Coverage Report

Created: 2025-10-13 07:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/indexmap-2.11.4/src/set.rs
Line
Count
Source
1
//! A hash set implemented using [`IndexMap`]
2
3
mod iter;
4
mod mutable;
5
mod slice;
6
7
#[cfg(test)]
8
mod tests;
9
10
pub use self::iter::{
11
    Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
12
};
13
pub use self::mutable::MutableValues;
14
pub use self::slice::Slice;
15
16
#[cfg(feature = "rayon")]
17
pub use crate::rayon::set as rayon;
18
use crate::TryReserveError;
19
20
#[cfg(feature = "std")]
21
use std::collections::hash_map::RandomState;
22
23
use crate::util::try_simplify_range;
24
use alloc::boxed::Box;
25
use alloc::vec::Vec;
26
use core::cmp::Ordering;
27
use core::fmt;
28
use core::hash::{BuildHasher, Hash};
29
use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
30
31
use super::{Equivalent, IndexMap};
32
33
type Bucket<T> = super::Bucket<T, ()>;
34
35
/// A hash set where the iteration order of the values is independent of their
36
/// hash values.
37
///
38
/// The interface is closely compatible with the standard
39
/// [`HashSet`][std::collections::HashSet],
40
/// but also has additional features.
41
///
42
/// # Order
43
///
44
/// The values have a consistent order that is determined by the sequence of
45
/// insertion and removal calls on the set. The order does not depend on the
46
/// values or the hash function at all. Note that insertion order and value
47
/// are not affected if a re-insertion is attempted once an element is
48
/// already present.
49
///
50
/// All iterators traverse the set *in order*.  Set operation iterators like
51
/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
52
/// operators.  See their documentation for specifics.
53
///
54
/// The insertion order is preserved, with **notable exceptions** like the
55
/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
56
/// Methods such as [`.sort_by()`][Self::sort_by] of
57
/// course result in a new order, depending on the sorting order.
58
///
59
/// # Indices
60
///
61
/// The values are indexed in a compact range without holes in the range
62
/// `0..self.len()`. For example, the method `.get_full` looks up the index for
63
/// a value, and the method `.get_index` looks up the value by index.
64
///
65
/// # Complexity
66
///
67
/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
68
/// of the two are the same for most methods.
69
///
70
/// # Examples
71
///
72
/// ```
73
/// use indexmap::IndexSet;
74
///
75
/// // Collects which letters appear in a sentence.
76
/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
77
///
78
/// assert!(letters.contains(&'s'));
79
/// assert!(letters.contains(&'t'));
80
/// assert!(letters.contains(&'u'));
81
/// assert!(!letters.contains(&'y'));
82
/// ```
83
#[cfg(feature = "std")]
84
pub struct IndexSet<T, S = RandomState> {
85
    pub(crate) map: IndexMap<T, (), S>,
86
}
87
#[cfg(not(feature = "std"))]
88
pub struct IndexSet<T, S> {
89
    pub(crate) map: IndexMap<T, (), S>,
90
}
91
92
impl<T, S> Clone for IndexSet<T, S>
93
where
94
    T: Clone,
95
    S: Clone,
96
{
97
    fn clone(&self) -> Self {
98
        IndexSet {
99
            map: self.map.clone(),
100
        }
101
    }
102
103
    fn clone_from(&mut self, other: &Self) {
104
        self.map.clone_from(&other.map);
105
    }
106
}
107
108
impl<T, S> fmt::Debug for IndexSet<T, S>
109
where
110
    T: fmt::Debug,
111
{
112
    #[cfg(not(feature = "test_debug"))]
113
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
114
        f.debug_set().entries(self.iter()).finish()
115
    }
116
117
    #[cfg(feature = "test_debug")]
118
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
119
        // Let the inner `IndexMap` print all of its details
120
        f.debug_struct("IndexSet").field("map", &self.map).finish()
121
    }
122
}
123
124
#[cfg(feature = "std")]
125
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
126
impl<T> IndexSet<T> {
127
    /// Create a new set. (Does not allocate.)
128
0
    pub fn new() -> Self {
129
0
        IndexSet {
130
0
            map: IndexMap::new(),
131
0
        }
132
0
    }
133
134
    /// Create a new set with capacity for `n` elements.
135
    /// (Does not allocate if `n` is zero.)
136
    ///
137
    /// Computes in **O(n)** time.
138
    pub fn with_capacity(n: usize) -> Self {
139
        IndexSet {
140
            map: IndexMap::with_capacity(n),
141
        }
142
    }
143
}
144
145
impl<T, S> IndexSet<T, S> {
146
    /// Create a new set with capacity for `n` elements.
147
    /// (Does not allocate if `n` is zero.)
148
    ///
149
    /// Computes in **O(n)** time.
150
    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
151
        IndexSet {
152
            map: IndexMap::with_capacity_and_hasher(n, hash_builder),
153
        }
154
    }
155
156
    /// Create a new set with `hash_builder`.
157
    ///
158
    /// This function is `const`, so it
159
    /// can be called in `static` contexts.
160
    pub const fn with_hasher(hash_builder: S) -> Self {
161
        IndexSet {
162
            map: IndexMap::with_hasher(hash_builder),
163
        }
164
    }
165
166
    #[inline]
167
    pub(crate) fn into_entries(self) -> Vec<Bucket<T>> {
168
        self.map.into_entries()
169
    }
170
171
    #[inline]
172
0
    pub(crate) fn as_entries(&self) -> &[Bucket<T>] {
173
0
        self.map.as_entries()
174
0
    }
Unexecuted instantiation: <indexmap::set::IndexSet<alloc::vec::Vec<u8>>>::as_entries
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::line::LineString>>::as_entries
175
176
    pub(crate) fn with_entries<F>(&mut self, f: F)
177
    where
178
        F: FnOnce(&mut [Bucket<T>]),
179
    {
180
        self.map.with_entries(f);
181
    }
182
183
    /// Return the number of elements the set can hold without reallocating.
184
    ///
185
    /// This number is a lower bound; the set might be able to hold more,
186
    /// but is guaranteed to be able to hold at least this many.
187
    ///
188
    /// Computes in **O(1)** time.
189
    pub fn capacity(&self) -> usize {
190
        self.map.capacity()
191
    }
192
193
    /// Return a reference to the set's `BuildHasher`.
194
    pub fn hasher(&self) -> &S {
195
        self.map.hasher()
196
    }
197
198
    /// Return the number of elements in the set.
199
    ///
200
    /// Computes in **O(1)** time.
201
0
    pub fn len(&self) -> usize {
202
0
        self.map.len()
203
0
    }
204
205
    /// Returns true if the set contains no elements.
206
    ///
207
    /// Computes in **O(1)** time.
208
0
    pub fn is_empty(&self) -> bool {
209
0
        self.map.is_empty()
210
0
    }
211
212
    /// Return an iterator over the values of the set, in their order
213
    pub fn iter(&self) -> Iter<'_, T> {
214
        Iter::new(self.as_entries())
215
    }
216
217
    /// Remove all elements in the set, while preserving its capacity.
218
    ///
219
    /// Computes in **O(n)** time.
220
    pub fn clear(&mut self) {
221
        self.map.clear();
222
    }
223
224
    /// Shortens the set, keeping the first `len` elements and dropping the rest.
225
    ///
226
    /// If `len` is greater than the set's current length, this has no effect.
227
    pub fn truncate(&mut self, len: usize) {
228
        self.map.truncate(len);
229
    }
230
231
    /// Clears the `IndexSet` in the given index range, returning those values
232
    /// as a drain iterator.
233
    ///
234
    /// The range may be any type that implements [`RangeBounds<usize>`],
235
    /// including all of the `std::ops::Range*` types, or even a tuple pair of
236
    /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
237
    /// like `set.drain(..)`.
238
    ///
239
    /// This shifts down all entries following the drained range to fill the
240
    /// gap, and keeps the allocated memory for reuse.
241
    ///
242
    /// ***Panics*** if the starting point is greater than the end point or if
243
    /// the end point is greater than the length of the set.
244
    #[track_caller]
245
    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
246
    where
247
        R: RangeBounds<usize>,
248
    {
249
        Drain::new(self.map.core.drain(range))
250
    }
251
252
    /// Creates an iterator which uses a closure to determine if a value should be removed,
253
    /// for all values in the given range.
254
    ///
255
    /// If the closure returns true, then the value is removed and yielded.
256
    /// If the closure returns false, the value will remain in the list and will not be yielded
257
    /// by the iterator.
258
    ///
259
    /// The range may be any type that implements [`RangeBounds<usize>`],
260
    /// including all of the `std::ops::Range*` types, or even a tuple pair of
261
    /// `Bound` start and end values. To check the entire set, use `RangeFull`
262
    /// like `set.extract_if(.., predicate)`.
263
    ///
264
    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
265
    /// or the iteration short-circuits, then the remaining elements will be retained.
266
    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
267
    ///
268
    /// [`retain`]: IndexSet::retain
269
    ///
270
    /// ***Panics*** if the starting point is greater than the end point or if
271
    /// the end point is greater than the length of the set.
272
    ///
273
    /// # Examples
274
    ///
275
    /// Splitting a set into even and odd values, reusing the original set:
276
    ///
277
    /// ```
278
    /// use indexmap::IndexSet;
279
    ///
280
    /// let mut set: IndexSet<i32> = (0..8).collect();
281
    /// let extracted: IndexSet<i32> = set.extract_if(.., |v| v % 2 == 0).collect();
282
    ///
283
    /// let evens = extracted.into_iter().collect::<Vec<_>>();
284
    /// let odds = set.into_iter().collect::<Vec<_>>();
285
    ///
286
    /// assert_eq!(evens, vec![0, 2, 4, 6]);
287
    /// assert_eq!(odds, vec![1, 3, 5, 7]);
288
    /// ```
289
    #[track_caller]
290
    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F>
291
    where
292
        F: FnMut(&T) -> bool,
293
        R: RangeBounds<usize>,
294
    {
295
        ExtractIf::new(&mut self.map.core, range, pred)
296
    }
297
298
    /// Splits the collection into two at the given index.
299
    ///
300
    /// Returns a newly allocated set containing the elements in the range
301
    /// `[at, len)`. After the call, the original set will be left containing
302
    /// the elements `[0, at)` with its previous capacity unchanged.
303
    ///
304
    /// ***Panics*** if `at > len`.
305
    #[track_caller]
306
    pub fn split_off(&mut self, at: usize) -> Self
307
    where
308
        S: Clone,
309
    {
310
        Self {
311
            map: self.map.split_off(at),
312
        }
313
    }
314
315
    /// Reserve capacity for `additional` more values.
316
    ///
317
    /// Computes in **O(n)** time.
318
    pub fn reserve(&mut self, additional: usize) {
319
        self.map.reserve(additional);
320
    }
321
322
    /// Reserve capacity for `additional` more values, without over-allocating.
323
    ///
324
    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
325
    /// frequent re-allocations. However, the underlying data structures may still have internal
326
    /// capacity requirements, and the allocator itself may give more space than requested, so this
327
    /// cannot be relied upon to be precisely minimal.
328
    ///
329
    /// Computes in **O(n)** time.
330
    pub fn reserve_exact(&mut self, additional: usize) {
331
        self.map.reserve_exact(additional);
332
    }
333
334
    /// Try to reserve capacity for `additional` more values.
335
    ///
336
    /// Computes in **O(n)** time.
337
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
338
        self.map.try_reserve(additional)
339
    }
340
341
    /// Try to reserve capacity for `additional` more values, without over-allocating.
342
    ///
343
    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
344
    /// frequent re-allocations. However, the underlying data structures may still have internal
345
    /// capacity requirements, and the allocator itself may give more space than requested, so this
346
    /// cannot be relied upon to be precisely minimal.
347
    ///
348
    /// Computes in **O(n)** time.
349
    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
350
        self.map.try_reserve_exact(additional)
351
    }
352
353
    /// Shrink the capacity of the set as much as possible.
354
    ///
355
    /// Computes in **O(n)** time.
356
    pub fn shrink_to_fit(&mut self) {
357
        self.map.shrink_to_fit();
358
    }
359
360
    /// Shrink the capacity of the set with a lower limit.
361
    ///
362
    /// Computes in **O(n)** time.
363
    pub fn shrink_to(&mut self, min_capacity: usize) {
364
        self.map.shrink_to(min_capacity);
365
    }
366
}
367
368
impl<T, S> IndexSet<T, S>
369
where
370
    T: Hash + Eq,
371
    S: BuildHasher,
372
{
373
    /// Insert the value into the set.
374
    ///
375
    /// If an equivalent item already exists in the set, it returns
376
    /// `false` leaving the original value in the set and without
377
    /// altering its insertion order. Otherwise, it inserts the new
378
    /// item and returns `true`.
379
    ///
380
    /// Computes in **O(1)** time (amortized average).
381
    pub fn insert(&mut self, value: T) -> bool {
382
        self.map.insert(value, ()).is_none()
383
    }
384
385
    /// Insert the value into the set, and get its index.
386
    ///
387
    /// If an equivalent item already exists in the set, it returns
388
    /// the index of the existing item and `false`, leaving the
389
    /// original value in the set and without altering its insertion
390
    /// order. Otherwise, it inserts the new item and returns the index
391
    /// of the inserted item and `true`.
392
    ///
393
    /// Computes in **O(1)** time (amortized average).
394
0
    pub fn insert_full(&mut self, value: T) -> (usize, bool) {
395
0
        let (index, existing) = self.map.insert_full(value, ());
396
0
        (index, existing.is_none())
397
0
    }
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::cfi::CommonInformationEntry>>::insert_full
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::loc::LocationList>>::insert_full
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::line::LineString>>::insert_full
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::range::RangeList>>::insert_full
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::abbrev::Abbreviation>>::insert_full
398
399
    /// Insert the value into the set at its ordered position among sorted values.
400
    ///
401
    /// This is equivalent to finding the position with
402
    /// [`binary_search`][Self::binary_search], and if needed calling
403
    /// [`insert_before`][Self::insert_before] for a new value.
404
    ///
405
    /// If the sorted item is found in the set, it returns the index of that
406
    /// existing item and `false`, without any change. Otherwise, it inserts the
407
    /// new item and returns its sorted index and `true`.
408
    ///
409
    /// If the existing items are **not** already sorted, then the insertion
410
    /// index is unspecified (like [`slice::binary_search`]), but the value
411
    /// is moved to or inserted at that position regardless.
412
    ///
413
    /// Computes in **O(n)** time (average). Instead of repeating calls to
414
    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
415
    /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
416
    /// [`sort_unstable`][Self::sort_unstable] once.
417
    pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
418
    where
419
        T: Ord,
420
    {
421
        let (index, existing) = self.map.insert_sorted(value, ());
422
        (index, existing.is_none())
423
    }
424
425
    /// Insert the value into the set at its ordered position among values
426
    /// sorted by `cmp`.
427
    ///
428
    /// This is equivalent to finding the position with
429
    /// [`binary_search_by`][Self::binary_search_by], then calling
430
    /// [`insert_before`][Self::insert_before].
431
    ///
432
    /// If the existing items are **not** already sorted, then the insertion
433
    /// index is unspecified (like [`slice::binary_search`]), but the value
434
    /// is moved to or inserted at that position regardless.
435
    ///
436
    /// Computes in **O(n)** time (average).
437
    pub fn insert_sorted_by<F>(&mut self, value: T, mut cmp: F) -> (usize, bool)
438
    where
439
        F: FnMut(&T, &T) -> Ordering,
440
    {
441
        let (index, existing) = self
442
            .map
443
            .insert_sorted_by(value, (), |a, (), b, ()| cmp(a, b));
444
        (index, existing.is_none())
445
    }
446
447
    /// Insert the value into the set at its ordered position among values
448
    /// using a sort-key extraction function.
449
    ///
450
    /// This is equivalent to finding the position with
451
    /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`,
452
    /// then calling [`insert_before`][Self::insert_before].
453
    ///
454
    /// If the existing items are **not** already sorted, then the insertion
455
    /// index is unspecified (like [`slice::binary_search`]), but the value
456
    /// is moved to or inserted at that position regardless.
457
    ///
458
    /// Computes in **O(n)** time (average).
459
    pub fn insert_sorted_by_key<B, F>(&mut self, value: T, mut sort_key: F) -> (usize, bool)
460
    where
461
        B: Ord,
462
        F: FnMut(&T) -> B,
463
    {
464
        let (index, existing) = self.map.insert_sorted_by_key(value, (), |k, _| sort_key(k));
465
        (index, existing.is_none())
466
    }
467
468
    /// Insert the value into the set before the value at the given index, or at the end.
469
    ///
470
    /// If an equivalent item already exists in the set, it returns `false` leaving the
471
    /// original value in the set, but moved to the new position. The returned index
472
    /// will either be the given index or one less, depending on how the value moved.
473
    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
474
    ///
475
    /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
476
    ///
477
    /// ***Panics*** if `index` is out of bounds.
478
    /// Valid indices are `0..=set.len()` (inclusive).
479
    ///
480
    /// Computes in **O(n)** time (average).
481
    ///
482
    /// # Examples
483
    ///
484
    /// ```
485
    /// use indexmap::IndexSet;
486
    /// let mut set: IndexSet<char> = ('a'..='z').collect();
487
    ///
488
    /// // The new value '*' goes exactly at the given index.
489
    /// assert_eq!(set.get_index_of(&'*'), None);
490
    /// assert_eq!(set.insert_before(10, '*'), (10, true));
491
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
492
    ///
493
    /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
494
    /// assert_eq!(set.insert_before(10, 'a'), (9, false));
495
    /// assert_eq!(set.get_index_of(&'a'), Some(9));
496
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
497
    ///
498
    /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
499
    /// assert_eq!(set.insert_before(10, 'z'), (10, false));
500
    /// assert_eq!(set.get_index_of(&'z'), Some(10));
501
    /// assert_eq!(set.get_index_of(&'*'), Some(11));
502
    ///
503
    /// // Moving or inserting before the endpoint is also valid.
504
    /// assert_eq!(set.len(), 27);
505
    /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
506
    /// assert_eq!(set.get_index_of(&'*'), Some(26));
507
    /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
508
    /// assert_eq!(set.get_index_of(&'+'), Some(27));
509
    /// assert_eq!(set.len(), 28);
510
    /// ```
511
    #[track_caller]
512
    pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
513
        let (index, existing) = self.map.insert_before(index, value, ());
514
        (index, existing.is_none())
515
    }
516
517
    /// Insert the value into the set at the given index.
518
    ///
519
    /// If an equivalent item already exists in the set, it returns `false` leaving
520
    /// the original value in the set, but moved to the given index.
521
    /// Note that existing values **cannot** be moved to `index == set.len()`!
522
    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
523
    ///
524
    /// Otherwise, it inserts the new value at the given index and returns `true`.
525
    ///
526
    /// ***Panics*** if `index` is out of bounds.
527
    /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
528
    /// `0..=set.len()` (inclusive) when inserting a new value.
529
    ///
530
    /// Computes in **O(n)** time (average).
531
    ///
532
    /// # Examples
533
    ///
534
    /// ```
535
    /// use indexmap::IndexSet;
536
    /// let mut set: IndexSet<char> = ('a'..='z').collect();
537
    ///
538
    /// // The new value '*' goes exactly at the given index.
539
    /// assert_eq!(set.get_index_of(&'*'), None);
540
    /// assert_eq!(set.shift_insert(10, '*'), true);
541
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
542
    ///
543
    /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
544
    /// assert_eq!(set.shift_insert(10, 'a'), false);
545
    /// assert_eq!(set.get_index_of(&'a'), Some(10));
546
    /// assert_eq!(set.get_index_of(&'*'), Some(9));
547
    ///
548
    /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
549
    /// assert_eq!(set.shift_insert(9, 'z'), false);
550
    /// assert_eq!(set.get_index_of(&'z'), Some(9));
551
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
552
    ///
553
    /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
554
    /// assert_eq!(set.len(), 27);
555
    /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
556
    /// assert_eq!(set.get_index_of(&'*'), Some(26));
557
    /// assert_eq!(set.shift_insert(set.len(), '+'), true);
558
    /// assert_eq!(set.get_index_of(&'+'), Some(27));
559
    /// assert_eq!(set.len(), 28);
560
    /// ```
561
    ///
562
    /// ```should_panic
563
    /// use indexmap::IndexSet;
564
    /// let mut set: IndexSet<char> = ('a'..='z').collect();
565
    ///
566
    /// // This is an invalid index for moving an existing value!
567
    /// set.shift_insert(set.len(), 'a');
568
    /// ```
569
    #[track_caller]
570
    pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
571
        self.map.shift_insert(index, value, ()).is_none()
572
    }
573
574
    /// Adds a value to the set, replacing the existing value, if any, that is
575
    /// equal to the given one, without altering its insertion order. Returns
576
    /// the replaced value.
577
    ///
578
    /// Computes in **O(1)** time (average).
579
    pub fn replace(&mut self, value: T) -> Option<T> {
580
        self.replace_full(value).1
581
    }
582
583
    /// Adds a value to the set, replacing the existing value, if any, that is
584
    /// equal to the given one, without altering its insertion order. Returns
585
    /// the index of the item and its replaced value.
586
    ///
587
    /// Computes in **O(1)** time (average).
588
    pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
589
        let hash = self.map.hash(&value);
590
        match self.map.core.replace_full(hash, value, ()) {
591
            (i, Some((replaced, ()))) => (i, Some(replaced)),
592
            (i, None) => (i, None),
593
        }
594
    }
595
596
    /// Replaces the value at the given index. The new value does not need to be
597
    /// equivalent to the one it is replacing, but it must be unique to the rest
598
    /// of the set.
599
    ///
600
    /// Returns `Ok(old_value)` if successful, or `Err((other_index, value))` if
601
    /// an equivalent value already exists at a different index. The set will be
602
    /// unchanged in the error case.
603
    ///
604
    /// ***Panics*** if `index` is out of bounds.
605
    ///
606
    /// Computes in **O(1)** time (average).
607
    #[track_caller]
608
    pub fn replace_index(&mut self, index: usize, value: T) -> Result<T, (usize, T)> {
609
        self.map.replace_index(index, value)
610
    }
611
612
    /// Return an iterator over the values that are in `self` but not `other`.
613
    ///
614
    /// Values are produced in the same order that they appear in `self`.
615
    pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
616
    where
617
        S2: BuildHasher,
618
    {
619
        Difference::new(self, other)
620
    }
621
622
    /// Return an iterator over the values that are in `self` or `other`,
623
    /// but not in both.
624
    ///
625
    /// Values from `self` are produced in their original order, followed by
626
    /// values from `other` in their original order.
627
    pub fn symmetric_difference<'a, S2>(
628
        &'a self,
629
        other: &'a IndexSet<T, S2>,
630
    ) -> SymmetricDifference<'a, T, S, S2>
631
    where
632
        S2: BuildHasher,
633
    {
634
        SymmetricDifference::new(self, other)
635
    }
636
637
    /// Return an iterator over the values that are in both `self` and `other`.
638
    ///
639
    /// Values are produced in the same order that they appear in `self`.
640
    pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
641
    where
642
        S2: BuildHasher,
643
    {
644
        Intersection::new(self, other)
645
    }
646
647
    /// Return an iterator over all values that are in `self` or `other`.
648
    ///
649
    /// Values from `self` are produced in their original order, followed by
650
    /// values that are unique to `other` in their original order.
651
    pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
652
    where
653
        S2: BuildHasher,
654
    {
655
        Union::new(self, other)
656
    }
657
658
    /// Creates a splicing iterator that replaces the specified range in the set
659
    /// with the given `replace_with` iterator and yields the removed items.
660
    /// `replace_with` does not need to be the same length as `range`.
661
    ///
662
    /// The `range` is removed even if the iterator is not consumed until the
663
    /// end. It is unspecified how many elements are removed from the set if the
664
    /// `Splice` value is leaked.
665
    ///
666
    /// The input iterator `replace_with` is only consumed when the `Splice`
667
    /// value is dropped. If a value from the iterator matches an existing entry
668
    /// in the set (outside of `range`), then the original will be unchanged.
669
    /// Otherwise, the new value will be inserted in the replaced `range`.
670
    ///
671
    /// ***Panics*** if the starting point is greater than the end point or if
672
    /// the end point is greater than the length of the set.
673
    ///
674
    /// # Examples
675
    ///
676
    /// ```
677
    /// use indexmap::IndexSet;
678
    ///
679
    /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
680
    /// let new = [5, 4, 3, 2, 1];
681
    /// let removed: Vec<_> = set.splice(2..4, new).collect();
682
    ///
683
    /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
684
    /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
685
    /// assert_eq!(removed, &[2, 3]);
686
    /// ```
687
    #[track_caller]
688
    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
689
    where
690
        R: RangeBounds<usize>,
691
        I: IntoIterator<Item = T>,
692
    {
693
        Splice::new(self, range, replace_with.into_iter())
694
    }
695
696
    /// Moves all values from `other` into `self`, leaving `other` empty.
697
    ///
698
    /// This is equivalent to calling [`insert`][Self::insert] for each value
699
    /// from `other` in order, which means that values that already exist
700
    /// in `self` are unchanged in their current position.
701
    ///
702
    /// See also [`union`][Self::union] to iterate the combined values by
703
    /// reference, without modifying `self` or `other`.
704
    ///
705
    /// # Examples
706
    ///
707
    /// ```
708
    /// use indexmap::IndexSet;
709
    ///
710
    /// let mut a = IndexSet::from([3, 2, 1]);
711
    /// let mut b = IndexSet::from([3, 4, 5]);
712
    /// let old_capacity = b.capacity();
713
    ///
714
    /// a.append(&mut b);
715
    ///
716
    /// assert_eq!(a.len(), 5);
717
    /// assert_eq!(b.len(), 0);
718
    /// assert_eq!(b.capacity(), old_capacity);
719
    ///
720
    /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
721
    /// ```
722
    pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
723
        self.map.append(&mut other.map);
724
    }
725
}
726
727
impl<T, S> IndexSet<T, S>
728
where
729
    S: BuildHasher,
730
{
731
    /// Return `true` if an equivalent to `value` exists in the set.
732
    ///
733
    /// Computes in **O(1)** time (average).
734
    pub fn contains<Q>(&self, value: &Q) -> bool
735
    where
736
        Q: ?Sized + Hash + Equivalent<T>,
737
    {
738
        self.map.contains_key(value)
739
    }
740
741
    /// Return a reference to the value stored in the set, if it is present,
742
    /// else `None`.
743
    ///
744
    /// Computes in **O(1)** time (average).
745
    pub fn get<Q>(&self, value: &Q) -> Option<&T>
746
    where
747
        Q: ?Sized + Hash + Equivalent<T>,
748
    {
749
        self.map.get_key_value(value).map(|(x, &())| x)
750
    }
751
752
    /// Return item index and value
753
    pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
754
    where
755
        Q: ?Sized + Hash + Equivalent<T>,
756
    {
757
        self.map.get_full(value).map(|(i, x, &())| (i, x))
758
    }
759
760
    /// Return item index, if it exists in the set
761
    ///
762
    /// Computes in **O(1)** time (average).
763
    pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
764
    where
765
        Q: ?Sized + Hash + Equivalent<T>,
766
    {
767
        self.map.get_index_of(value)
768
    }
769
770
    /// Remove the value from the set, and return `true` if it was present.
771
    ///
772
    /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
773
    /// value's position with the last element, and it is deprecated in favor of calling that
774
    /// explicitly. If you need to preserve the relative order of the values in the set, use
775
    /// [`.shift_remove(value)`][Self::shift_remove] instead.
776
    #[deprecated(note = "`remove` disrupts the set order -- \
777
        use `swap_remove` or `shift_remove` for explicit behavior.")]
778
    pub fn remove<Q>(&mut self, value: &Q) -> bool
779
    where
780
        Q: ?Sized + Hash + Equivalent<T>,
781
    {
782
        self.swap_remove(value)
783
    }
784
785
    /// Remove the value from the set, and return `true` if it was present.
786
    ///
787
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
788
    /// last element of the set and popping it off. **This perturbs
789
    /// the position of what used to be the last element!**
790
    ///
791
    /// Return `false` if `value` was not in the set.
792
    ///
793
    /// Computes in **O(1)** time (average).
794
    pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
795
    where
796
        Q: ?Sized + Hash + Equivalent<T>,
797
    {
798
        self.map.swap_remove(value).is_some()
799
    }
800
801
    /// Remove the value from the set, and return `true` if it was present.
802
    ///
803
    /// Like [`Vec::remove`], the value is removed by shifting all of the
804
    /// elements that follow it, preserving their relative order.
805
    /// **This perturbs the index of all of those elements!**
806
    ///
807
    /// Return `false` if `value` was not in the set.
808
    ///
809
    /// Computes in **O(n)** time (average).
810
    pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
811
    where
812
        Q: ?Sized + Hash + Equivalent<T>,
813
    {
814
        self.map.shift_remove(value).is_some()
815
    }
816
817
    /// Removes and returns the value in the set, if any, that is equal to the
818
    /// given one.
819
    ///
820
    /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
821
    /// value's position with the last element, and it is deprecated in favor of calling that
822
    /// explicitly. If you need to preserve the relative order of the values in the set, use
823
    /// [`.shift_take(value)`][Self::shift_take] instead.
824
    #[deprecated(note = "`take` disrupts the set order -- \
825
        use `swap_take` or `shift_take` for explicit behavior.")]
826
    pub fn take<Q>(&mut self, value: &Q) -> Option<T>
827
    where
828
        Q: ?Sized + Hash + Equivalent<T>,
829
    {
830
        self.swap_take(value)
831
    }
832
833
    /// Removes and returns the value in the set, if any, that is equal to the
834
    /// given one.
835
    ///
836
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
837
    /// last element of the set and popping it off. **This perturbs
838
    /// the position of what used to be the last element!**
839
    ///
840
    /// Return `None` if `value` was not in the set.
841
    ///
842
    /// Computes in **O(1)** time (average).
843
    pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
844
    where
845
        Q: ?Sized + Hash + Equivalent<T>,
846
    {
847
        self.map.swap_remove_entry(value).map(|(x, ())| x)
848
    }
849
850
    /// Removes and returns the value in the set, if any, that is equal to the
851
    /// given one.
852
    ///
853
    /// Like [`Vec::remove`], the value is removed by shifting all of the
854
    /// elements that follow it, preserving their relative order.
855
    /// **This perturbs the index of all of those elements!**
856
    ///
857
    /// Return `None` if `value` was not in the set.
858
    ///
859
    /// Computes in **O(n)** time (average).
860
    pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
861
    where
862
        Q: ?Sized + Hash + Equivalent<T>,
863
    {
864
        self.map.shift_remove_entry(value).map(|(x, ())| x)
865
    }
866
867
    /// Remove the value from the set return it and the index it had.
868
    ///
869
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
870
    /// last element of the set and popping it off. **This perturbs
871
    /// the position of what used to be the last element!**
872
    ///
873
    /// Return `None` if `value` was not in the set.
874
    pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
875
    where
876
        Q: ?Sized + Hash + Equivalent<T>,
877
    {
878
        self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
879
    }
880
881
    /// Remove the value from the set return it and the index it had.
882
    ///
883
    /// Like [`Vec::remove`], the value is removed by shifting all of the
884
    /// elements that follow it, preserving their relative order.
885
    /// **This perturbs the index of all of those elements!**
886
    ///
887
    /// Return `None` if `value` was not in the set.
888
    pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
889
    where
890
        Q: ?Sized + Hash + Equivalent<T>,
891
    {
892
        self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
893
    }
894
}
895
896
impl<T, S> IndexSet<T, S> {
897
    /// Remove the last value
898
    ///
899
    /// This preserves the order of the remaining elements.
900
    ///
901
    /// Computes in **O(1)** time (average).
902
    #[doc(alias = "pop_last")] // like `BTreeSet`
903
    pub fn pop(&mut self) -> Option<T> {
904
        self.map.pop().map(|(x, ())| x)
905
    }
906
907
    /// Scan through each value in the set and keep those where the
908
    /// closure `keep` returns `true`.
909
    ///
910
    /// The elements are visited in order, and remaining elements keep their
911
    /// order.
912
    ///
913
    /// Computes in **O(n)** time (average).
914
    pub fn retain<F>(&mut self, mut keep: F)
915
    where
916
        F: FnMut(&T) -> bool,
917
    {
918
        self.map.retain(move |x, &mut ()| keep(x))
919
    }
920
921
    /// Sort the set's values by their default ordering.
922
    ///
923
    /// This is a stable sort -- but equivalent values should not normally coexist in
924
    /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
925
    /// because it is generally faster and doesn't allocate auxiliary memory.
926
    ///
927
    /// See [`sort_by`](Self::sort_by) for details.
928
    pub fn sort(&mut self)
929
    where
930
        T: Ord,
931
    {
932
        self.map.sort_keys()
933
    }
934
935
    /// Sort the set's values in place using the comparison function `cmp`.
936
    ///
937
    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
938
    pub fn sort_by<F>(&mut self, mut cmp: F)
939
    where
940
        F: FnMut(&T, &T) -> Ordering,
941
    {
942
        self.map.sort_by(move |a, (), b, ()| cmp(a, b));
943
    }
944
945
    /// Sort the values of the set and return a by-value iterator of
946
    /// the values with the result.
947
    ///
948
    /// The sort is stable.
949
    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
950
    where
951
        F: FnMut(&T, &T) -> Ordering,
952
    {
953
        let mut entries = self.into_entries();
954
        entries.sort_by(move |a, b| cmp(&a.key, &b.key));
955
        IntoIter::new(entries)
956
    }
957
958
    /// Sort the set's values in place using a key extraction function.
959
    ///
960
    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
961
    pub fn sort_by_key<K, F>(&mut self, mut sort_key: F)
962
    where
963
        K: Ord,
964
        F: FnMut(&T) -> K,
965
    {
966
        self.with_entries(move |entries| {
967
            entries.sort_by_key(move |a| sort_key(&a.key));
968
        });
969
    }
970
971
    /// Sort the set's values by their default ordering.
972
    ///
973
    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
974
    pub fn sort_unstable(&mut self)
975
    where
976
        T: Ord,
977
    {
978
        self.map.sort_unstable_keys()
979
    }
980
981
    /// Sort the set's values in place using the comparison function `cmp`.
982
    ///
983
    /// Computes in **O(n log n)** time. The sort is unstable.
984
    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
985
    where
986
        F: FnMut(&T, &T) -> Ordering,
987
    {
988
        self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
989
    }
990
991
    /// Sort the values of the set and return a by-value iterator of
992
    /// the values with the result.
993
    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
994
    where
995
        F: FnMut(&T, &T) -> Ordering,
996
    {
997
        let mut entries = self.into_entries();
998
        entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
999
        IntoIter::new(entries)
1000
    }
1001
1002
    /// Sort the set's values in place using a key extraction function.
1003
    ///
1004
    /// Computes in **O(n log n)** time. The sort is unstable.
1005
    pub fn sort_unstable_by_key<K, F>(&mut self, mut sort_key: F)
1006
    where
1007
        K: Ord,
1008
        F: FnMut(&T) -> K,
1009
    {
1010
        self.with_entries(move |entries| {
1011
            entries.sort_unstable_by_key(move |a| sort_key(&a.key));
1012
        });
1013
    }
1014
1015
    /// Sort the set's values in place using a key extraction function.
1016
    ///
1017
    /// During sorting, the function is called at most once per entry, by using temporary storage
1018
    /// to remember the results of its evaluation. The order of calls to the function is
1019
    /// unspecified and may change between versions of `indexmap` or the standard library.
1020
    ///
1021
    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1022
    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1023
    pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
1024
    where
1025
        K: Ord,
1026
        F: FnMut(&T) -> K,
1027
    {
1028
        self.with_entries(move |entries| {
1029
            entries.sort_by_cached_key(move |a| sort_key(&a.key));
1030
        });
1031
    }
1032
1033
    /// Search over a sorted set for a value.
1034
    ///
1035
    /// Returns the position where that value is present, or the position where it can be inserted
1036
    /// to maintain the sort. See [`slice::binary_search`] for more details.
1037
    ///
1038
    /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
1039
    /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
1040
    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
1041
    where
1042
        T: Ord,
1043
    {
1044
        self.as_slice().binary_search(x)
1045
    }
1046
1047
    /// Search over a sorted set with a comparator function.
1048
    ///
1049
    /// Returns the position where that value is present, or the position where it can be inserted
1050
    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1051
    ///
1052
    /// Computes in **O(log(n))** time.
1053
    #[inline]
1054
    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1055
    where
1056
        F: FnMut(&'a T) -> Ordering,
1057
    {
1058
        self.as_slice().binary_search_by(f)
1059
    }
1060
1061
    /// Search over a sorted set with an extraction function.
1062
    ///
1063
    /// Returns the position where that value is present, or the position where it can be inserted
1064
    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1065
    ///
1066
    /// Computes in **O(log(n))** time.
1067
    #[inline]
1068
    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1069
    where
1070
        F: FnMut(&'a T) -> B,
1071
        B: Ord,
1072
    {
1073
        self.as_slice().binary_search_by_key(b, f)
1074
    }
1075
1076
    /// Checks if the values of this set are sorted.
1077
    #[inline]
1078
    pub fn is_sorted(&self) -> bool
1079
    where
1080
        T: PartialOrd,
1081
    {
1082
        self.as_slice().is_sorted()
1083
    }
1084
1085
    /// Checks if this set is sorted using the given comparator function.
1086
    #[inline]
1087
    pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1088
    where
1089
        F: FnMut(&'a T, &'a T) -> bool,
1090
    {
1091
        self.as_slice().is_sorted_by(cmp)
1092
    }
1093
1094
    /// Checks if this set is sorted using the given sort-key function.
1095
    #[inline]
1096
    pub fn is_sorted_by_key<'a, F, K>(&'a self, sort_key: F) -> bool
1097
    where
1098
        F: FnMut(&'a T) -> K,
1099
        K: PartialOrd,
1100
    {
1101
        self.as_slice().is_sorted_by_key(sort_key)
1102
    }
1103
1104
    /// Returns the index of the partition point of a sorted set according to the given predicate
1105
    /// (the index of the first element of the second partition).
1106
    ///
1107
    /// See [`slice::partition_point`] for more details.
1108
    ///
1109
    /// Computes in **O(log(n))** time.
1110
    #[must_use]
1111
    pub fn partition_point<P>(&self, pred: P) -> usize
1112
    where
1113
        P: FnMut(&T) -> bool,
1114
    {
1115
        self.as_slice().partition_point(pred)
1116
    }
1117
1118
    /// Reverses the order of the set's values in place.
1119
    ///
1120
    /// Computes in **O(n)** time and **O(1)** space.
1121
    pub fn reverse(&mut self) {
1122
        self.map.reverse()
1123
    }
1124
1125
    /// Returns a slice of all the values in the set.
1126
    ///
1127
    /// Computes in **O(1)** time.
1128
    pub fn as_slice(&self) -> &Slice<T> {
1129
        Slice::from_slice(self.as_entries())
1130
    }
1131
1132
    /// Converts into a boxed slice of all the values in the set.
1133
    ///
1134
    /// Note that this will drop the inner hash table and any excess capacity.
1135
    pub fn into_boxed_slice(self) -> Box<Slice<T>> {
1136
        Slice::from_boxed(self.into_entries().into_boxed_slice())
1137
    }
1138
1139
    /// Get a value by index
1140
    ///
1141
    /// Valid indices are `0 <= index < self.len()`.
1142
    ///
1143
    /// Computes in **O(1)** time.
1144
0
    pub fn get_index(&self, index: usize) -> Option<&T> {
1145
0
        self.as_entries().get(index).map(Bucket::key_ref)
1146
0
    }
Unexecuted instantiation: <indexmap::set::IndexSet<alloc::vec::Vec<u8>>>::get_index
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::line::LineString>>::get_index
1147
1148
    /// Returns a slice of values in the given range of indices.
1149
    ///
1150
    /// Valid indices are `0 <= index < self.len()`.
1151
    ///
1152
    /// Computes in **O(1)** time.
1153
    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
1154
        let entries = self.as_entries();
1155
        let range = try_simplify_range(range, entries.len())?;
1156
        entries.get(range).map(Slice::from_slice)
1157
    }
1158
1159
    /// Get the first value
1160
    ///
1161
    /// Computes in **O(1)** time.
1162
    pub fn first(&self) -> Option<&T> {
1163
        self.as_entries().first().map(Bucket::key_ref)
1164
    }
1165
1166
    /// Get the last value
1167
    ///
1168
    /// Computes in **O(1)** time.
1169
    pub fn last(&self) -> Option<&T> {
1170
        self.as_entries().last().map(Bucket::key_ref)
1171
    }
1172
1173
    /// Remove the value by index
1174
    ///
1175
    /// Valid indices are `0 <= index < self.len()`.
1176
    ///
1177
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
1178
    /// last element of the set and popping it off. **This perturbs
1179
    /// the position of what used to be the last element!**
1180
    ///
1181
    /// Computes in **O(1)** time (average).
1182
    pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
1183
        self.map.swap_remove_index(index).map(|(x, ())| x)
1184
    }
1185
1186
    /// Remove the value by index
1187
    ///
1188
    /// Valid indices are `0 <= index < self.len()`.
1189
    ///
1190
    /// Like [`Vec::remove`], the value is removed by shifting all of the
1191
    /// elements that follow it, preserving their relative order.
1192
    /// **This perturbs the index of all of those elements!**
1193
    ///
1194
    /// Computes in **O(n)** time (average).
1195
    pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
1196
        self.map.shift_remove_index(index).map(|(x, ())| x)
1197
    }
1198
1199
    /// Moves the position of a value from one index to another
1200
    /// by shifting all other values in-between.
1201
    ///
1202
    /// * If `from < to`, the other values will shift down while the targeted value moves up.
1203
    /// * If `from > to`, the other values will shift up while the targeted value moves down.
1204
    ///
1205
    /// ***Panics*** if `from` or `to` are out of bounds.
1206
    ///
1207
    /// Computes in **O(n)** time (average).
1208
    #[track_caller]
1209
    pub fn move_index(&mut self, from: usize, to: usize) {
1210
        self.map.move_index(from, to)
1211
    }
1212
1213
    /// Swaps the position of two values in the set.
1214
    ///
1215
    /// ***Panics*** if `a` or `b` are out of bounds.
1216
    ///
1217
    /// Computes in **O(1)** time (average).
1218
    #[track_caller]
1219
    pub fn swap_indices(&mut self, a: usize, b: usize) {
1220
        self.map.swap_indices(a, b)
1221
    }
1222
}
1223
1224
/// Access [`IndexSet`] values at indexed positions.
1225
///
1226
/// # Examples
1227
///
1228
/// ```
1229
/// use indexmap::IndexSet;
1230
///
1231
/// let mut set = IndexSet::new();
1232
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1233
///     set.insert(word.to_string());
1234
/// }
1235
/// assert_eq!(set[0], "Lorem");
1236
/// assert_eq!(set[1], "ipsum");
1237
/// set.reverse();
1238
/// assert_eq!(set[0], "amet");
1239
/// assert_eq!(set[1], "sit");
1240
/// set.sort();
1241
/// assert_eq!(set[0], "Lorem");
1242
/// assert_eq!(set[1], "amet");
1243
/// ```
1244
///
1245
/// ```should_panic
1246
/// use indexmap::IndexSet;
1247
///
1248
/// let mut set = IndexSet::new();
1249
/// set.insert("foo");
1250
/// println!("{:?}", set[10]); // panics!
1251
/// ```
1252
impl<T, S> Index<usize> for IndexSet<T, S> {
1253
    type Output = T;
1254
1255
    /// Returns a reference to the value at the supplied `index`.
1256
    ///
1257
    /// ***Panics*** if `index` is out of bounds.
1258
    fn index(&self, index: usize) -> &T {
1259
        if let Some(value) = self.get_index(index) {
1260
            value
1261
        } else {
1262
            panic!(
1263
                "index out of bounds: the len is {len} but the index is {index}",
1264
                len = self.len()
1265
            );
1266
        }
1267
    }
1268
}
1269
1270
impl<T, S> FromIterator<T> for IndexSet<T, S>
1271
where
1272
    T: Hash + Eq,
1273
    S: BuildHasher + Default,
1274
{
1275
    fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
1276
        let iter = iterable.into_iter().map(|x| (x, ()));
1277
        IndexSet {
1278
            map: IndexMap::from_iter(iter),
1279
        }
1280
    }
1281
}
1282
1283
#[cfg(feature = "std")]
1284
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1285
impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
1286
where
1287
    T: Eq + Hash,
1288
{
1289
    /// # Examples
1290
    ///
1291
    /// ```
1292
    /// use indexmap::IndexSet;
1293
    ///
1294
    /// let set1 = IndexSet::from([1, 2, 3, 4]);
1295
    /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
1296
    /// assert_eq!(set1, set2);
1297
    /// ```
1298
    fn from(arr: [T; N]) -> Self {
1299
        Self::from_iter(arr)
1300
    }
1301
}
1302
1303
impl<T, S> Extend<T> for IndexSet<T, S>
1304
where
1305
    T: Hash + Eq,
1306
    S: BuildHasher,
1307
{
1308
    fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
1309
        let iter = iterable.into_iter().map(|x| (x, ()));
1310
        self.map.extend(iter);
1311
    }
1312
}
1313
1314
impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
1315
where
1316
    T: Hash + Eq + Copy + 'a,
1317
    S: BuildHasher,
1318
{
1319
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
1320
        let iter = iterable.into_iter().copied();
1321
        self.extend(iter);
1322
    }
1323
}
1324
1325
impl<T, S> Default for IndexSet<T, S>
1326
where
1327
    S: Default,
1328
{
1329
    /// Return an empty [`IndexSet`]
1330
0
    fn default() -> Self {
1331
0
        IndexSet {
1332
0
            map: IndexMap::default(),
1333
0
        }
1334
0
    }
Unexecuted instantiation: <indexmap::set::IndexSet<alloc::vec::Vec<u8>> as core::default::Default>::default
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::loc::LocationList> as core::default::Default>::default
Unexecuted instantiation: <indexmap::set::IndexSet<gimli::write::range::RangeList> as core::default::Default>::default
1335
}
1336
1337
impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
1338
where
1339
    T: Hash + Eq,
1340
    S1: BuildHasher,
1341
    S2: BuildHasher,
1342
{
1343
    fn eq(&self, other: &IndexSet<T, S2>) -> bool {
1344
        self.len() == other.len() && self.is_subset(other)
1345
    }
1346
}
1347
1348
impl<T, S> Eq for IndexSet<T, S>
1349
where
1350
    T: Eq + Hash,
1351
    S: BuildHasher,
1352
{
1353
}
1354
1355
impl<T, S> IndexSet<T, S>
1356
where
1357
    T: Eq + Hash,
1358
    S: BuildHasher,
1359
{
1360
    /// Returns `true` if `self` has no elements in common with `other`.
1361
    pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
1362
    where
1363
        S2: BuildHasher,
1364
    {
1365
        if self.len() <= other.len() {
1366
            self.iter().all(move |value| !other.contains(value))
1367
        } else {
1368
            other.iter().all(move |value| !self.contains(value))
1369
        }
1370
    }
1371
1372
    /// Returns `true` if all elements of `self` are contained in `other`.
1373
    pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1374
    where
1375
        S2: BuildHasher,
1376
    {
1377
        self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
1378
    }
1379
1380
    /// Returns `true` if all elements of `other` are contained in `self`.
1381
    pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1382
    where
1383
        S2: BuildHasher,
1384
    {
1385
        other.is_subset(self)
1386
    }
1387
}
1388
1389
impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
1390
where
1391
    T: Eq + Hash + Clone,
1392
    S1: BuildHasher + Default,
1393
    S2: BuildHasher,
1394
{
1395
    type Output = IndexSet<T, S1>;
1396
1397
    /// Returns the set intersection, cloned into a new set.
1398
    ///
1399
    /// Values are collected in the same order that they appear in `self`.
1400
    fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
1401
        self.intersection(other).cloned().collect()
1402
    }
1403
}
1404
1405
impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
1406
where
1407
    T: Eq + Hash + Clone,
1408
    S1: BuildHasher + Default,
1409
    S2: BuildHasher,
1410
{
1411
    type Output = IndexSet<T, S1>;
1412
1413
    /// Returns the set union, cloned into a new set.
1414
    ///
1415
    /// Values from `self` are collected in their original order, followed by
1416
    /// values that are unique to `other` in their original order.
1417
    fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
1418
        self.union(other).cloned().collect()
1419
    }
1420
}
1421
1422
impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
1423
where
1424
    T: Eq + Hash + Clone,
1425
    S1: BuildHasher + Default,
1426
    S2: BuildHasher,
1427
{
1428
    type Output = IndexSet<T, S1>;
1429
1430
    /// Returns the set symmetric-difference, cloned into a new set.
1431
    ///
1432
    /// Values from `self` are collected in their original order, followed by
1433
    /// values from `other` in their original order.
1434
    fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
1435
        self.symmetric_difference(other).cloned().collect()
1436
    }
1437
}
1438
1439
impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
1440
where
1441
    T: Eq + Hash + Clone,
1442
    S1: BuildHasher + Default,
1443
    S2: BuildHasher,
1444
{
1445
    type Output = IndexSet<T, S1>;
1446
1447
    /// Returns the set difference, cloned into a new set.
1448
    ///
1449
    /// Values are collected in the same order that they appear in `self`.
1450
    fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
1451
        self.difference(other).cloned().collect()
1452
    }
1453
}