Coverage Report

Created: 2025-07-12 06:03

/rust/registry/src/index.crates.io-6f17d22bba15001f/indexmap-2.10.0/src/set.rs
Line
Count
Source (jump to first uncovered line)
1
//! A hash set implemented using [`IndexMap`]
2
3
mod iter;
4
mod mutable;
5
mod slice;
6
7
#[cfg(test)]
8
mod tests;
9
10
pub use self::iter::{
11
    Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
12
};
13
pub use self::mutable::MutableValues;
14
pub use self::slice::Slice;
15
16
#[cfg(feature = "rayon")]
17
pub use crate::rayon::set as rayon;
18
use crate::TryReserveError;
19
20
#[cfg(feature = "std")]
21
use std::collections::hash_map::RandomState;
22
23
use crate::util::try_simplify_range;
24
use alloc::boxed::Box;
25
use alloc::vec::Vec;
26
use core::cmp::Ordering;
27
use core::fmt;
28
use core::hash::{BuildHasher, Hash};
29
use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
30
31
use super::{Equivalent, IndexMap};
32
33
type Bucket<T> = super::Bucket<T, ()>;
34
35
/// A hash set where the iteration order of the values is independent of their
36
/// hash values.
37
///
38
/// The interface is closely compatible with the standard
39
/// [`HashSet`][std::collections::HashSet],
40
/// but also has additional features.
41
///
42
/// # Order
43
///
44
/// The values have a consistent order that is determined by the sequence of
45
/// insertion and removal calls on the set. The order does not depend on the
46
/// values or the hash function at all. Note that insertion order and value
47
/// are not affected if a re-insertion is attempted once an element is
48
/// already present.
49
///
50
/// All iterators traverse the set *in order*.  Set operation iterators like
51
/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
52
/// operators.  See their documentation for specifics.
53
///
54
/// The insertion order is preserved, with **notable exceptions** like the
55
/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
56
/// Methods such as [`.sort_by()`][Self::sort_by] of
57
/// course result in a new order, depending on the sorting order.
58
///
59
/// # Indices
60
///
61
/// The values are indexed in a compact range without holes in the range
62
/// `0..self.len()`. For example, the method `.get_full` looks up the index for
63
/// a value, and the method `.get_index` looks up the value by index.
64
///
65
/// # Complexity
66
///
67
/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
68
/// of the two are the same for most methods.
69
///
70
/// # Examples
71
///
72
/// ```
73
/// use indexmap::IndexSet;
74
///
75
/// // Collects which letters appear in a sentence.
76
/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
77
///
78
/// assert!(letters.contains(&'s'));
79
/// assert!(letters.contains(&'t'));
80
/// assert!(letters.contains(&'u'));
81
/// assert!(!letters.contains(&'y'));
82
/// ```
83
#[cfg(feature = "std")]
84
pub struct IndexSet<T, S = RandomState> {
85
    pub(crate) map: IndexMap<T, (), S>,
86
}
87
#[cfg(not(feature = "std"))]
88
pub struct IndexSet<T, S> {
89
    pub(crate) map: IndexMap<T, (), S>,
90
}
91
92
impl<T, S> Clone for IndexSet<T, S>
93
where
94
    T: Clone,
95
    S: Clone,
96
{
97
    fn clone(&self) -> Self {
98
        IndexSet {
99
            map: self.map.clone(),
100
        }
101
    }
102
103
    fn clone_from(&mut self, other: &Self) {
104
        self.map.clone_from(&other.map);
105
    }
106
}
107
108
impl<T, S> fmt::Debug for IndexSet<T, S>
109
where
110
    T: fmt::Debug,
111
{
112
    #[cfg(not(feature = "test_debug"))]
113
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
114
        f.debug_set().entries(self.iter()).finish()
115
    }
116
117
    #[cfg(feature = "test_debug")]
118
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
119
        // Let the inner `IndexMap` print all of its details
120
        f.debug_struct("IndexSet").field("map", &self.map).finish()
121
    }
122
}
123
124
#[cfg(feature = "std")]
125
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
126
impl<T> IndexSet<T> {
127
    /// Create a new set. (Does not allocate.)
128
0
    pub fn new() -> Self {
129
0
        IndexSet {
130
0
            map: IndexMap::new(),
131
0
        }
132
0
    }
133
134
    /// Create a new set with capacity for `n` elements.
135
    /// (Does not allocate if `n` is zero.)
136
    ///
137
    /// Computes in **O(n)** time.
138
    pub fn with_capacity(n: usize) -> Self {
139
        IndexSet {
140
            map: IndexMap::with_capacity(n),
141
        }
142
    }
143
}
144
145
impl<T, S> IndexSet<T, S> {
146
    /// Create a new set with capacity for `n` elements.
147
    /// (Does not allocate if `n` is zero.)
148
    ///
149
    /// Computes in **O(n)** time.
150
    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
151
        IndexSet {
152
            map: IndexMap::with_capacity_and_hasher(n, hash_builder),
153
        }
154
    }
155
156
    /// Create a new set with `hash_builder`.
157
    ///
158
    /// This function is `const`, so it
159
    /// can be called in `static` contexts.
160
    pub const fn with_hasher(hash_builder: S) -> Self {
161
        IndexSet {
162
            map: IndexMap::with_hasher(hash_builder),
163
        }
164
    }
165
166
    #[inline]
167
    pub(crate) fn into_entries(self) -> Vec<Bucket<T>> {
168
        self.map.into_entries()
169
    }
170
171
    #[inline]
172
0
    pub(crate) fn as_entries(&self) -> &[Bucket<T>] {
173
0
        self.map.as_entries()
174
0
    }
Unexecuted instantiation: <indexmap::set::IndexSet<alloc::vec::Vec<u8>>>::as_entries
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::line::LineString>>::as_entries
175
176
    pub(crate) fn with_entries<F>(&mut self, f: F)
177
    where
178
        F: FnOnce(&mut [Bucket<T>]),
179
    {
180
        self.map.with_entries(f);
181
    }
182
183
    /// Return the number of elements the set can hold without reallocating.
184
    ///
185
    /// This number is a lower bound; the set might be able to hold more,
186
    /// but is guaranteed to be able to hold at least this many.
187
    ///
188
    /// Computes in **O(1)** time.
189
    pub fn capacity(&self) -> usize {
190
        self.map.capacity()
191
    }
192
193
    /// Return a reference to the set's `BuildHasher`.
194
    pub fn hasher(&self) -> &S {
195
        self.map.hasher()
196
    }
197
198
    /// Return the number of elements in the set.
199
    ///
200
    /// Computes in **O(1)** time.
201
0
    pub fn len(&self) -> usize {
202
0
        self.map.len()
203
0
    }
204
205
    /// Returns true if the set contains no elements.
206
    ///
207
    /// Computes in **O(1)** time.
208
0
    pub fn is_empty(&self) -> bool {
209
0
        self.map.is_empty()
210
0
    }
211
212
    /// Return an iterator over the values of the set, in their order
213
    pub fn iter(&self) -> Iter<'_, T> {
214
        Iter::new(self.as_entries())
215
    }
216
217
    /// Remove all elements in the set, while preserving its capacity.
218
    ///
219
    /// Computes in **O(n)** time.
220
    pub fn clear(&mut self) {
221
        self.map.clear();
222
    }
223
224
    /// Shortens the set, keeping the first `len` elements and dropping the rest.
225
    ///
226
    /// If `len` is greater than the set's current length, this has no effect.
227
    pub fn truncate(&mut self, len: usize) {
228
        self.map.truncate(len);
229
    }
230
231
    /// Clears the `IndexSet` in the given index range, returning those values
232
    /// as a drain iterator.
233
    ///
234
    /// The range may be any type that implements [`RangeBounds<usize>`],
235
    /// including all of the `std::ops::Range*` types, or even a tuple pair of
236
    /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
237
    /// like `set.drain(..)`.
238
    ///
239
    /// This shifts down all entries following the drained range to fill the
240
    /// gap, and keeps the allocated memory for reuse.
241
    ///
242
    /// ***Panics*** if the starting point is greater than the end point or if
243
    /// the end point is greater than the length of the set.
244
    #[track_caller]
245
    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
246
    where
247
        R: RangeBounds<usize>,
248
    {
249
        Drain::new(self.map.core.drain(range))
250
    }
251
252
    /// Creates an iterator which uses a closure to determine if a value should be removed,
253
    /// for all values in the given range.
254
    ///
255
    /// If the closure returns true, then the value is removed and yielded.
256
    /// If the closure returns false, the value will remain in the list and will not be yielded
257
    /// by the iterator.
258
    ///
259
    /// The range may be any type that implements [`RangeBounds<usize>`],
260
    /// including all of the `std::ops::Range*` types, or even a tuple pair of
261
    /// `Bound` start and end values. To check the entire set, use `RangeFull`
262
    /// like `set.extract_if(.., predicate)`.
263
    ///
264
    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
265
    /// or the iteration short-circuits, then the remaining elements will be retained.
266
    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
267
    ///
268
    /// [`retain`]: IndexSet::retain
269
    ///
270
    /// ***Panics*** if the starting point is greater than the end point or if
271
    /// the end point is greater than the length of the set.
272
    ///
273
    /// # Examples
274
    ///
275
    /// Splitting a set into even and odd values, reusing the original set:
276
    ///
277
    /// ```
278
    /// use indexmap::IndexSet;
279
    ///
280
    /// let mut set: IndexSet<i32> = (0..8).collect();
281
    /// let extracted: IndexSet<i32> = set.extract_if(.., |v| v % 2 == 0).collect();
282
    ///
283
    /// let evens = extracted.into_iter().collect::<Vec<_>>();
284
    /// let odds = set.into_iter().collect::<Vec<_>>();
285
    ///
286
    /// assert_eq!(evens, vec![0, 2, 4, 6]);
287
    /// assert_eq!(odds, vec![1, 3, 5, 7]);
288
    /// ```
289
    #[track_caller]
290
    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F>
291
    where
292
        F: FnMut(&T) -> bool,
293
        R: RangeBounds<usize>,
294
    {
295
        ExtractIf::new(&mut self.map.core, range, pred)
296
    }
297
298
    /// Splits the collection into two at the given index.
299
    ///
300
    /// Returns a newly allocated set containing the elements in the range
301
    /// `[at, len)`. After the call, the original set will be left containing
302
    /// the elements `[0, at)` with its previous capacity unchanged.
303
    ///
304
    /// ***Panics*** if `at > len`.
305
    #[track_caller]
306
    pub fn split_off(&mut self, at: usize) -> Self
307
    where
308
        S: Clone,
309
    {
310
        Self {
311
            map: self.map.split_off(at),
312
        }
313
    }
314
315
    /// Reserve capacity for `additional` more values.
316
    ///
317
    /// Computes in **O(n)** time.
318
    pub fn reserve(&mut self, additional: usize) {
319
        self.map.reserve(additional);
320
    }
321
322
    /// Reserve capacity for `additional` more values, without over-allocating.
323
    ///
324
    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
325
    /// frequent re-allocations. However, the underlying data structures may still have internal
326
    /// capacity requirements, and the allocator itself may give more space than requested, so this
327
    /// cannot be relied upon to be precisely minimal.
328
    ///
329
    /// Computes in **O(n)** time.
330
    pub fn reserve_exact(&mut self, additional: usize) {
331
        self.map.reserve_exact(additional);
332
    }
333
334
    /// Try to reserve capacity for `additional` more values.
335
    ///
336
    /// Computes in **O(n)** time.
337
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
338
        self.map.try_reserve(additional)
339
    }
340
341
    /// Try to reserve capacity for `additional` more values, without over-allocating.
342
    ///
343
    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
344
    /// frequent re-allocations. However, the underlying data structures may still have internal
345
    /// capacity requirements, and the allocator itself may give more space than requested, so this
346
    /// cannot be relied upon to be precisely minimal.
347
    ///
348
    /// Computes in **O(n)** time.
349
    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
350
        self.map.try_reserve_exact(additional)
351
    }
352
353
    /// Shrink the capacity of the set as much as possible.
354
    ///
355
    /// Computes in **O(n)** time.
356
    pub fn shrink_to_fit(&mut self) {
357
        self.map.shrink_to_fit();
358
    }
359
360
    /// Shrink the capacity of the set with a lower limit.
361
    ///
362
    /// Computes in **O(n)** time.
363
    pub fn shrink_to(&mut self, min_capacity: usize) {
364
        self.map.shrink_to(min_capacity);
365
    }
366
}
367
368
impl<T, S> IndexSet<T, S>
369
where
370
    T: Hash + Eq,
371
    S: BuildHasher,
372
{
373
    /// Insert the value into the set.
374
    ///
375
    /// If an equivalent item already exists in the set, it returns
376
    /// `false` leaving the original value in the set and without
377
    /// altering its insertion order. Otherwise, it inserts the new
378
    /// item and returns `true`.
379
    ///
380
    /// Computes in **O(1)** time (amortized average).
381
    pub fn insert(&mut self, value: T) -> bool {
382
        self.map.insert(value, ()).is_none()
383
    }
384
385
    /// Insert the value into the set, and get its index.
386
    ///
387
    /// If an equivalent item already exists in the set, it returns
388
    /// the index of the existing item and `false`, leaving the
389
    /// original value in the set and without altering its insertion
390
    /// order. Otherwise, it inserts the new item and returns the index
391
    /// of the inserted item and `true`.
392
    ///
393
    /// Computes in **O(1)** time (amortized average).
394
0
    pub fn insert_full(&mut self, value: T) -> (usize, bool) {
395
0
        let (index, existing) = self.map.insert_full(value, ());
396
0
        (index, existing.is_none())
397
0
    }
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::cfi::CommonInformationEntry>>::insert_full
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::loc::LocationList>>::insert_full
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::line::LineString>>::insert_full
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::range::RangeList>>::insert_full
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::abbrev::Abbreviation>>::insert_full
398
399
    /// Insert the value into the set at its ordered position among sorted values.
400
    ///
401
    /// This is equivalent to finding the position with
402
    /// [`binary_search`][Self::binary_search], and if needed calling
403
    /// [`insert_before`][Self::insert_before] for a new value.
404
    ///
405
    /// If the sorted item is found in the set, it returns the index of that
406
    /// existing item and `false`, without any change. Otherwise, it inserts the
407
    /// new item and returns its sorted index and `true`.
408
    ///
409
    /// If the existing items are **not** already sorted, then the insertion
410
    /// index is unspecified (like [`slice::binary_search`]), but the value
411
    /// is moved to or inserted at that position regardless.
412
    ///
413
    /// Computes in **O(n)** time (average). Instead of repeating calls to
414
    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
415
    /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
416
    /// [`sort_unstable`][Self::sort_unstable] once.
417
    pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
418
    where
419
        T: Ord,
420
    {
421
        let (index, existing) = self.map.insert_sorted(value, ());
422
        (index, existing.is_none())
423
    }
424
425
    /// Insert the value into the set before the value at the given index, or at the end.
426
    ///
427
    /// If an equivalent item already exists in the set, it returns `false` leaving the
428
    /// original value in the set, but moved to the new position. The returned index
429
    /// will either be the given index or one less, depending on how the value moved.
430
    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
431
    ///
432
    /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
433
    ///
434
    /// ***Panics*** if `index` is out of bounds.
435
    /// Valid indices are `0..=set.len()` (inclusive).
436
    ///
437
    /// Computes in **O(n)** time (average).
438
    ///
439
    /// # Examples
440
    ///
441
    /// ```
442
    /// use indexmap::IndexSet;
443
    /// let mut set: IndexSet<char> = ('a'..='z').collect();
444
    ///
445
    /// // The new value '*' goes exactly at the given index.
446
    /// assert_eq!(set.get_index_of(&'*'), None);
447
    /// assert_eq!(set.insert_before(10, '*'), (10, true));
448
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
449
    ///
450
    /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
451
    /// assert_eq!(set.insert_before(10, 'a'), (9, false));
452
    /// assert_eq!(set.get_index_of(&'a'), Some(9));
453
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
454
    ///
455
    /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
456
    /// assert_eq!(set.insert_before(10, 'z'), (10, false));
457
    /// assert_eq!(set.get_index_of(&'z'), Some(10));
458
    /// assert_eq!(set.get_index_of(&'*'), Some(11));
459
    ///
460
    /// // Moving or inserting before the endpoint is also valid.
461
    /// assert_eq!(set.len(), 27);
462
    /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
463
    /// assert_eq!(set.get_index_of(&'*'), Some(26));
464
    /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
465
    /// assert_eq!(set.get_index_of(&'+'), Some(27));
466
    /// assert_eq!(set.len(), 28);
467
    /// ```
468
    #[track_caller]
469
    pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
470
        let (index, existing) = self.map.insert_before(index, value, ());
471
        (index, existing.is_none())
472
    }
473
474
    /// Insert the value into the set at the given index.
475
    ///
476
    /// If an equivalent item already exists in the set, it returns `false` leaving
477
    /// the original value in the set, but moved to the given index.
478
    /// Note that existing values **cannot** be moved to `index == set.len()`!
479
    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
480
    ///
481
    /// Otherwise, it inserts the new value at the given index and returns `true`.
482
    ///
483
    /// ***Panics*** if `index` is out of bounds.
484
    /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
485
    /// `0..=set.len()` (inclusive) when inserting a new value.
486
    ///
487
    /// Computes in **O(n)** time (average).
488
    ///
489
    /// # Examples
490
    ///
491
    /// ```
492
    /// use indexmap::IndexSet;
493
    /// let mut set: IndexSet<char> = ('a'..='z').collect();
494
    ///
495
    /// // The new value '*' goes exactly at the given index.
496
    /// assert_eq!(set.get_index_of(&'*'), None);
497
    /// assert_eq!(set.shift_insert(10, '*'), true);
498
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
499
    ///
500
    /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
501
    /// assert_eq!(set.shift_insert(10, 'a'), false);
502
    /// assert_eq!(set.get_index_of(&'a'), Some(10));
503
    /// assert_eq!(set.get_index_of(&'*'), Some(9));
504
    ///
505
    /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
506
    /// assert_eq!(set.shift_insert(9, 'z'), false);
507
    /// assert_eq!(set.get_index_of(&'z'), Some(9));
508
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
509
    ///
510
    /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
511
    /// assert_eq!(set.len(), 27);
512
    /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
513
    /// assert_eq!(set.get_index_of(&'*'), Some(26));
514
    /// assert_eq!(set.shift_insert(set.len(), '+'), true);
515
    /// assert_eq!(set.get_index_of(&'+'), Some(27));
516
    /// assert_eq!(set.len(), 28);
517
    /// ```
518
    ///
519
    /// ```should_panic
520
    /// use indexmap::IndexSet;
521
    /// let mut set: IndexSet<char> = ('a'..='z').collect();
522
    ///
523
    /// // This is an invalid index for moving an existing value!
524
    /// set.shift_insert(set.len(), 'a');
525
    /// ```
526
    #[track_caller]
527
    pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
528
        self.map.shift_insert(index, value, ()).is_none()
529
    }
530
531
    /// Adds a value to the set, replacing the existing value, if any, that is
532
    /// equal to the given one, without altering its insertion order. Returns
533
    /// the replaced value.
534
    ///
535
    /// Computes in **O(1)** time (average).
536
    pub fn replace(&mut self, value: T) -> Option<T> {
537
        self.replace_full(value).1
538
    }
539
540
    /// Adds a value to the set, replacing the existing value, if any, that is
541
    /// equal to the given one, without altering its insertion order. Returns
542
    /// the index of the item and its replaced value.
543
    ///
544
    /// Computes in **O(1)** time (average).
545
    pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
546
        let hash = self.map.hash(&value);
547
        match self.map.core.replace_full(hash, value, ()) {
548
            (i, Some((replaced, ()))) => (i, Some(replaced)),
549
            (i, None) => (i, None),
550
        }
551
    }
552
553
    /// Return an iterator over the values that are in `self` but not `other`.
554
    ///
555
    /// Values are produced in the same order that they appear in `self`.
556
    pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
557
    where
558
        S2: BuildHasher,
559
    {
560
        Difference::new(self, other)
561
    }
562
563
    /// Return an iterator over the values that are in `self` or `other`,
564
    /// but not in both.
565
    ///
566
    /// Values from `self` are produced in their original order, followed by
567
    /// values from `other` in their original order.
568
    pub fn symmetric_difference<'a, S2>(
569
        &'a self,
570
        other: &'a IndexSet<T, S2>,
571
    ) -> SymmetricDifference<'a, T, S, S2>
572
    where
573
        S2: BuildHasher,
574
    {
575
        SymmetricDifference::new(self, other)
576
    }
577
578
    /// Return an iterator over the values that are in both `self` and `other`.
579
    ///
580
    /// Values are produced in the same order that they appear in `self`.
581
    pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
582
    where
583
        S2: BuildHasher,
584
    {
585
        Intersection::new(self, other)
586
    }
587
588
    /// Return an iterator over all values that are in `self` or `other`.
589
    ///
590
    /// Values from `self` are produced in their original order, followed by
591
    /// values that are unique to `other` in their original order.
592
    pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
593
    where
594
        S2: BuildHasher,
595
    {
596
        Union::new(self, other)
597
    }
598
599
    /// Creates a splicing iterator that replaces the specified range in the set
600
    /// with the given `replace_with` iterator and yields the removed items.
601
    /// `replace_with` does not need to be the same length as `range`.
602
    ///
603
    /// The `range` is removed even if the iterator is not consumed until the
604
    /// end. It is unspecified how many elements are removed from the set if the
605
    /// `Splice` value is leaked.
606
    ///
607
    /// The input iterator `replace_with` is only consumed when the `Splice`
608
    /// value is dropped. If a value from the iterator matches an existing entry
609
    /// in the set (outside of `range`), then the original will be unchanged.
610
    /// Otherwise, the new value will be inserted in the replaced `range`.
611
    ///
612
    /// ***Panics*** if the starting point is greater than the end point or if
613
    /// the end point is greater than the length of the set.
614
    ///
615
    /// # Examples
616
    ///
617
    /// ```
618
    /// use indexmap::IndexSet;
619
    ///
620
    /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
621
    /// let new = [5, 4, 3, 2, 1];
622
    /// let removed: Vec<_> = set.splice(2..4, new).collect();
623
    ///
624
    /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
625
    /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
626
    /// assert_eq!(removed, &[2, 3]);
627
    /// ```
628
    #[track_caller]
629
    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
630
    where
631
        R: RangeBounds<usize>,
632
        I: IntoIterator<Item = T>,
633
    {
634
        Splice::new(self, range, replace_with.into_iter())
635
    }
636
637
    /// Moves all values from `other` into `self`, leaving `other` empty.
638
    ///
639
    /// This is equivalent to calling [`insert`][Self::insert] for each value
640
    /// from `other` in order, which means that values that already exist
641
    /// in `self` are unchanged in their current position.
642
    ///
643
    /// See also [`union`][Self::union] to iterate the combined values by
644
    /// reference, without modifying `self` or `other`.
645
    ///
646
    /// # Examples
647
    ///
648
    /// ```
649
    /// use indexmap::IndexSet;
650
    ///
651
    /// let mut a = IndexSet::from([3, 2, 1]);
652
    /// let mut b = IndexSet::from([3, 4, 5]);
653
    /// let old_capacity = b.capacity();
654
    ///
655
    /// a.append(&mut b);
656
    ///
657
    /// assert_eq!(a.len(), 5);
658
    /// assert_eq!(b.len(), 0);
659
    /// assert_eq!(b.capacity(), old_capacity);
660
    ///
661
    /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
662
    /// ```
663
    pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
664
        self.map.append(&mut other.map);
665
    }
666
}
667
668
impl<T, S> IndexSet<T, S>
669
where
670
    S: BuildHasher,
671
{
672
    /// Return `true` if an equivalent to `value` exists in the set.
673
    ///
674
    /// Computes in **O(1)** time (average).
675
    pub fn contains<Q>(&self, value: &Q) -> bool
676
    where
677
        Q: ?Sized + Hash + Equivalent<T>,
678
    {
679
        self.map.contains_key(value)
680
    }
681
682
    /// Return a reference to the value stored in the set, if it is present,
683
    /// else `None`.
684
    ///
685
    /// Computes in **O(1)** time (average).
686
    pub fn get<Q>(&self, value: &Q) -> Option<&T>
687
    where
688
        Q: ?Sized + Hash + Equivalent<T>,
689
    {
690
        self.map.get_key_value(value).map(|(x, &())| x)
691
    }
692
693
    /// Return item index and value
694
    pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
695
    where
696
        Q: ?Sized + Hash + Equivalent<T>,
697
    {
698
        self.map.get_full(value).map(|(i, x, &())| (i, x))
699
    }
700
701
    /// Return item index, if it exists in the set
702
    ///
703
    /// Computes in **O(1)** time (average).
704
    pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
705
    where
706
        Q: ?Sized + Hash + Equivalent<T>,
707
    {
708
        self.map.get_index_of(value)
709
    }
710
711
    /// Remove the value from the set, and return `true` if it was present.
712
    ///
713
    /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
714
    /// value's position with the last element, and it is deprecated in favor of calling that
715
    /// explicitly. If you need to preserve the relative order of the values in the set, use
716
    /// [`.shift_remove(value)`][Self::shift_remove] instead.
717
    #[deprecated(note = "`remove` disrupts the set order -- \
718
        use `swap_remove` or `shift_remove` for explicit behavior.")]
719
    pub fn remove<Q>(&mut self, value: &Q) -> bool
720
    where
721
        Q: ?Sized + Hash + Equivalent<T>,
722
    {
723
        self.swap_remove(value)
724
    }
725
726
    /// Remove the value from the set, and return `true` if it was present.
727
    ///
728
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
729
    /// last element of the set and popping it off. **This perturbs
730
    /// the position of what used to be the last element!**
731
    ///
732
    /// Return `false` if `value` was not in the set.
733
    ///
734
    /// Computes in **O(1)** time (average).
735
    pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
736
    where
737
        Q: ?Sized + Hash + Equivalent<T>,
738
    {
739
        self.map.swap_remove(value).is_some()
740
    }
741
742
    /// Remove the value from the set, and return `true` if it was present.
743
    ///
744
    /// Like [`Vec::remove`], the value is removed by shifting all of the
745
    /// elements that follow it, preserving their relative order.
746
    /// **This perturbs the index of all of those elements!**
747
    ///
748
    /// Return `false` if `value` was not in the set.
749
    ///
750
    /// Computes in **O(n)** time (average).
751
    pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
752
    where
753
        Q: ?Sized + Hash + Equivalent<T>,
754
    {
755
        self.map.shift_remove(value).is_some()
756
    }
757
758
    /// Removes and returns the value in the set, if any, that is equal to the
759
    /// given one.
760
    ///
761
    /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
762
    /// value's position with the last element, and it is deprecated in favor of calling that
763
    /// explicitly. If you need to preserve the relative order of the values in the set, use
764
    /// [`.shift_take(value)`][Self::shift_take] instead.
765
    #[deprecated(note = "`take` disrupts the set order -- \
766
        use `swap_take` or `shift_take` for explicit behavior.")]
767
    pub fn take<Q>(&mut self, value: &Q) -> Option<T>
768
    where
769
        Q: ?Sized + Hash + Equivalent<T>,
770
    {
771
        self.swap_take(value)
772
    }
773
774
    /// Removes and returns the value in the set, if any, that is equal to the
775
    /// given one.
776
    ///
777
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
778
    /// last element of the set and popping it off. **This perturbs
779
    /// the position of what used to be the last element!**
780
    ///
781
    /// Return `None` if `value` was not in the set.
782
    ///
783
    /// Computes in **O(1)** time (average).
784
    pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
785
    where
786
        Q: ?Sized + Hash + Equivalent<T>,
787
    {
788
        self.map.swap_remove_entry(value).map(|(x, ())| x)
789
    }
790
791
    /// Removes and returns the value in the set, if any, that is equal to the
792
    /// given one.
793
    ///
794
    /// Like [`Vec::remove`], the value is removed by shifting all of the
795
    /// elements that follow it, preserving their relative order.
796
    /// **This perturbs the index of all of those elements!**
797
    ///
798
    /// Return `None` if `value` was not in the set.
799
    ///
800
    /// Computes in **O(n)** time (average).
801
    pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
802
    where
803
        Q: ?Sized + Hash + Equivalent<T>,
804
    {
805
        self.map.shift_remove_entry(value).map(|(x, ())| x)
806
    }
807
808
    /// Remove the value from the set return it and the index it had.
809
    ///
810
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
811
    /// last element of the set and popping it off. **This perturbs
812
    /// the position of what used to be the last element!**
813
    ///
814
    /// Return `None` if `value` was not in the set.
815
    pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
816
    where
817
        Q: ?Sized + Hash + Equivalent<T>,
818
    {
819
        self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
820
    }
821
822
    /// Remove the value from the set return it and the index it had.
823
    ///
824
    /// Like [`Vec::remove`], the value is removed by shifting all of the
825
    /// elements that follow it, preserving their relative order.
826
    /// **This perturbs the index of all of those elements!**
827
    ///
828
    /// Return `None` if `value` was not in the set.
829
    pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
830
    where
831
        Q: ?Sized + Hash + Equivalent<T>,
832
    {
833
        self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
834
    }
835
}
836
837
impl<T, S> IndexSet<T, S> {
838
    /// Remove the last value
839
    ///
840
    /// This preserves the order of the remaining elements.
841
    ///
842
    /// Computes in **O(1)** time (average).
843
    #[doc(alias = "pop_last")] // like `BTreeSet`
844
    pub fn pop(&mut self) -> Option<T> {
845
        self.map.pop().map(|(x, ())| x)
846
    }
847
848
    /// Scan through each value in the set and keep those where the
849
    /// closure `keep` returns `true`.
850
    ///
851
    /// The elements are visited in order, and remaining elements keep their
852
    /// order.
853
    ///
854
    /// Computes in **O(n)** time (average).
855
    pub fn retain<F>(&mut self, mut keep: F)
856
    where
857
        F: FnMut(&T) -> bool,
858
    {
859
        self.map.retain(move |x, &mut ()| keep(x))
860
    }
861
862
    /// Sort the set’s values by their default ordering.
863
    ///
864
    /// This is a stable sort -- but equivalent values should not normally coexist in
865
    /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
866
    /// because it is generally faster and doesn't allocate auxiliary memory.
867
    ///
868
    /// See [`sort_by`](Self::sort_by) for details.
869
    pub fn sort(&mut self)
870
    where
871
        T: Ord,
872
    {
873
        self.map.sort_keys()
874
    }
875
876
    /// Sort the set’s values in place using the comparison function `cmp`.
877
    ///
878
    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
879
    pub fn sort_by<F>(&mut self, mut cmp: F)
880
    where
881
        F: FnMut(&T, &T) -> Ordering,
882
    {
883
        self.map.sort_by(move |a, _, b, _| cmp(a, b));
884
    }
885
886
    /// Sort the values of the set and return a by-value iterator of
887
    /// the values with the result.
888
    ///
889
    /// The sort is stable.
890
    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
891
    where
892
        F: FnMut(&T, &T) -> Ordering,
893
    {
894
        let mut entries = self.into_entries();
895
        entries.sort_by(move |a, b| cmp(&a.key, &b.key));
896
        IntoIter::new(entries)
897
    }
898
899
    /// Sort the set's values by their default ordering.
900
    ///
901
    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
902
    pub fn sort_unstable(&mut self)
903
    where
904
        T: Ord,
905
    {
906
        self.map.sort_unstable_keys()
907
    }
908
909
    /// Sort the set's values in place using the comparison function `cmp`.
910
    ///
911
    /// Computes in **O(n log n)** time. The sort is unstable.
912
    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
913
    where
914
        F: FnMut(&T, &T) -> Ordering,
915
    {
916
        self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
917
    }
918
919
    /// Sort the values of the set and return a by-value iterator of
920
    /// the values with the result.
921
    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
922
    where
923
        F: FnMut(&T, &T) -> Ordering,
924
    {
925
        let mut entries = self.into_entries();
926
        entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
927
        IntoIter::new(entries)
928
    }
929
930
    /// Sort the set’s values in place using a key extraction function.
931
    ///
932
    /// During sorting, the function is called at most once per entry, by using temporary storage
933
    /// to remember the results of its evaluation. The order of calls to the function is
934
    /// unspecified and may change between versions of `indexmap` or the standard library.
935
    ///
936
    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
937
    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
938
    pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
939
    where
940
        K: Ord,
941
        F: FnMut(&T) -> K,
942
    {
943
        self.with_entries(move |entries| {
944
            entries.sort_by_cached_key(move |a| sort_key(&a.key));
945
        });
946
    }
947
948
    /// Search over a sorted set for a value.
949
    ///
950
    /// Returns the position where that value is present, or the position where it can be inserted
951
    /// to maintain the sort. See [`slice::binary_search`] for more details.
952
    ///
953
    /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
954
    /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
955
    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
956
    where
957
        T: Ord,
958
    {
959
        self.as_slice().binary_search(x)
960
    }
961
962
    /// Search over a sorted set with a comparator function.
963
    ///
964
    /// Returns the position where that value is present, or the position where it can be inserted
965
    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
966
    ///
967
    /// Computes in **O(log(n))** time.
968
    #[inline]
969
    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
970
    where
971
        F: FnMut(&'a T) -> Ordering,
972
    {
973
        self.as_slice().binary_search_by(f)
974
    }
975
976
    /// Search over a sorted set with an extraction function.
977
    ///
978
    /// Returns the position where that value is present, or the position where it can be inserted
979
    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
980
    ///
981
    /// Computes in **O(log(n))** time.
982
    #[inline]
983
    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
984
    where
985
        F: FnMut(&'a T) -> B,
986
        B: Ord,
987
    {
988
        self.as_slice().binary_search_by_key(b, f)
989
    }
990
991
    /// Returns the index of the partition point of a sorted set according to the given predicate
992
    /// (the index of the first element of the second partition).
993
    ///
994
    /// See [`slice::partition_point`] for more details.
995
    ///
996
    /// Computes in **O(log(n))** time.
997
    #[must_use]
998
    pub fn partition_point<P>(&self, pred: P) -> usize
999
    where
1000
        P: FnMut(&T) -> bool,
1001
    {
1002
        self.as_slice().partition_point(pred)
1003
    }
1004
1005
    /// Reverses the order of the set’s values in place.
1006
    ///
1007
    /// Computes in **O(n)** time and **O(1)** space.
1008
    pub fn reverse(&mut self) {
1009
        self.map.reverse()
1010
    }
1011
1012
    /// Returns a slice of all the values in the set.
1013
    ///
1014
    /// Computes in **O(1)** time.
1015
    pub fn as_slice(&self) -> &Slice<T> {
1016
        Slice::from_slice(self.as_entries())
1017
    }
1018
1019
    /// Converts into a boxed slice of all the values in the set.
1020
    ///
1021
    /// Note that this will drop the inner hash table and any excess capacity.
1022
    pub fn into_boxed_slice(self) -> Box<Slice<T>> {
1023
        Slice::from_boxed(self.into_entries().into_boxed_slice())
1024
    }
1025
1026
    /// Get a value by index
1027
    ///
1028
    /// Valid indices are `0 <= index < self.len()`.
1029
    ///
1030
    /// Computes in **O(1)** time.
1031
0
    pub fn get_index(&self, index: usize) -> Option<&T> {
1032
0
        self.as_entries().get(index).map(Bucket::key_ref)
1033
0
    }
Unexecuted instantiation: <indexmap::set::IndexSet<alloc::vec::Vec<u8>>>::get_index
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::line::LineString>>::get_index
1034
1035
    /// Returns a slice of values in the given range of indices.
1036
    ///
1037
    /// Valid indices are `0 <= index < self.len()`.
1038
    ///
1039
    /// Computes in **O(1)** time.
1040
    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
1041
        let entries = self.as_entries();
1042
        let range = try_simplify_range(range, entries.len())?;
1043
        entries.get(range).map(Slice::from_slice)
1044
    }
1045
1046
    /// Get the first value
1047
    ///
1048
    /// Computes in **O(1)** time.
1049
    pub fn first(&self) -> Option<&T> {
1050
        self.as_entries().first().map(Bucket::key_ref)
1051
    }
1052
1053
    /// Get the last value
1054
    ///
1055
    /// Computes in **O(1)** time.
1056
    pub fn last(&self) -> Option<&T> {
1057
        self.as_entries().last().map(Bucket::key_ref)
1058
    }
1059
1060
    /// Remove the value by index
1061
    ///
1062
    /// Valid indices are `0 <= index < self.len()`.
1063
    ///
1064
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
1065
    /// last element of the set and popping it off. **This perturbs
1066
    /// the position of what used to be the last element!**
1067
    ///
1068
    /// Computes in **O(1)** time (average).
1069
    pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
1070
        self.map.swap_remove_index(index).map(|(x, ())| x)
1071
    }
1072
1073
    /// Remove the value by index
1074
    ///
1075
    /// Valid indices are `0 <= index < self.len()`.
1076
    ///
1077
    /// Like [`Vec::remove`], the value is removed by shifting all of the
1078
    /// elements that follow it, preserving their relative order.
1079
    /// **This perturbs the index of all of those elements!**
1080
    ///
1081
    /// Computes in **O(n)** time (average).
1082
    pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
1083
        self.map.shift_remove_index(index).map(|(x, ())| x)
1084
    }
1085
1086
    /// Moves the position of a value from one index to another
1087
    /// by shifting all other values in-between.
1088
    ///
1089
    /// * If `from < to`, the other values will shift down while the targeted value moves up.
1090
    /// * If `from > to`, the other values will shift up while the targeted value moves down.
1091
    ///
1092
    /// ***Panics*** if `from` or `to` are out of bounds.
1093
    ///
1094
    /// Computes in **O(n)** time (average).
1095
    #[track_caller]
1096
    pub fn move_index(&mut self, from: usize, to: usize) {
1097
        self.map.move_index(from, to)
1098
    }
1099
1100
    /// Swaps the position of two values in the set.
1101
    ///
1102
    /// ***Panics*** if `a` or `b` are out of bounds.
1103
    ///
1104
    /// Computes in **O(1)** time (average).
1105
    #[track_caller]
1106
    pub fn swap_indices(&mut self, a: usize, b: usize) {
1107
        self.map.swap_indices(a, b)
1108
    }
1109
}
1110
1111
/// Access [`IndexSet`] values at indexed positions.
1112
///
1113
/// # Examples
1114
///
1115
/// ```
1116
/// use indexmap::IndexSet;
1117
///
1118
/// let mut set = IndexSet::new();
1119
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1120
///     set.insert(word.to_string());
1121
/// }
1122
/// assert_eq!(set[0], "Lorem");
1123
/// assert_eq!(set[1], "ipsum");
1124
/// set.reverse();
1125
/// assert_eq!(set[0], "amet");
1126
/// assert_eq!(set[1], "sit");
1127
/// set.sort();
1128
/// assert_eq!(set[0], "Lorem");
1129
/// assert_eq!(set[1], "amet");
1130
/// ```
1131
///
1132
/// ```should_panic
1133
/// use indexmap::IndexSet;
1134
///
1135
/// let mut set = IndexSet::new();
1136
/// set.insert("foo");
1137
/// println!("{:?}", set[10]); // panics!
1138
/// ```
1139
impl<T, S> Index<usize> for IndexSet<T, S> {
1140
    type Output = T;
1141
1142
    /// Returns a reference to the value at the supplied `index`.
1143
    ///
1144
    /// ***Panics*** if `index` is out of bounds.
1145
    fn index(&self, index: usize) -> &T {
1146
        if let Some(value) = self.get_index(index) {
1147
            value
1148
        } else {
1149
            panic!(
1150
                "index out of bounds: the len is {len} but the index is {index}",
1151
                len = self.len()
1152
            );
1153
        }
1154
    }
1155
}
1156
1157
impl<T, S> FromIterator<T> for IndexSet<T, S>
1158
where
1159
    T: Hash + Eq,
1160
    S: BuildHasher + Default,
1161
{
1162
    fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
1163
        let iter = iterable.into_iter().map(|x| (x, ()));
1164
        IndexSet {
1165
            map: IndexMap::from_iter(iter),
1166
        }
1167
    }
1168
}
1169
1170
#[cfg(feature = "std")]
1171
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1172
impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
1173
where
1174
    T: Eq + Hash,
1175
{
1176
    /// # Examples
1177
    ///
1178
    /// ```
1179
    /// use indexmap::IndexSet;
1180
    ///
1181
    /// let set1 = IndexSet::from([1, 2, 3, 4]);
1182
    /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
1183
    /// assert_eq!(set1, set2);
1184
    /// ```
1185
    fn from(arr: [T; N]) -> Self {
1186
        Self::from_iter(arr)
1187
    }
1188
}
1189
1190
impl<T, S> Extend<T> for IndexSet<T, S>
1191
where
1192
    T: Hash + Eq,
1193
    S: BuildHasher,
1194
{
1195
    fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
1196
        let iter = iterable.into_iter().map(|x| (x, ()));
1197
        self.map.extend(iter);
1198
    }
1199
}
1200
1201
impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
1202
where
1203
    T: Hash + Eq + Copy + 'a,
1204
    S: BuildHasher,
1205
{
1206
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
1207
        let iter = iterable.into_iter().copied();
1208
        self.extend(iter);
1209
    }
1210
}
1211
1212
impl<T, S> Default for IndexSet<T, S>
1213
where
1214
    S: Default,
1215
{
1216
    /// Return an empty [`IndexSet`]
1217
0
    fn default() -> Self {
1218
0
        IndexSet {
1219
0
            map: IndexMap::default(),
1220
0
        }
1221
0
    }
Unexecuted instantiation: <indexmap::set::IndexSet<alloc::vec::Vec<u8>> as core::default::Default>::default
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::loc::LocationList> as core::default::Default>::default
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::range::RangeList> as core::default::Default>::default
1222
}
1223
1224
impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
1225
where
1226
    T: Hash + Eq,
1227
    S1: BuildHasher,
1228
    S2: BuildHasher,
1229
{
1230
    fn eq(&self, other: &IndexSet<T, S2>) -> bool {
1231
        self.len() == other.len() && self.is_subset(other)
1232
    }
1233
}
1234
1235
impl<T, S> Eq for IndexSet<T, S>
1236
where
1237
    T: Eq + Hash,
1238
    S: BuildHasher,
1239
{
1240
}
1241
1242
impl<T, S> IndexSet<T, S>
1243
where
1244
    T: Eq + Hash,
1245
    S: BuildHasher,
1246
{
1247
    /// Returns `true` if `self` has no elements in common with `other`.
1248
    pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
1249
    where
1250
        S2: BuildHasher,
1251
    {
1252
        if self.len() <= other.len() {
1253
            self.iter().all(move |value| !other.contains(value))
1254
        } else {
1255
            other.iter().all(move |value| !self.contains(value))
1256
        }
1257
    }
1258
1259
    /// Returns `true` if all elements of `self` are contained in `other`.
1260
    pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1261
    where
1262
        S2: BuildHasher,
1263
    {
1264
        self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
1265
    }
1266
1267
    /// Returns `true` if all elements of `other` are contained in `self`.
1268
    pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1269
    where
1270
        S2: BuildHasher,
1271
    {
1272
        other.is_subset(self)
1273
    }
1274
}
1275
1276
impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
1277
where
1278
    T: Eq + Hash + Clone,
1279
    S1: BuildHasher + Default,
1280
    S2: BuildHasher,
1281
{
1282
    type Output = IndexSet<T, S1>;
1283
1284
    /// Returns the set intersection, cloned into a new set.
1285
    ///
1286
    /// Values are collected in the same order that they appear in `self`.
1287
    fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
1288
        self.intersection(other).cloned().collect()
1289
    }
1290
}
1291
1292
impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
1293
where
1294
    T: Eq + Hash + Clone,
1295
    S1: BuildHasher + Default,
1296
    S2: BuildHasher,
1297
{
1298
    type Output = IndexSet<T, S1>;
1299
1300
    /// Returns the set union, cloned into a new set.
1301
    ///
1302
    /// Values from `self` are collected in their original order, followed by
1303
    /// values that are unique to `other` in their original order.
1304
    fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
1305
        self.union(other).cloned().collect()
1306
    }
1307
}
1308
1309
impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
1310
where
1311
    T: Eq + Hash + Clone,
1312
    S1: BuildHasher + Default,
1313
    S2: BuildHasher,
1314
{
1315
    type Output = IndexSet<T, S1>;
1316
1317
    /// Returns the set symmetric-difference, cloned into a new set.
1318
    ///
1319
    /// Values from `self` are collected in their original order, followed by
1320
    /// values from `other` in their original order.
1321
    fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
1322
        self.symmetric_difference(other).cloned().collect()
1323
    }
1324
}
1325
1326
impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
1327
where
1328
    T: Eq + Hash + Clone,
1329
    S1: BuildHasher + Default,
1330
    S2: BuildHasher,
1331
{
1332
    type Output = IndexSet<T, S1>;
1333
1334
    /// Returns the set difference, cloned into a new set.
1335
    ///
1336
    /// Values are collected in the same order that they appear in `self`.
1337
    fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
1338
        self.difference(other).cloned().collect()
1339
    }
1340
}