vector.y = udy;
959
108M
            if (always_thin) {
960
36.3M
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
36.3M
                pl.width.x = pl.width.y = 0;
962
36.3M
                pl.thin = true;
963
72.4M
            } else {
964
72.4M
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
35.3M
                    double dpx = udx, dpy = udy;
968
35.3M
                    double wl = device_line_width_scale /
969
35.3M
                    hypot(dpx, dpy);
970
971
35.3M
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
35.3M
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
35.3M
                    if (initial_matrix_reflected)
976
34.3M
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
971k
                    else
978
971k
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
35.3M
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
37.1M
                } else {
983
37.1M
                    gs_point dpt;       /* unscaled */
984
37.1M
                    float wl;
985
986
37.1M
                    code = gs_gstate_idtransform(pgs,
987
37.1M
                                                 (float)udx, (float)udy,
988
37.1M
                                                 &dpt);
989
37.1M
                    if (code < 0) {
990
336k
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
336k
                        code = 0;
993
36.7M
                    } else {
994
36.7M
                        wl = line_width_and_scale /
995
36.7M
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
36.7M
                        dpt.x *= wl;
999
36.7M
                        dpt.y *= wl;
1000
36.7M
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
37.1M
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
37.1M
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
37.1M
                    if (orient != orient_portrait)
1016
31.1M
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
31.1M
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
37.1M
                    if (!reflected ^ initial_matrix_reflected)
1019
36.3M
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
37.1M
                    pl.width.x = (fixed) (dpt.y * xx),
1021
37.1M
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
37.1M
                    if (orient != orient_portrait)
1023
31.1M
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
31.1M
                            pl.width.y += (fixed) (dpt.y * xy);
1025
37.1M
                    pl.thin = width_is_thin(&pl);
1026
37.1M
                }
1027
72.4M
                if (!pl.thin) {
1028
70.3M
                    if (index)
1029
64.9M
                        dev->sgr.stroke_stored = false;
1030
70.3M
                    adjust_stroke(dev, &pl, pgs, false,
1031
70.3M
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
5.34M
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
4.31M
                            (zero_length || !is_closed),
1034
70.3M
                            COMBINE_FLAGS(flags));
1035
70.3M
                    compute_caps(&pl);
1036
70.3M
                }
1037
72.4M
            }
1038
108M
            if (index++) {
1039
102M
                gs_line_join join =
1040
102M
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
102M
                int first;
1042
102M
                pl_ptr lptr;
1043
102M
                bool ensure_closed;
1044
1045
102M
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
24
                    first = 0;
1049
24
                    lptr = 0;
1050
24
                    index = 1;
1051
102M
                } else {
1052
102M
                    first = (is_closed ? 1 : index - 2);
1053
102M
                    lptr = &pl;
1054
102M
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
102M
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
102M
                ensure_closed = ((to_path == &stroke_path_body &&
1068
102M
                                  lop_is_idempotent(pgs->log_op)) ||
1069
440k
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
102M
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
102M
                                     first, &pl_prev, lptr,
1074
102M
                                     pdevc, dev, pgs, params, &cbox,
1075
102M
                                     uniform, join, initial_matrix_reflected,
1076
102M
                                     COMBINE_FLAGS(flags));
1077
102M
                if (code < 0)
1078
0
                    goto exit;
1079
102M
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
102M
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
6.66M
                pl_first = pl;
1086
108M
            pl_prev = pl;
1087
108M
            x = sx, y = sy;
1088
108M
            flags = (flags<<4) | nf_all_from_arc;
1089
108M
        }
1090
6.68M
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
6.66M
            segment_notes notes = (pseg == 0 ?
1093
2.33M
                                   (const segment *)spath->first_subpath :
1094
6.66M
                                   pseg)->notes;
1095
6.66M
            gs_line_join join = (notes & not_first ? curve_join :
1096
6.66M
                                 pgs_lp->join);
1097
6.66M
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
6.66M
            pl_ptr lptr =
1101
6.66M
                (!is_closed || join == gs_join_none || zero_length ?
1102
5.80M
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
6.66M
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
6.66M
            flags = (((notes & sn_not_first) ?
1113
6.66M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
6.66M
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
6.66M
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
6.66M
                     (flags & ~nf_all_from_arc));
1117
6.66M
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
6.66M
                                 index - 1, &pl_prev, lptr, pdevc,
1119
6.66M
                                 dev, pgs, params, &cbox, uniform, join,
1120
6.66M
                                 initial_matrix_reflected,
1121
6.66M
                                 COMBINE_FLAGS(flags));
1122
6.66M
            if (code < 0)
1123
1
                goto exit;
1124
6.66M
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
6.66M
            cap = ((flags & nf_prev_dash_head) ?
1126
3.69M
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
6.66M
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
592
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
592
                if (code < 0)
1131
0
                    goto exit;
1132
592
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
592
            }
1134
6.66M
        }
1135
6.68M
        psub = (const subpath *)pseg;
1136
6.68M
    }
1137
2.34M
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
2.34M
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
2.34M
  exit:
1141
2.34M
    if (dev == (gx_device *)&cdev)
1142
297k
        cdev.target->sgr = cdev.sgr;
1143
2.34M
    if (to_path == &stroke_path_body)
1144
2.34M
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
2.34M
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
2.34M
  exf:
1148
2.34M
    if (dash_count)
1149
21.7k
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
2.34M
    if(flattened_path)
1152
222k
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
2.34M
    if (dev == (gx_device *)&cdev)
1154
297k
        gx_destroy_clip_device_on_stack(&cdev);
1155
2.34M
    return code;
1156
2.34M
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
3.52M
{
1163
3.52M
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
3.52M
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
37.1M
{
1177
37.1M
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
37.1M
    if ((dy = plp->vector.y) == 0)
1181
2.83M
        return any_abs(wy) < fixed_half;
1182
34.2M
    if ((dx = plp->vector.x) == 0)
1183
1.21M
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
33.0M
    return false;
1249
34.2M
#endif
1250
34.2M
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
1.21M
{
1256
1.21M
    fixed *pw;
1257
1.21M
    fixed *pov;
1258
1.21M
    fixed *pev;
1259
1.21M
    fixed w, w2;
1260
1.21M
    fixed adj2;
1261
1262
1.21M
    if (horiz) {
1263
        /* More horizontal stroke */
1264
369k
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
369k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
849k
    } else {
1267
        /* More vertical stroke */
1268
849k
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
849k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
849k
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
1.21M
    w = *pw;
1276
1.21M
    if (w > 0)
1277
433k
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
785k
    else
1279
785k
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
1.21M
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
1.21M
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
561k
        if (w >= 0)
1290
97.8k
            w2 += adj2;
1291
463k
        else
1292
463k
            w2 = adj2 - w2;
1293
561k
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
113k
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
447k
        else                    /* even width, move to pixel */
1296
447k
            *pov = *pev = fixed_rounded(*pov);
1297
1298
561k
    }
1299
1.21M
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
906k
{
1306
1307
906k
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
906k
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
906k
    if (*pow == *pew) {
1313
357k
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
357k
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
357k
        fixed length = any_abs(*pov - *pev);
1316
357k
        fixed length_r, length_r_2;
1317
357k
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
357k
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
357k
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
357k
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
215k
            return;
1329
142k
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
32
            length_r = fixed_rounded(length);
1331
32
            if (length_r < fixed_1)
1332
32
                length_r = fixed_1;
1333
32
            length_r_2 = length_r / 2;
1334
142k
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
142k
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
142k
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
142k
            length_r_2 = fixed_rounded(length) / 2;
1340
142k
        }
1341
142k
        if (length_r & fixed_1)
1342
44
            mv_r = fixed_floor(mv) + fixed_half;
1343
142k
        else
1344
142k
            mv_r = fixed_floor(mv);
1345
142k
        if (*pov < *pev) {
1346
32
            *pov = mv_r - length_r_2;
1347
32
            *pev = mv_r + length_r_2;
1348
142k
        } else {
1349
142k
            *pov = mv_r + length_r_2;
1350
142k
            *pev = mv_r - length_r_2;
1351
142k
        }
1352
142k
    }
1353
906k
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
70.4M
{
1362
70.4M
    bool horiz, adjust = true;
1363
70.4M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
71.4k
                             pgs->line_params.dash_cap :
1365
70.4M
                             pgs->line_params.start_cap);
1366
70.4M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
76.0k
                             pgs->line_params.dash_cap :
1368
70.4M
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
70.4M
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
69.2M
        dev->sgr.stroke_stored = false;
1374
69.2M
        return;                 /* don't adjust */
1375
69.2M
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
1.21M
    if (dev->sgr.stroke_stored &&
1380
690k
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
689k
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
682k
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
682k
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
513
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
513
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
513
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
513
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
501
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
501
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
501
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
359
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
0
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
0
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
501
            }
1443
513
        }
1444
682k
    }
1445
1.21M
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
870k
        dev->sgr.stroke_stored = true;
1447
870k
        dev->sgr.orig[0] = plp->o.p;
1448
870k
        dev->sgr.orig[1] = plp->e.p;
1449
870k
        dev->sgr.orig[2] = plp->width;
1450
870k
        dev->sgr.orig[3] = plp->vector;
1451
870k
    } else
1452
348k
        dev->sgr.stroke_stored = false;
1453
1.21M
    if (adjust) {
1454
1.21M
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
1.21M
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
1.21M
        if (adjust_longitude)
1457
906k
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
1.21M
    }
1459
1.21M
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
870k
        dev->sgr.adjusted[0] = plp->o.p;
1461
870k
        dev->sgr.adjusted[1] = plp->e.p;
1462
870k
        dev->sgr.adjusted[2] = plp->width;
1463
870k
        dev->sgr.adjusted[3] = plp->vector;
1464
870k
    }
1465
1.21M
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
44.7M
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
44.7M
    double u1 = pd1->x, v1 = pd1->y;
1482
44.7M
    double u2 = pd2->x, v2 = pd2->y;
1483
44.7M
    double denom = u1 * v2 - u2 * v1;
1484
44.7M
    double xdiff = pp2->x - pp1->x;
1485
44.7M
    double ydiff = pp2->y - pp1->y;
1486
44.7M
    double f1;
1487
44.7M
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
44.7M
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
85.9k
        if_debug0('O', "\tdegenerate!\n");
1506
85.9k
        return -1;
1507
85.9k
    }
1508
44.6M
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
44.6M
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
44.6M
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
44.6M
    if_debug2('O', "\t%f,%f\n",
1512
44.6M
              fixed2float(pi->x), fixed2float(pi->y));
1513
44.6M
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
44.7M
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
117k
{
1521
117k
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
117k
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
117k
    if (any_abs(dx) > any_abs(dy)) {
1525
59.0k
        plp->width.x = plp->e.cdelta.y = 0;
1526
59.0k
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
59.0k
    } else {
1528
58.2k
        plp->width.y = plp->e.cdelta.x = 0;
1529
58.2k
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
58.2k
    }
1531
117k
#undef TRSIGN
1532
117k
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
107M
{
1545
107M
    const fixed lix = plp->o.p.x;
1546
107M
    const fixed liy = plp->o.p.y;
1547
107M
    const fixed litox = plp->e.p.x;
1548
107M
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
107M
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
38.3M
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
38.3M
                                                pdevc, pgs->log_op,
1555
38.3M
                                                pgs->fill_adjust.x,
1556
38.3M
                                                pgs->fill_adjust.y);
1557
38.3M
    }
1558
    /* Check for being able to fill directly. */
1559
68.6M
    {
1560
68.6M
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
68.6M
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
66.1M
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
68.6M
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
66.1M
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
68.6M
        if (first != 0)
1567
65.3M
            start_cap = gs_cap_butt;
1568
68.6M
        if (nplp != 0)
1569
65.3M
            end_cap = gs_cap_butt;
1570
68.6M
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
68.6M
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
67.8M
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
67.7M
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
1.48M
                join == gs_join_none)
1575
66.2M
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
68.6M
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
68.6M
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
68.6M
 general:
1641
68.6M
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
68.6M
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
68.6M
                      flags);
1644
68.6M
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
70.4M
{
1655
70.4M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
70.4M
    gs_fixed_point points[8];
1657
70.4M
    int npoints;
1658
70.4M
    int code;
1659
70.4M
    bool moveto_first = true;
1660
70.4M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
66.6M
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
70.4M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
66.6M
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
70.4M
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
117k
        set_thin_widths(plp);
1669
117k
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
117k
        compute_caps(plp);
1671
117k
    }
1672
    /* Create an initial cap if desired. */
1673
70.4M
    if (first == 0 && start_cap == gs_cap_round) {
1674
779k
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
779k
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
779k
        npoints = 0;
1678
779k
        moveto_first = false;
1679
69.6M
    } else {
1680
69.6M
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
69.6M
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
69.6M
    }
1684
70.4M
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
4.61M
        if (end_cap == gs_cap_round) {
1687
779k
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
779k
            ++npoints;
1689
779k
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
779k
            code = add_pie_cap(ppath, &plp->e);
1692
779k
            goto done;
1693
779k
        }
1694
3.83M
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
65.8M
    } else if (nplp->thin) /* no join */
1696
119k
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
65.7M
    else if (join == gs_join_round) {
1698
990k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
990k
        ++npoints;
1700
990k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
990k
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
990k
        goto done;
1704
64.7M
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
57.2M
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
57.2M
        ++npoints;
1710
57.2M
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
57.2M
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
57.2M
        goto done;
1714
57.2M
    } else                      /* non-round join */
1715
7.50M
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
7.50M
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
7.50M
                                join, reflected);
1718
11.4M
    if (code < 0)
1719
0
        return code;
1720
11.4M
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
70.4M
  done:
1722
70.4M
    if (code < 0)
1723
0
        return code;
1724
70.4M
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
60.5M
        (nplp != NULL) && (!nplp->thin))
1726
60.3M
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
70.4M
    return gx_path_close_subpath(ppath);
1728
70.4M
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
7.21M
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
7.21M
    float check;
1794
7.21M
    double u1, v1, u2, v2;
1795
7.21M
    double num, denom;
1796
7.21M
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
7.21M
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
2.95M
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
2.38M
        return 1;
1806
1807
4.82M
    check = pgs_lp->miter_check;
1808
4.82M
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
4.82M
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
4.82M
    if (pmat) {
1812
842k
        gs_point pt;
1813
1814
842k
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
842k
        if (code < 0)
1816
0
        return code;
1817
842k
        v1 = pt.x, u1 = pt.y;
1818
842k
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
842k
        if (code < 0)
1820
0
            return code;
1821
842k
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
842k
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
842k
    }
1846
4.82M
    num = u1 * v2 - u2 * v1;
1847
4.82M
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
4.82M
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
1.78M
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
4.82M
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
4.82M
    if (denom < 0)
1881
2.05M
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
4.82M
    if (check > 0 ?
1884
4.82M
        (num < 0 || num >= denom * check) :
1885
4.82M
        (num < 0 && num >= denom * check)
1886
4.82M
        ) {
1887
        /* OK to use a miter join. */
1888
4.70M
        gs_fixed_point dirn1, dirn2;
1889
1890
4.70M
        dirn1.x = plp->e.cdelta.x;
1891
4.70M
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
4.70M
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
1.30k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
1.30k
        {
1898
1.30k
            float scale = 65536.0;
1899
1.30k
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
1.13k
                scale /= abs(plp->vector.x);
1901
174
            else
1902
174
                scale /= abs(plp->vector.y);
1903
1.30k
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
1.30k
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
1.30k
        }
1906
4.70M
        dirn2.x = nplp->o.cdelta.x;
1907
4.70M
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
4.70M
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
1.30k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
1.30k
        {
1914
1.30k
            float scale = 65536.0;
1915
1.30k
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
1.04k
                scale /= abs(nplp->vector.x);
1917
264
            else
1918
264
                scale /= abs(nplp->vector.y);
1919
1.30k
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
1.30k
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
1.30k
        }
1922
4.70M
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
4.70M
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
4.61M
            return 0;
1926
4.70M
    }
1927
209k
    return 1;
1928
4.82M
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
1.52k
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
1.52k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
1.52k
    gs_fixed_point points[6];
2286
1.52k
    int npoints;
2287
1.52k
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
1.52k
    int code;
2289
2290
1.52k
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
17
        set_thin_widths(plp);
2294
17
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
17
        compute_caps(plp);
2296
17
    }
2297
    /* The segment itself : */
2298
1.52k
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
1.52k
    ASSIGN_POINT(&points[1], plp->e.co);
2300
1.52k
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
1.52k
    ASSIGN_POINT(&points[3], plp->o.co);
2302
1.52k
    code = add_points(ppath, points, 4, moveto_first);
2303
1.52k
    if (code < 0)
2304
0
        return code;
2305
1.52k
    code = gx_path_close_subpath(ppath);
2306
1.52k
    if (code < 0)
2307
0
        return code;
2308
1.52k
    npoints = 0;
2309
1.52k
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
717
        if (pgs_lp->start_cap == gs_cap_butt)
2312
125
            return 0;
2313
592
        if (pgs_lp->start_cap == gs_cap_round) {
2314
592
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
592
            ++npoints;
2316
592
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
592
            return add_round_cap(ppath, &plp->e);
2319
592
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
806
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
806
    } else if (nplp->thin) {    /* no join */
2335
14
        npoints = 0;
2336
792
    } else {                    /* non-round join */
2337
792
        bool ccw =
2338
792
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
792
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
792
        if (ccw ^ reflected) {
2342
744
            ASSIGN_POINT(&points[0], plp->e.co);
2343
744
            ++npoints;
2344
744
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
744
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
744
                                    join, reflected);
2347
744
            if (code < 0)
2348
0
                return code;
2349
744
            code--; /* Drop the last point of the non-compatible mode. */
2350
744
            npoints += code;
2351
744
        } else {
2352
48
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
48
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
48
                                    join, reflected);
2355
48
            if (code < 0)
2356
0
                return code;
2357
48
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
48
            npoints = code;
2359
48
        }
2360
792
    }
2361
806
    code = add_points(ppath, points, npoints, moveto_first);
2362
806
    if (code < 0)
2363
0
        return code;
2364
806
    code = gx_path_close_subpath(ppath);
2365
806
    return code;
2366
806
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
592
{
2379
592
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
592
    gs_fixed_point points[5];
2381
592
    int npoints = 0;
2382
592
    int code;
2383
2384
592
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
592
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
3
        set_thin_widths(plp);
2390
3
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
3
        compute_caps(plp);
2392
3
    }
2393
    /* Create an initial cap if desired. */
2394
592
    if (pgs_lp->start_cap == gs_cap_round) {
2395
592
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
592
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
592
            )
2398
0
            return code;
2399
592
        return 0;
2400
592
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
592
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
70.4M
{
2420
70.4M
    int code;
2421
2422
70.4M
    if (moveto_first) {
2423
69.6M
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
69.6M
        if (code < 0)
2425
0
            return code;
2426
69.6M
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
69.6M
    } else {
2428
779k
        return gx_path_add_lines(ppath, points, npoints);
2429
779k
    }
2430
70.4M
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
7.51M
{
2443
7.51M
#define jp1 join_points[0]
2444
7.51M
#define np1 join_points[1]
2445
7.51M
#define np2 join_points[2]
2446
7.51M
#define jp2 join_points[3]
2447
7.51M
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
7.51M
    bool ccw =
2476
7.51M
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
7.51M
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
7.51M
    bool ccw0 = ccw;
2479
7.51M
    p_ptr outp, np;
2480
7.51M
    int   code;
2481
7.51M
    gs_fixed_point mpt;
2482
2483
7.51M
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
7.51M
    ASSIGN_POINT(&jp1, plp->e.co);
2487
7.51M
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
7.51M
    if (!ccw) {
2495
3.98M
        outp = &jp2;
2496
3.98M
        ASSIGN_POINT(&np2, nplp->o.co);
2497
3.98M
        ASSIGN_POINT(&np1, nplp->o.p);
2498
3.98M
        np = &np2;
2499
3.98M
    } else {
2500
3.52M
        outp = &jp1;
2501
3.52M
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
3.52M
        ASSIGN_POINT(&np2, nplp->o.p);
2503
3.52M
        np = &np1;
2504
3.52M
    }
2505
7.51M
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
7.51M
    if (join == gs_join_triangle) {
2509
324
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
324
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
324
        ASSIGN_POINT(&jpx, jp2);
2513
324
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
44
            jp2.x = tpx, jp2.y = tpy;
2516
280
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
280
            ASSIGN_POINT(&jp2, np2);
2519
280
            ASSIGN_POINT(&np2, np1);
2520
280
            np1.x = tpx, np1.y = tpy;
2521
280
        }
2522
324
        return 5;
2523
324
    }
2524
7.50M
    if (join == gs_join_miter &&
2525
7.21M
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
4.61M
        if (code < 0)
2527
0
            return code;
2528
4.61M
        ASSIGN_POINT(outp, mpt);
2529
4.61M
    }
2530
7.50M
    return 4;
2531
7.50M
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
70.4M
{
2594
70.4M
    fixed wx2 = plp->width.x;
2595
70.4M
    fixed wy2 = plp->width.y;
2596
2597
70.4M
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
70.4M
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
70.4M
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
70.4M
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
70.4M
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
70.4M
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
70.4M
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
1.18k
{
2630
1.18k
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
1.18k
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
1.18k
                                        xo + cdx, yo + cdy,
2638
1.18k
                                        quarter_arc_fraction)) < 0 ||
2639
1.18k
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
1.18k
                                        quarter_arc_fraction)) < 0 ||
2641
1.18k
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
1.18k
                                        xe - cdx, ye - cdy,
2643
1.18k
                                        quarter_arc_fraction)) < 0 ||
2644
1.18k
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
1.18k
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
1.18k
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
1.18k
        )
2649
0
        return code;
2650
1.18k
    return 0;
2651
1.18k
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
1.56M
{
2658
1.56M
    int code;
2659
2660
1.56M
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
1.56M
                                        xo + cdx, yo + cdy,
2662
1.56M
                                        quarter_arc_fraction)) < 0 ||
2663
1.56M
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
1.56M
                                        quarter_arc_fraction)) < 0 ||
2665
1.56M
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
1.56M
    return 0;
2668
1.56M
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
19.6M
{
2676
19.6M
    int code;
2677
19.6M
    double rad_squared, dist_squared, F;
2678
19.6M
    gs_fixed_point current, tangent, tangmeet;
2679
2680
19.6M
    tangent.x = current_tangent->x;
2681
19.6M
    tangent.y = current_tangent->y;
2682
19.6M
    current.x = current_orig->x;
2683
19.6M
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
19.6M
    if ((double)tangent.x * (double)final_tangent->x +
2687
19.6M
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
338k
        code = gx_path_add_partial_arc(ppath,
2690
338k
                                       centre->x + tangent.x,
2691
338k
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
338k
                                       current.x + tangent.x,
2694
338k
                                       current.y + tangent.y,
2695
338k
                                       quarter_arc_fraction);
2696
338k
        if (code < 0)
2697
0
            return code;
2698
338k
        current.x = centre->x + tangent.x;
2699
338k
        current.y = centre->y + tangent.y;
2700
338k
        if (ccw) {
2701
20.1k
            int tmp = tangent.x;
2702
20.1k
            tangent.x = -tangent.y;
2703
20.1k
            tangent.y = tmp;
2704
317k
        } else {
2705
317k
            int tmp = tangent.x;
2706
317k
            tangent.x = tangent.y;
2707
317k
            tangent.y = -tmp;
2708
317k
        }
2709
338k
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
19.6M
    if (line_intersect(&current, &tangent,
2714
19.6M
                       final, final_tangent, &tangmeet) != 0) {
2715
8.88M
        return gx_path_add_line(ppath, final->x, final->y);
2716
8.88M
    }
2717
10.7M
    current.x -= tangmeet.x;
2718
10.7M
    current.y -= tangmeet.y;
2719
10.7M
    dist_squared = ((double)current.x) * current.x +
2720
10.7M
                   ((double)current.y) * current.y;
2721
10.7M
    rad_squared  = ((double)width->x) * width->x +
2722
10.7M
                   ((double)width->y) * width->y;
2723
10.7M
    dist_squared /= rad_squared;
2724
10.7M
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
10.7M
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
19.6M
                                   tangmeet.x, tangmeet.y, F);
2727
19.6M
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
58.1M
{
2735
58.1M
    int code;
2736
58.1M
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
58.1M
    double l, r;
2738
58.1M
    bool ccw;
2739
2740
58.1M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
58.1M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
58.1M
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
39.4M
        if (cap &&
2746
96.2k
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
5.45k
            return add_pie_cap(ppath, &plp->e);
2748
39.4M
        else
2749
39.4M
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
39.4M
    }
2751
2752
18.7M
    ccw = (l > r);
2753
2754
18.7M
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
18.7M
    if (ccw) {
2758
9.30M
        current       = & plp->e.co;
2759
9.30M
        final         = &nplp->o.ce;
2760
9.30M
        tangent       = & plp->e.cdelta;
2761
9.30M
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
9.30M
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
9.46M
    } else {
2767
9.46M
        current       = &nplp->o.co;
2768
9.46M
        final         = & plp->e.ce;
2769
9.46M
        tangent       = &nplp->o.cdelta;
2770
9.46M
        final_tangent = & plp->e.cdelta;
2771
9.46M
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
9.46M
        if (code < 0)
2773
0
            return code;
2774
9.46M
        code = gx_path_add_line(ppath, current->x, current->y);
2775
9.46M
        if (code < 0)
2776
0
            return code;
2777
9.46M
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
9.46M
    }
2780
2781
18.7M
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
18.7M
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
18.7M
    if (ccw &&
2785
9.30M
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
9.30M
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
18.7M
    return 0;
2790
18.7M
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
60.3M
{
2819
60.3M
    int code;
2820
60.3M
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
60.3M
    double l, r;
2822
60.3M
    bool ccw;
2823
2824
60.3M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
60.3M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
60.3M
    if (l == r)
2828
40.0M
        return 0;
2829
2830
20.3M
    ccw = (l > r);
2831
2832
20.3M
    ccw ^= reflected;
2833
2834
20.3M
    if (ccw) {
2835
10.1M
        dirn1.x = - plp->width.x;
2836
10.1M
        dirn1.y = - plp->width.y;
2837
10.1M
        dirn2.x = -nplp->width.x;
2838
10.1M
        dirn2.y = -nplp->width.y;
2839
10.1M
        if (line_intersect(& plp->o.co, &dirn1,
2840
10.1M
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
9.61M
            return 0;
2842
493k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
493k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
493k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
493k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
493k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
493k
                                &plp->width)))
2848
0
            return code;
2849
10.2M
    } else {
2850
10.2M
        if (line_intersect(& plp->o.ce, & plp->width,
2851
10.2M
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
9.84M
            return 0;
2853
401k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
401k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
401k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
401k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
401k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
401k
                                &plp->width)))
2859
0
            return code;
2860
401k
    }
2861
894k
    return 0;
2862
20.3M
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
73.6M
{
2869
73.6M
#define PUT_POINT(i, px, py)\
2870
147M
  pts[i].x = (px), pts[i].y = (py)
2871
73.6M
    switch (type) {
2872
73.5M
        case gs_cap_butt:
2873
73.5M
            PUT_POINT(0, xo, yo);
2874
73.5M
            PUT_POINT(1, xe, ye);
2875
73.5M
            return 2;
2876
63.8k
        case gs_cap_square:
2877
63.8k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
63.8k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
63.8k
            return 2;
2880
80
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
80
            PUT_POINT(0, xo, yo);
2882
80
            PUT_POINT(1, px + cdx, py + cdy);
2883
80
            PUT_POINT(2, xe, ye);
2884
80
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
73.6M
    }
2888
73.6M
#undef PUT_POINT
2889
73.6M
}