Coverage Report

Created: 2026-01-10 06:39

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/indexmap-2.13.0/src/map.rs
Line
Count
Source
1
//! [`IndexMap`] is a hash table where the iteration order of the key-value
2
//! pairs is independent of the hash values of the keys.
3
4
mod entry;
5
mod iter;
6
mod mutable;
7
mod slice;
8
9
pub mod raw_entry_v1;
10
11
#[cfg(feature = "serde")]
12
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
13
pub mod serde_seq;
14
15
#[cfg(test)]
16
mod tests;
17
18
pub use self::entry::{Entry, IndexedEntry};
19
pub use crate::inner::{OccupiedEntry, VacantEntry};
20
21
pub use self::iter::{
22
    Drain, ExtractIf, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice,
23
    Values, ValuesMut,
24
};
25
pub use self::mutable::MutableEntryKey;
26
pub use self::mutable::MutableKeys;
27
pub use self::raw_entry_v1::RawEntryApiV1;
28
pub use self::slice::Slice;
29
30
#[cfg(feature = "rayon")]
31
pub use crate::rayon::map as rayon;
32
33
use alloc::boxed::Box;
34
use alloc::vec::Vec;
35
use core::cmp::Ordering;
36
use core::fmt;
37
use core::hash::{BuildHasher, Hash};
38
use core::mem;
39
use core::ops::{Index, IndexMut, RangeBounds};
40
41
#[cfg(feature = "std")]
42
use std::hash::RandomState;
43
44
use crate::inner::Core;
45
use crate::util::{third, try_simplify_range};
46
use crate::{Bucket, Equivalent, GetDisjointMutError, HashValue, TryReserveError};
47
48
/// A hash table where the iteration order of the key-value pairs is independent
49
/// of the hash values of the keys.
50
///
51
/// The interface is closely compatible with the standard
52
/// [`HashMap`][std::collections::HashMap],
53
/// but also has additional features.
54
///
55
/// # Order
56
///
57
/// The key-value pairs have a consistent order that is determined by
58
/// the sequence of insertion and removal calls on the map. The order does
59
/// not depend on the keys or the hash function at all.
60
///
61
/// All iterators traverse the map in *the order*.
62
///
63
/// The insertion order is preserved, with **notable exceptions** like the
64
/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
65
/// Methods such as [`.sort_by()`][Self::sort_by] of
66
/// course result in a new order, depending on the sorting order.
67
///
68
/// # Indices
69
///
70
/// The key-value pairs are indexed in a compact range without holes in the
71
/// range `0..self.len()`. For example, the method `.get_full` looks up the
72
/// index for a key, and the method `.get_index` looks up the key-value pair by
73
/// index.
74
///
75
/// # Examples
76
///
77
/// ```
78
/// use indexmap::IndexMap;
79
///
80
/// // count the frequency of each letter in a sentence.
81
/// let mut letters = IndexMap::new();
82
/// for ch in "a short treatise on fungi".chars() {
83
///     *letters.entry(ch).or_insert(0) += 1;
84
/// }
85
///
86
/// assert_eq!(letters[&'s'], 2);
87
/// assert_eq!(letters[&'t'], 3);
88
/// assert_eq!(letters[&'u'], 1);
89
/// assert_eq!(letters.get(&'y'), None);
90
/// ```
91
#[cfg(feature = "std")]
92
pub struct IndexMap<K, V, S = RandomState> {
93
    pub(crate) core: Core<K, V>,
94
    hash_builder: S,
95
}
96
#[cfg(not(feature = "std"))]
97
pub struct IndexMap<K, V, S> {
98
    pub(crate) core: Core<K, V>,
99
    hash_builder: S,
100
}
101
102
impl<K, V, S> Clone for IndexMap<K, V, S>
103
where
104
    K: Clone,
105
    V: Clone,
106
    S: Clone,
107
{
108
    fn clone(&self) -> Self {
109
        IndexMap {
110
            core: self.core.clone(),
111
            hash_builder: self.hash_builder.clone(),
112
        }
113
    }
114
115
    fn clone_from(&mut self, other: &Self) {
116
        self.core.clone_from(&other.core);
117
        self.hash_builder.clone_from(&other.hash_builder);
118
    }
119
}
120
121
impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
122
where
123
    K: fmt::Debug,
124
    V: fmt::Debug,
125
{
126
    #[cfg(not(feature = "test_debug"))]
127
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
128
        f.debug_map().entries(self.iter()).finish()
129
    }
130
131
    #[cfg(feature = "test_debug")]
132
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
133
        // Let the inner `Core` print all of its details
134
        f.debug_struct("IndexMap")
135
            .field("core", &self.core)
136
            .finish()
137
    }
138
}
139
140
#[cfg(feature = "std")]
141
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
142
impl<K, V> IndexMap<K, V> {
143
    /// Create a new map. (Does not allocate.)
144
    #[inline]
145
    pub fn new() -> Self {
146
        Self::with_capacity(0)
147
    }
148
149
    /// Create a new map with capacity for `n` key-value pairs. (Does not
150
    /// allocate if `n` is zero.)
151
    ///
152
    /// Computes in **O(n)** time.
153
    #[inline]
154
    pub fn with_capacity(n: usize) -> Self {
155
        Self::with_capacity_and_hasher(n, <_>::default())
156
    }
157
}
158
159
impl<K, V, S> IndexMap<K, V, S> {
160
    /// Create a new map with capacity for `n` key-value pairs. (Does not
161
    /// allocate if `n` is zero.)
162
    ///
163
    /// Computes in **O(n)** time.
164
    #[inline]
165
0
    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
166
0
        if n == 0 {
167
0
            Self::with_hasher(hash_builder)
168
        } else {
169
0
            IndexMap {
170
0
                core: Core::with_capacity(n),
171
0
                hash_builder,
172
0
            }
173
        }
174
0
    }
Unexecuted instantiation: <indexmap::map::IndexMap<alloc::vec::Vec<u8>, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_capacity_and_hasher
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::loc::LocationList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_capacity_and_hasher
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::line::LineString, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_capacity_and_hasher
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::range::RangeList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_capacity_and_hasher
Unexecuted instantiation: <indexmap::map::IndexMap<(gimli::write::line::LineString, gimli::write::line::DirectoryId), gimli::write::line::FileInfo, core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_capacity_and_hasher
175
176
    /// Create a new map with `hash_builder`.
177
    ///
178
    /// This function is `const`, so it
179
    /// can be called in `static` contexts.
180
0
    pub const fn with_hasher(hash_builder: S) -> Self {
181
0
        IndexMap {
182
0
            core: Core::new(),
183
0
            hash_builder,
184
0
        }
185
0
    }
Unexecuted instantiation: <indexmap::map::IndexMap<alloc::vec::Vec<u8>, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_hasher
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::loc::LocationList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_hasher
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::line::LineString, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_hasher
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::range::RangeList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_hasher
Unexecuted instantiation: <indexmap::map::IndexMap<(gimli::write::line::LineString, gimli::write::line::DirectoryId), gimli::write::line::FileInfo, core::hash::BuildHasherDefault<fnv::FnvHasher>>>::with_hasher
186
187
    #[inline]
188
    pub(crate) fn into_entries(self) -> Vec<Bucket<K, V>> {
189
        self.core.into_entries()
190
    }
191
192
    #[inline]
193
0
    pub(crate) fn as_entries(&self) -> &[Bucket<K, V>] {
194
0
        self.core.as_entries()
195
0
    }
Unexecuted instantiation: <indexmap::map::IndexMap<alloc::vec::Vec<u8>, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::as_entries
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::line::LineString, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::as_entries
Unexecuted instantiation: <indexmap::map::IndexMap<(gimli::write::line::LineString, gimli::write::line::DirectoryId), gimli::write::line::FileInfo, core::hash::BuildHasherDefault<fnv::FnvHasher>>>::as_entries
196
197
    #[inline]
198
0
    pub(crate) fn as_entries_mut(&mut self) -> &mut [Bucket<K, V>] {
199
0
        self.core.as_entries_mut()
200
0
    }
201
202
    pub(crate) fn with_entries<F>(&mut self, f: F)
203
    where
204
        F: FnOnce(&mut [Bucket<K, V>]),
205
    {
206
        self.core.with_entries(f);
207
    }
208
209
    /// Return the number of elements the map can hold without reallocating.
210
    ///
211
    /// This number is a lower bound; the map might be able to hold more,
212
    /// but is guaranteed to be able to hold at least this many.
213
    ///
214
    /// Computes in **O(1)** time.
215
    pub fn capacity(&self) -> usize {
216
        self.core.capacity()
217
    }
218
219
    /// Return a reference to the map's `BuildHasher`.
220
    pub fn hasher(&self) -> &S {
221
        &self.hash_builder
222
    }
223
224
    /// Return the number of key-value pairs in the map.
225
    ///
226
    /// Computes in **O(1)** time.
227
    #[inline]
228
0
    pub fn len(&self) -> usize {
229
0
        self.core.len()
230
0
    }
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::cfi::CommonInformationEntry, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::len
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::line::LineString, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::len
231
232
    /// Returns true if the map contains no elements.
233
    ///
234
    /// Computes in **O(1)** time.
235
    #[inline]
236
0
    pub fn is_empty(&self) -> bool {
237
0
        self.len() == 0
238
0
    }
239
240
    /// Return an iterator over the key-value pairs of the map, in their order
241
0
    pub fn iter(&self) -> Iter<'_, K, V> {
242
0
        Iter::new(self.as_entries())
243
0
    }
244
245
    /// Return an iterator over the key-value pairs of the map, in their order
246
    pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
247
        IterMut::new(self.as_entries_mut())
248
    }
249
250
    /// Return an iterator over the keys of the map, in their order
251
    pub fn keys(&self) -> Keys<'_, K, V> {
252
        Keys::new(self.as_entries())
253
    }
254
255
    /// Return an owning iterator over the keys of the map, in their order
256
    pub fn into_keys(self) -> IntoKeys<K, V> {
257
        IntoKeys::new(self.into_entries())
258
    }
259
260
    /// Return an iterator over the values of the map, in their order
261
    pub fn values(&self) -> Values<'_, K, V> {
262
        Values::new(self.as_entries())
263
    }
264
265
    /// Return an iterator over mutable references to the values of the map,
266
    /// in their order
267
    pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
268
        ValuesMut::new(self.as_entries_mut())
269
    }
270
271
    /// Return an owning iterator over the values of the map, in their order
272
    pub fn into_values(self) -> IntoValues<K, V> {
273
        IntoValues::new(self.into_entries())
274
    }
275
276
    /// Remove all key-value pairs in the map, while preserving its capacity.
277
    ///
278
    /// Computes in **O(n)** time.
279
    pub fn clear(&mut self) {
280
        self.core.clear();
281
    }
282
283
    /// Shortens the map, keeping the first `len` elements and dropping the rest.
284
    ///
285
    /// If `len` is greater than the map's current length, this has no effect.
286
    pub fn truncate(&mut self, len: usize) {
287
        self.core.truncate(len);
288
    }
289
290
    /// Clears the `IndexMap` in the given index range, returning those
291
    /// key-value pairs as a drain iterator.
292
    ///
293
    /// The range may be any type that implements [`RangeBounds<usize>`],
294
    /// including all of the `std::ops::Range*` types, or even a tuple pair of
295
    /// `Bound` start and end values. To drain the map entirely, use `RangeFull`
296
    /// like `map.drain(..)`.
297
    ///
298
    /// This shifts down all entries following the drained range to fill the
299
    /// gap, and keeps the allocated memory for reuse.
300
    ///
301
    /// ***Panics*** if the starting point is greater than the end point or if
302
    /// the end point is greater than the length of the map.
303
    #[track_caller]
304
    pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
305
    where
306
        R: RangeBounds<usize>,
307
    {
308
        Drain::new(self.core.drain(range))
309
    }
310
311
    /// Creates an iterator which uses a closure to determine if an element should be removed,
312
    /// for all elements in the given range.
313
    ///
314
    /// If the closure returns true, the element is removed from the map and yielded.
315
    /// If the closure returns false, or panics, the element remains in the map and will not be
316
    /// yielded.
317
    ///
318
    /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of
319
    /// whether you choose to keep or remove it.
320
    ///
321
    /// The range may be any type that implements [`RangeBounds<usize>`],
322
    /// including all of the `std::ops::Range*` types, or even a tuple pair of
323
    /// `Bound` start and end values. To check the entire map, use `RangeFull`
324
    /// like `map.extract_if(.., predicate)`.
325
    ///
326
    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
327
    /// or the iteration short-circuits, then the remaining elements will be retained.
328
    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
329
    ///
330
    /// [`retain`]: IndexMap::retain
331
    ///
332
    /// ***Panics*** if the starting point is greater than the end point or if
333
    /// the end point is greater than the length of the map.
334
    ///
335
    /// # Examples
336
    ///
337
    /// Splitting a map into even and odd keys, reusing the original map:
338
    ///
339
    /// ```
340
    /// use indexmap::IndexMap;
341
    ///
342
    /// let mut map: IndexMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
343
    /// let extracted: IndexMap<i32, i32> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
344
    ///
345
    /// let evens = extracted.keys().copied().collect::<Vec<_>>();
346
    /// let odds = map.keys().copied().collect::<Vec<_>>();
347
    ///
348
    /// assert_eq!(evens, vec![0, 2, 4, 6]);
349
    /// assert_eq!(odds, vec![1, 3, 5, 7]);
350
    /// ```
351
    #[track_caller]
352
    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, F>
353
    where
354
        F: FnMut(&K, &mut V) -> bool,
355
        R: RangeBounds<usize>,
356
    {
357
        ExtractIf::new(&mut self.core, range, pred)
358
    }
359
360
    /// Splits the collection into two at the given index.
361
    ///
362
    /// Returns a newly allocated map containing the elements in the range
363
    /// `[at, len)`. After the call, the original map will be left containing
364
    /// the elements `[0, at)` with its previous capacity unchanged.
365
    ///
366
    /// ***Panics*** if `at > len`.
367
    #[track_caller]
368
    pub fn split_off(&mut self, at: usize) -> Self
369
    where
370
        S: Clone,
371
    {
372
        Self {
373
            core: self.core.split_off(at),
374
            hash_builder: self.hash_builder.clone(),
375
        }
376
    }
377
378
    /// Reserve capacity for `additional` more key-value pairs.
379
    ///
380
    /// Computes in **O(n)** time.
381
    pub fn reserve(&mut self, additional: usize) {
382
        self.core.reserve(additional);
383
    }
384
385
    /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
386
    ///
387
    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
388
    /// frequent re-allocations. However, the underlying data structures may still have internal
389
    /// capacity requirements, and the allocator itself may give more space than requested, so this
390
    /// cannot be relied upon to be precisely minimal.
391
    ///
392
    /// Computes in **O(n)** time.
393
    pub fn reserve_exact(&mut self, additional: usize) {
394
        self.core.reserve_exact(additional);
395
    }
396
397
    /// Try to reserve capacity for `additional` more key-value pairs.
398
    ///
399
    /// Computes in **O(n)** time.
400
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
401
        self.core.try_reserve(additional)
402
    }
403
404
    /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
405
    ///
406
    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
407
    /// frequent re-allocations. However, the underlying data structures may still have internal
408
    /// capacity requirements, and the allocator itself may give more space than requested, so this
409
    /// cannot be relied upon to be precisely minimal.
410
    ///
411
    /// Computes in **O(n)** time.
412
    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
413
        self.core.try_reserve_exact(additional)
414
    }
415
416
    /// Shrink the capacity of the map as much as possible.
417
    ///
418
    /// Computes in **O(n)** time.
419
    pub fn shrink_to_fit(&mut self) {
420
        self.core.shrink_to(0);
421
    }
422
423
    /// Shrink the capacity of the map with a lower limit.
424
    ///
425
    /// Computes in **O(n)** time.
426
    pub fn shrink_to(&mut self, min_capacity: usize) {
427
        self.core.shrink_to(min_capacity);
428
    }
429
}
430
431
impl<K, V, S> IndexMap<K, V, S>
432
where
433
    K: Hash + Eq,
434
    S: BuildHasher,
435
{
436
    /// Insert a key-value pair in the map.
437
    ///
438
    /// If an equivalent key already exists in the map: the key remains and
439
    /// retains in its place in the order, its corresponding value is updated
440
    /// with `value`, and the older value is returned inside `Some(_)`.
441
    ///
442
    /// If no equivalent key existed in the map: the new key-value pair is
443
    /// inserted, last in order, and `None` is returned.
444
    ///
445
    /// Computes in **O(1)** time (amortized average).
446
    ///
447
    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
448
    /// or [`insert_full`][Self::insert_full] if you need to get the index of
449
    /// the corresponding key-value pair.
450
    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
451
        self.insert_full(key, value).1
452
    }
453
454
    /// Insert a key-value pair in the map, and get their index.
455
    ///
456
    /// If an equivalent key already exists in the map: the key remains and
457
    /// retains in its place in the order, its corresponding value is updated
458
    /// with `value`, and the older value is returned inside `(index, Some(_))`.
459
    ///
460
    /// If no equivalent key existed in the map: the new key-value pair is
461
    /// inserted, last in order, and `(index, None)` is returned.
462
    ///
463
    /// Computes in **O(1)** time (amortized average).
464
    ///
465
    /// See also [`entry`][Self::entry] if you want to insert *or* modify.
466
0
    pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
467
0
        let hash = self.hash(&key);
468
0
        self.core.insert_full(hash, key, value)
469
0
    }
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::cfi::CommonInformationEntry, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::insert_full
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::loc::LocationList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::insert_full
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::line::LineString, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::insert_full
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::range::RangeList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::insert_full
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::abbrev::Abbreviation, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::insert_full
Unexecuted instantiation: <indexmap::map::IndexMap<(gimli::write::line::LineString, gimli::write::line::DirectoryId), gimli::write::line::FileInfo, core::hash::BuildHasherDefault<fnv::FnvHasher>>>::insert_full
470
471
    /// Insert a key-value pair in the map at its ordered position among sorted keys.
472
    ///
473
    /// This is equivalent to finding the position with
474
    /// [`binary_search_keys`][Self::binary_search_keys], then either updating
475
    /// it or calling [`insert_before`][Self::insert_before] for a new key.
476
    ///
477
    /// If the sorted key is found in the map, its corresponding value is
478
    /// updated with `value`, and the older value is returned inside
479
    /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
480
    /// the sorted position, and `(index, None)` is returned.
481
    ///
482
    /// If the existing keys are **not** already sorted, then the insertion
483
    /// index is unspecified (like [`slice::binary_search`]), but the key-value
484
    /// pair is moved to or inserted at that position regardless.
485
    ///
486
    /// Computes in **O(n)** time (average). Instead of repeating calls to
487
    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
488
    /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
489
    /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
490
    pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
491
    where
492
        K: Ord,
493
    {
494
        match self.binary_search_keys(&key) {
495
            Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
496
            Err(i) => self.insert_before(i, key, value),
497
        }
498
    }
499
500
    /// Insert a key-value pair in the map at its ordered position among keys
501
    /// sorted by `cmp`.
502
    ///
503
    /// This is equivalent to finding the position with
504
    /// [`binary_search_by`][Self::binary_search_by], then calling
505
    /// [`insert_before`][Self::insert_before] with the given key and value.
506
    ///
507
    /// If the existing keys are **not** already sorted, then the insertion
508
    /// index is unspecified (like [`slice::binary_search`]), but the key-value
509
    /// pair is moved to or inserted at that position regardless.
510
    ///
511
    /// Computes in **O(n)** time (average).
512
    pub fn insert_sorted_by<F>(&mut self, key: K, value: V, mut cmp: F) -> (usize, Option<V>)
513
    where
514
        F: FnMut(&K, &V, &K, &V) -> Ordering,
515
    {
516
        let (Ok(i) | Err(i)) = self.binary_search_by(|k, v| cmp(k, v, &key, &value));
517
        self.insert_before(i, key, value)
518
    }
519
520
    /// Insert a key-value pair in the map at its ordered position
521
    /// using a sort-key extraction function.
522
    ///
523
    /// This is equivalent to finding the position with
524
    /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`, then
525
    /// calling [`insert_before`][Self::insert_before] with the given key and value.
526
    ///
527
    /// If the existing keys are **not** already sorted, then the insertion
528
    /// index is unspecified (like [`slice::binary_search`]), but the key-value
529
    /// pair is moved to or inserted at that position regardless.
530
    ///
531
    /// Computes in **O(n)** time (average).
532
    pub fn insert_sorted_by_key<B, F>(
533
        &mut self,
534
        key: K,
535
        value: V,
536
        mut sort_key: F,
537
    ) -> (usize, Option<V>)
538
    where
539
        B: Ord,
540
        F: FnMut(&K, &V) -> B,
541
    {
542
        let search_key = sort_key(&key, &value);
543
        let (Ok(i) | Err(i)) = self.binary_search_by_key(&search_key, sort_key);
544
        self.insert_before(i, key, value)
545
    }
546
547
    /// Insert a key-value pair in the map before the entry at the given index, or at the end.
548
    ///
549
    /// If an equivalent key already exists in the map: the key remains and
550
    /// is moved to the new position in the map, its corresponding value is updated
551
    /// with `value`, and the older value is returned inside `Some(_)`. The returned index
552
    /// will either be the given index or one less, depending on how the entry moved.
553
    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
554
    ///
555
    /// If no equivalent key existed in the map: the new key-value pair is
556
    /// inserted exactly at the given index, and `None` is returned.
557
    ///
558
    /// ***Panics*** if `index` is out of bounds.
559
    /// Valid indices are `0..=map.len()` (inclusive).
560
    ///
561
    /// Computes in **O(n)** time (average).
562
    ///
563
    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
564
    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
565
    ///
566
    /// # Examples
567
    ///
568
    /// ```
569
    /// use indexmap::IndexMap;
570
    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
571
    ///
572
    /// // The new key '*' goes exactly at the given index.
573
    /// assert_eq!(map.get_index_of(&'*'), None);
574
    /// assert_eq!(map.insert_before(10, '*', ()), (10, None));
575
    /// assert_eq!(map.get_index_of(&'*'), Some(10));
576
    ///
577
    /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
578
    /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
579
    /// assert_eq!(map.get_index_of(&'a'), Some(9));
580
    /// assert_eq!(map.get_index_of(&'*'), Some(10));
581
    ///
582
    /// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
583
    /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
584
    /// assert_eq!(map.get_index_of(&'z'), Some(10));
585
    /// assert_eq!(map.get_index_of(&'*'), Some(11));
586
    ///
587
    /// // Moving or inserting before the endpoint is also valid.
588
    /// assert_eq!(map.len(), 27);
589
    /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
590
    /// assert_eq!(map.get_index_of(&'*'), Some(26));
591
    /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
592
    /// assert_eq!(map.get_index_of(&'+'), Some(27));
593
    /// assert_eq!(map.len(), 28);
594
    /// ```
595
    #[track_caller]
596
    pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
597
        let len = self.len();
598
599
        assert!(
600
            index <= len,
601
            "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
602
        );
603
604
        match self.entry(key) {
605
            Entry::Occupied(mut entry) => {
606
                if index > entry.index() {
607
                    // Some entries will shift down when this one moves up,
608
                    // so "insert before index" becomes "move to index - 1",
609
                    // keeping the entry at the original index unmoved.
610
                    index -= 1;
611
                }
612
                let old = mem::replace(entry.get_mut(), value);
613
                entry.move_index(index);
614
                (index, Some(old))
615
            }
616
            Entry::Vacant(entry) => {
617
                entry.shift_insert(index, value);
618
                (index, None)
619
            }
620
        }
621
    }
622
623
    /// Insert a key-value pair in the map at the given index.
624
    ///
625
    /// If an equivalent key already exists in the map: the key remains and
626
    /// is moved to the given index in the map, its corresponding value is updated
627
    /// with `value`, and the older value is returned inside `Some(_)`.
628
    /// Note that existing entries **cannot** be moved to `index == map.len()`!
629
    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
630
    ///
631
    /// If no equivalent key existed in the map: the new key-value pair is
632
    /// inserted at the given index, and `None` is returned.
633
    ///
634
    /// ***Panics*** if `index` is out of bounds.
635
    /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
636
    /// `0..=map.len()` (inclusive) when inserting a new key.
637
    ///
638
    /// Computes in **O(n)** time (average).
639
    ///
640
    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
641
    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
642
    ///
643
    /// # Examples
644
    ///
645
    /// ```
646
    /// use indexmap::IndexMap;
647
    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
648
    ///
649
    /// // The new key '*' goes exactly at the given index.
650
    /// assert_eq!(map.get_index_of(&'*'), None);
651
    /// assert_eq!(map.shift_insert(10, '*', ()), None);
652
    /// assert_eq!(map.get_index_of(&'*'), Some(10));
653
    ///
654
    /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
655
    /// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
656
    /// assert_eq!(map.get_index_of(&'a'), Some(10));
657
    /// assert_eq!(map.get_index_of(&'*'), Some(9));
658
    ///
659
    /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
660
    /// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
661
    /// assert_eq!(map.get_index_of(&'z'), Some(9));
662
    /// assert_eq!(map.get_index_of(&'*'), Some(10));
663
    ///
664
    /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
665
    /// assert_eq!(map.len(), 27);
666
    /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
667
    /// assert_eq!(map.get_index_of(&'*'), Some(26));
668
    /// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
669
    /// assert_eq!(map.get_index_of(&'+'), Some(27));
670
    /// assert_eq!(map.len(), 28);
671
    /// ```
672
    ///
673
    /// ```should_panic
674
    /// use indexmap::IndexMap;
675
    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
676
    ///
677
    /// // This is an invalid index for moving an existing key!
678
    /// map.shift_insert(map.len(), 'a', ());
679
    /// ```
680
    #[track_caller]
681
    pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
682
        let len = self.len();
683
        match self.entry(key) {
684
            Entry::Occupied(mut entry) => {
685
                assert!(
686
                    index < len,
687
                    "index out of bounds: the len is {len} but the index is {index}"
688
                );
689
690
                let old = mem::replace(entry.get_mut(), value);
691
                entry.move_index(index);
692
                Some(old)
693
            }
694
            Entry::Vacant(entry) => {
695
                assert!(
696
                    index <= len,
697
                    "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
698
                );
699
700
                entry.shift_insert(index, value);
701
                None
702
            }
703
        }
704
    }
705
706
    /// Replaces the key at the given index. The new key does not need to be
707
    /// equivalent to the one it is replacing, but it must be unique to the rest
708
    /// of the map.
709
    ///
710
    /// Returns `Ok(old_key)` if successful, or `Err((other_index, key))` if an
711
    /// equivalent key already exists at a different index. The map will be
712
    /// unchanged in the error case.
713
    ///
714
    /// Direct indexing can be used to change the corresponding value: simply
715
    /// `map[index] = value`, or `mem::replace(&mut map[index], value)` to
716
    /// retrieve the old value as well.
717
    ///
718
    /// ***Panics*** if `index` is out of bounds.
719
    ///
720
    /// Computes in **O(1)** time (average).
721
    #[track_caller]
722
    pub fn replace_index(&mut self, index: usize, key: K) -> Result<K, (usize, K)> {
723
        // If there's a direct match, we don't even need to hash it.
724
        let entry = &mut self.as_entries_mut()[index];
725
        if key == entry.key {
726
            return Ok(mem::replace(&mut entry.key, key));
727
        }
728
729
        let hash = self.hash(&key);
730
        if let Some(i) = self.core.get_index_of(hash, &key) {
731
            debug_assert_ne!(i, index);
732
            return Err((i, key));
733
        }
734
        Ok(self.core.replace_index_unique(index, hash, key))
735
    }
736
737
    /// Get the given key's corresponding entry in the map for insertion and/or
738
    /// in-place manipulation.
739
    ///
740
    /// Computes in **O(1)** time (amortized average).
741
0
    pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
742
0
        let hash = self.hash(&key);
743
0
        Entry::new(&mut self.core, hash, key)
744
0
    }
745
746
    /// Creates a splicing iterator that replaces the specified range in the map
747
    /// with the given `replace_with` key-value iterator and yields the removed
748
    /// items. `replace_with` does not need to be the same length as `range`.
749
    ///
750
    /// The `range` is removed even if the iterator is not consumed until the
751
    /// end. It is unspecified how many elements are removed from the map if the
752
    /// `Splice` value is leaked.
753
    ///
754
    /// The input iterator `replace_with` is only consumed when the `Splice`
755
    /// value is dropped. If a key from the iterator matches an existing entry
756
    /// in the map (outside of `range`), then the value will be updated in that
757
    /// position. Otherwise, the new key-value pair will be inserted in the
758
    /// replaced `range`.
759
    ///
760
    /// ***Panics*** if the starting point is greater than the end point or if
761
    /// the end point is greater than the length of the map.
762
    ///
763
    /// # Examples
764
    ///
765
    /// ```
766
    /// use indexmap::IndexMap;
767
    ///
768
    /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
769
    /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
770
    /// let removed: Vec<_> = map.splice(2..4, new).collect();
771
    ///
772
    /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
773
    /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
774
    /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
775
    /// ```
776
    #[track_caller]
777
    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
778
    where
779
        R: RangeBounds<usize>,
780
        I: IntoIterator<Item = (K, V)>,
781
    {
782
        Splice::new(self, range, replace_with.into_iter())
783
    }
784
785
    /// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
786
    ///
787
    /// This is equivalent to calling [`insert`][Self::insert] for each
788
    /// key-value pair from `other` in order, which means that for keys that
789
    /// already exist in `self`, their value is updated in the current position.
790
    ///
791
    /// # Examples
792
    ///
793
    /// ```
794
    /// use indexmap::IndexMap;
795
    ///
796
    /// // Note: Key (3) is present in both maps.
797
    /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
798
    /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
799
    /// let old_capacity = b.capacity();
800
    ///
801
    /// a.append(&mut b);
802
    ///
803
    /// assert_eq!(a.len(), 5);
804
    /// assert_eq!(b.len(), 0);
805
    /// assert_eq!(b.capacity(), old_capacity);
806
    ///
807
    /// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
808
    /// assert_eq!(a[&3], "d"); // "c" was overwritten.
809
    /// ```
810
    pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
811
        self.extend(other.drain(..));
812
    }
813
}
814
815
impl<K, V, S> IndexMap<K, V, S>
816
where
817
    S: BuildHasher,
818
{
819
0
    pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
820
0
        let h = self.hash_builder.hash_one(key);
821
0
        HashValue(h as usize)
822
0
    }
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::cfi::CommonInformationEntry, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::hash::<gimli::write::cfi::CommonInformationEntry>
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::loc::LocationList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::hash::<gimli::write::loc::LocationList>
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::line::LineString, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::hash::<gimli::write::line::LineString>
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::range::RangeList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::hash::<gimli::write::range::RangeList>
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::abbrev::Abbreviation, (), core::hash::BuildHasherDefault<fnv::FnvHasher>>>::hash::<gimli::write::abbrev::Abbreviation>
Unexecuted instantiation: <indexmap::map::IndexMap<(gimli::write::line::LineString, gimli::write::line::DirectoryId), gimli::write::line::FileInfo, core::hash::BuildHasherDefault<fnv::FnvHasher>>>::hash::<(gimli::write::line::LineString, gimli::write::line::DirectoryId)>
823
824
    /// Return `true` if an equivalent to `key` exists in the map.
825
    ///
826
    /// Computes in **O(1)** time (average).
827
    pub fn contains_key<Q>(&self, key: &Q) -> bool
828
    where
829
        Q: ?Sized + Hash + Equivalent<K>,
830
    {
831
        self.get_index_of(key).is_some()
832
    }
833
834
    /// Return a reference to the stored value for `key`, if it is present,
835
    /// else `None`.
836
    ///
837
    /// Computes in **O(1)** time (average).
838
    pub fn get<Q>(&self, key: &Q) -> Option<&V>
839
    where
840
        Q: ?Sized + Hash + Equivalent<K>,
841
    {
842
        if let Some(i) = self.get_index_of(key) {
843
            let entry = &self.as_entries()[i];
844
            Some(&entry.value)
845
        } else {
846
            None
847
        }
848
    }
849
850
    /// Return references to the stored key-value pair for the lookup `key`,
851
    /// if it is present, else `None`.
852
    ///
853
    /// Computes in **O(1)** time (average).
854
    pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
855
    where
856
        Q: ?Sized + Hash + Equivalent<K>,
857
    {
858
        if let Some(i) = self.get_index_of(key) {
859
            let entry = &self.as_entries()[i];
860
            Some((&entry.key, &entry.value))
861
        } else {
862
            None
863
        }
864
    }
865
866
    /// Return the index with references to the stored key-value pair for the
867
    /// lookup `key`, if it is present, else `None`.
868
    ///
869
    /// Computes in **O(1)** time (average).
870
    pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
871
    where
872
        Q: ?Sized + Hash + Equivalent<K>,
873
    {
874
        if let Some(i) = self.get_index_of(key) {
875
            let entry = &self.as_entries()[i];
876
            Some((i, &entry.key, &entry.value))
877
        } else {
878
            None
879
        }
880
    }
881
882
    /// Return the item index for `key`, if it is present, else `None`.
883
    ///
884
    /// Computes in **O(1)** time (average).
885
    pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
886
    where
887
        Q: ?Sized + Hash + Equivalent<K>,
888
    {
889
        match self.as_entries() {
890
            [] => None,
891
            [x] => key.equivalent(&x.key).then_some(0),
892
            _ => {
893
                let hash = self.hash(key);
894
                self.core.get_index_of(hash, key)
895
            }
896
        }
897
    }
898
899
    /// Return a mutable reference to the stored value for `key`,
900
    /// if it is present, else `None`.
901
    ///
902
    /// Computes in **O(1)** time (average).
903
    pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
904
    where
905
        Q: ?Sized + Hash + Equivalent<K>,
906
    {
907
        if let Some(i) = self.get_index_of(key) {
908
            let entry = &mut self.as_entries_mut()[i];
909
            Some(&mut entry.value)
910
        } else {
911
            None
912
        }
913
    }
914
915
    /// Return a reference and mutable references to the stored key-value pair
916
    /// for the lookup `key`, if it is present, else `None`.
917
    ///
918
    /// Computes in **O(1)** time (average).
919
    pub fn get_key_value_mut<Q>(&mut self, key: &Q) -> Option<(&K, &mut V)>
920
    where
921
        Q: ?Sized + Hash + Equivalent<K>,
922
    {
923
        if let Some(i) = self.get_index_of(key) {
924
            let entry = &mut self.as_entries_mut()[i];
925
            Some((&entry.key, &mut entry.value))
926
        } else {
927
            None
928
        }
929
    }
930
931
    /// Return the index with a reference and mutable reference to the stored
932
    /// key-value pair for the lookup `key`, if it is present, else `None`.
933
    ///
934
    /// Computes in **O(1)** time (average).
935
    pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
936
    where
937
        Q: ?Sized + Hash + Equivalent<K>,
938
    {
939
        if let Some(i) = self.get_index_of(key) {
940
            let entry = &mut self.as_entries_mut()[i];
941
            Some((i, &entry.key, &mut entry.value))
942
        } else {
943
            None
944
        }
945
    }
946
947
    /// Return the values for `N` keys. If any key is duplicated, this function will panic.
948
    ///
949
    /// # Examples
950
    ///
951
    /// ```
952
    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
953
    /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]);
954
    /// ```
955
    pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N]
956
    where
957
        Q: ?Sized + Hash + Equivalent<K>,
958
    {
959
        let indices = keys.map(|key| self.get_index_of(key));
960
        match self.as_mut_slice().get_disjoint_opt_mut(indices) {
961
            Err(GetDisjointMutError::IndexOutOfBounds) => {
962
                unreachable!(
963
                    "Internal error: indices should never be OOB as we got them from get_index_of"
964
                );
965
            }
966
            Err(GetDisjointMutError::OverlappingIndices) => {
967
                panic!("duplicate keys found");
968
            }
969
            Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)),
970
        }
971
    }
972
973
    /// Remove the key-value pair equivalent to `key` and return
974
    /// its value.
975
    ///
976
    /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
977
    /// entry's position with the last element, and it is deprecated in favor of calling that
978
    /// explicitly. If you need to preserve the relative order of the keys in the map, use
979
    /// [`.shift_remove(key)`][Self::shift_remove] instead.
980
    #[deprecated(note = "`remove` disrupts the map order -- \
981
        use `swap_remove` or `shift_remove` for explicit behavior.")]
982
    pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
983
    where
984
        Q: ?Sized + Hash + Equivalent<K>,
985
    {
986
        self.swap_remove(key)
987
    }
988
989
    /// Remove and return the key-value pair equivalent to `key`.
990
    ///
991
    /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
992
    /// replacing this entry's position with the last element, and it is deprecated in favor of
993
    /// calling that explicitly. If you need to preserve the relative order of the keys in the map,
994
    /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
995
    #[deprecated(note = "`remove_entry` disrupts the map order -- \
996
        use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
997
    pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
998
    where
999
        Q: ?Sized + Hash + Equivalent<K>,
1000
    {
1001
        self.swap_remove_entry(key)
1002
    }
1003
1004
    /// Remove the key-value pair equivalent to `key` and return
1005
    /// its value.
1006
    ///
1007
    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1008
    /// last element of the map and popping it off. **This perturbs
1009
    /// the position of what used to be the last element!**
1010
    ///
1011
    /// Return `None` if `key` is not in map.
1012
    ///
1013
    /// Computes in **O(1)** time (average).
1014
    pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
1015
    where
1016
        Q: ?Sized + Hash + Equivalent<K>,
1017
    {
1018
        self.swap_remove_full(key).map(third)
1019
    }
1020
1021
    /// Remove and return the key-value pair equivalent to `key`.
1022
    ///
1023
    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1024
    /// last element of the map and popping it off. **This perturbs
1025
    /// the position of what used to be the last element!**
1026
    ///
1027
    /// Return `None` if `key` is not in map.
1028
    ///
1029
    /// Computes in **O(1)** time (average).
1030
    pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1031
    where
1032
        Q: ?Sized + Hash + Equivalent<K>,
1033
    {
1034
        match self.swap_remove_full(key) {
1035
            Some((_, key, value)) => Some((key, value)),
1036
            None => None,
1037
        }
1038
    }
1039
1040
    /// Remove the key-value pair equivalent to `key` and return it and
1041
    /// the index it had.
1042
    ///
1043
    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1044
    /// last element of the map and popping it off. **This perturbs
1045
    /// the position of what used to be the last element!**
1046
    ///
1047
    /// Return `None` if `key` is not in map.
1048
    ///
1049
    /// Computes in **O(1)** time (average).
1050
    pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1051
    where
1052
        Q: ?Sized + Hash + Equivalent<K>,
1053
    {
1054
        match self.as_entries() {
1055
            [x] if key.equivalent(&x.key) => {
1056
                let (k, v) = self.core.pop()?;
1057
                Some((0, k, v))
1058
            }
1059
            [_] | [] => None,
1060
            _ => {
1061
                let hash = self.hash(key);
1062
                self.core.swap_remove_full(hash, key)
1063
            }
1064
        }
1065
    }
1066
1067
    /// Remove the key-value pair equivalent to `key` and return
1068
    /// its value.
1069
    ///
1070
    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1071
    /// elements that follow it, preserving their relative order.
1072
    /// **This perturbs the index of all of those elements!**
1073
    ///
1074
    /// Return `None` if `key` is not in map.
1075
    ///
1076
    /// Computes in **O(n)** time (average).
1077
    pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
1078
    where
1079
        Q: ?Sized + Hash + Equivalent<K>,
1080
    {
1081
        self.shift_remove_full(key).map(third)
1082
    }
1083
1084
    /// Remove and return the key-value pair equivalent to `key`.
1085
    ///
1086
    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1087
    /// elements that follow it, preserving their relative order.
1088
    /// **This perturbs the index of all of those elements!**
1089
    ///
1090
    /// Return `None` if `key` is not in map.
1091
    ///
1092
    /// Computes in **O(n)** time (average).
1093
    pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1094
    where
1095
        Q: ?Sized + Hash + Equivalent<K>,
1096
    {
1097
        match self.shift_remove_full(key) {
1098
            Some((_, key, value)) => Some((key, value)),
1099
            None => None,
1100
        }
1101
    }
1102
1103
    /// Remove the key-value pair equivalent to `key` and return it and
1104
    /// the index it had.
1105
    ///
1106
    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1107
    /// elements that follow it, preserving their relative order.
1108
    /// **This perturbs the index of all of those elements!**
1109
    ///
1110
    /// Return `None` if `key` is not in map.
1111
    ///
1112
    /// Computes in **O(n)** time (average).
1113
    pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1114
    where
1115
        Q: ?Sized + Hash + Equivalent<K>,
1116
    {
1117
        match self.as_entries() {
1118
            [x] if key.equivalent(&x.key) => {
1119
                let (k, v) = self.core.pop()?;
1120
                Some((0, k, v))
1121
            }
1122
            [_] | [] => None,
1123
            _ => {
1124
                let hash = self.hash(key);
1125
                self.core.shift_remove_full(hash, key)
1126
            }
1127
        }
1128
    }
1129
}
1130
1131
impl<K, V, S> IndexMap<K, V, S> {
1132
    /// Remove the last key-value pair
1133
    ///
1134
    /// This preserves the order of the remaining elements.
1135
    ///
1136
    /// Computes in **O(1)** time (average).
1137
    #[doc(alias = "pop_last")] // like `BTreeMap`
1138
    pub fn pop(&mut self) -> Option<(K, V)> {
1139
        self.core.pop()
1140
    }
1141
1142
    /// Removes and returns the last key-value pair from a map if the predicate
1143
    /// returns `true`, or [`None`] if the predicate returns false or the map
1144
    /// is empty (the predicate will not be called in that case).
1145
    ///
1146
    /// This preserves the order of the remaining elements.
1147
    ///
1148
    /// Computes in **O(1)** time (average).
1149
    ///
1150
    /// # Examples
1151
    ///
1152
    /// ```
1153
    /// use indexmap::IndexMap;
1154
    ///
1155
    /// let init = [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')];
1156
    /// let mut map = IndexMap::from(init);
1157
    /// let pred = |key: &i32, _value: &mut char| *key % 2 == 0;
1158
    ///
1159
    /// assert_eq!(map.pop_if(pred), Some((4, 'd')));
1160
    /// assert_eq!(map.as_slice(), &init[..3]);
1161
    /// assert_eq!(map.pop_if(pred), None);
1162
    /// ```
1163
    pub fn pop_if(&mut self, predicate: impl FnOnce(&K, &mut V) -> bool) -> Option<(K, V)> {
1164
        let (last_key, last_value) = self.last_mut()?;
1165
        if predicate(last_key, last_value) {
1166
            self.core.pop()
1167
        } else {
1168
            None
1169
        }
1170
    }
1171
1172
    /// Scan through each key-value pair in the map and keep those where the
1173
    /// closure `keep` returns `true`.
1174
    ///
1175
    /// The elements are visited in order, and remaining elements keep their
1176
    /// order.
1177
    ///
1178
    /// Computes in **O(n)** time (average).
1179
    pub fn retain<F>(&mut self, mut keep: F)
1180
    where
1181
        F: FnMut(&K, &mut V) -> bool,
1182
    {
1183
        self.core.retain_in_order(move |k, v| keep(k, v));
1184
    }
1185
1186
    /// Sort the map's key-value pairs by the default ordering of the keys.
1187
    ///
1188
    /// This is a stable sort -- but equivalent keys should not normally coexist in
1189
    /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
1190
    /// because it is generally faster and doesn't allocate auxiliary memory.
1191
    ///
1192
    /// See [`sort_by`](Self::sort_by) for details.
1193
    pub fn sort_keys(&mut self)
1194
    where
1195
        K: Ord,
1196
    {
1197
        self.with_entries(move |entries| {
1198
            entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
1199
        });
1200
    }
1201
1202
    /// Sort the map's key-value pairs in place using the comparison
1203
    /// function `cmp`.
1204
    ///
1205
    /// The comparison function receives two key and value pairs to compare (you
1206
    /// can sort by keys or values or their combination as needed).
1207
    ///
1208
    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1209
    /// the length of the map and *c* the capacity. The sort is stable.
1210
    pub fn sort_by<F>(&mut self, mut cmp: F)
1211
    where
1212
        F: FnMut(&K, &V, &K, &V) -> Ordering,
1213
    {
1214
        self.with_entries(move |entries| {
1215
            entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1216
        });
1217
    }
1218
1219
    /// Sort the key-value pairs of the map and return a by-value iterator of
1220
    /// the key-value pairs with the result.
1221
    ///
1222
    /// The sort is stable.
1223
    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1224
    where
1225
        F: FnMut(&K, &V, &K, &V) -> Ordering,
1226
    {
1227
        let mut entries = self.into_entries();
1228
        entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1229
        IntoIter::new(entries)
1230
    }
1231
1232
    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1233
    ///
1234
    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1235
    /// the length of the map and *c* the capacity. The sort is stable.
1236
    pub fn sort_by_key<T, F>(&mut self, mut sort_key: F)
1237
    where
1238
        T: Ord,
1239
        F: FnMut(&K, &V) -> T,
1240
    {
1241
        self.with_entries(move |entries| {
1242
            entries.sort_by_key(move |a| sort_key(&a.key, &a.value));
1243
        });
1244
    }
1245
1246
    /// Sort the map's key-value pairs by the default ordering of the keys, but
1247
    /// may not preserve the order of equal elements.
1248
    ///
1249
    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
1250
    pub fn sort_unstable_keys(&mut self)
1251
    where
1252
        K: Ord,
1253
    {
1254
        self.with_entries(move |entries| {
1255
            entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
1256
        });
1257
    }
1258
1259
    /// Sort the map's key-value pairs in place using the comparison function `cmp`, but
1260
    /// may not preserve the order of equal elements.
1261
    ///
1262
    /// The comparison function receives two key and value pairs to compare (you
1263
    /// can sort by keys or values or their combination as needed).
1264
    ///
1265
    /// Computes in **O(n log n + c)** time where *n* is
1266
    /// the length of the map and *c* is the capacity. The sort is unstable.
1267
    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
1268
    where
1269
        F: FnMut(&K, &V, &K, &V) -> Ordering,
1270
    {
1271
        self.with_entries(move |entries| {
1272
            entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1273
        });
1274
    }
1275
1276
    /// Sort the key-value pairs of the map and return a by-value iterator of
1277
    /// the key-value pairs with the result.
1278
    ///
1279
    /// The sort is unstable.
1280
    #[inline]
1281
    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1282
    where
1283
        F: FnMut(&K, &V, &K, &V) -> Ordering,
1284
    {
1285
        let mut entries = self.into_entries();
1286
        entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1287
        IntoIter::new(entries)
1288
    }
1289
1290
    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1291
    ///
1292
    /// Computes in **O(n log n + c)** time where *n* is
1293
    /// the length of the map and *c* is the capacity. The sort is unstable.
1294
    pub fn sort_unstable_by_key<T, F>(&mut self, mut sort_key: F)
1295
    where
1296
        T: Ord,
1297
        F: FnMut(&K, &V) -> T,
1298
    {
1299
        self.with_entries(move |entries| {
1300
            entries.sort_unstable_by_key(move |a| sort_key(&a.key, &a.value));
1301
        });
1302
    }
1303
1304
    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1305
    ///
1306
    /// During sorting, the function is called at most once per entry, by using temporary storage
1307
    /// to remember the results of its evaluation. The order of calls to the function is
1308
    /// unspecified and may change between versions of `indexmap` or the standard library.
1309
    ///
1310
    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1311
    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1312
    pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
1313
    where
1314
        T: Ord,
1315
        F: FnMut(&K, &V) -> T,
1316
    {
1317
        self.with_entries(move |entries| {
1318
            entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
1319
        });
1320
    }
1321
1322
    /// Search over a sorted map for a key.
1323
    ///
1324
    /// Returns the position where that key is present, or the position where it can be inserted to
1325
    /// maintain the sort. See [`slice::binary_search`] for more details.
1326
    ///
1327
    /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
1328
    /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
1329
    pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
1330
    where
1331
        K: Ord,
1332
    {
1333
        self.as_slice().binary_search_keys(x)
1334
    }
1335
1336
    /// Search over a sorted map with a comparator function.
1337
    ///
1338
    /// Returns the position where that value is present, or the position where it can be inserted
1339
    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1340
    ///
1341
    /// Computes in **O(log(n))** time.
1342
    #[inline]
1343
    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1344
    where
1345
        F: FnMut(&'a K, &'a V) -> Ordering,
1346
    {
1347
        self.as_slice().binary_search_by(f)
1348
    }
1349
1350
    /// Search over a sorted map with an extraction function.
1351
    ///
1352
    /// Returns the position where that value is present, or the position where it can be inserted
1353
    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1354
    ///
1355
    /// Computes in **O(log(n))** time.
1356
    #[inline]
1357
    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1358
    where
1359
        F: FnMut(&'a K, &'a V) -> B,
1360
        B: Ord,
1361
    {
1362
        self.as_slice().binary_search_by_key(b, f)
1363
    }
1364
1365
    /// Checks if the keys of this map are sorted.
1366
    #[inline]
1367
    pub fn is_sorted(&self) -> bool
1368
    where
1369
        K: PartialOrd,
1370
    {
1371
        self.as_slice().is_sorted()
1372
    }
1373
1374
    /// Checks if this map is sorted using the given comparator function.
1375
    #[inline]
1376
    pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1377
    where
1378
        F: FnMut(&'a K, &'a V, &'a K, &'a V) -> bool,
1379
    {
1380
        self.as_slice().is_sorted_by(cmp)
1381
    }
1382
1383
    /// Checks if this map is sorted using the given sort-key function.
1384
    #[inline]
1385
    pub fn is_sorted_by_key<'a, F, T>(&'a self, sort_key: F) -> bool
1386
    where
1387
        F: FnMut(&'a K, &'a V) -> T,
1388
        T: PartialOrd,
1389
    {
1390
        self.as_slice().is_sorted_by_key(sort_key)
1391
    }
1392
1393
    /// Returns the index of the partition point of a sorted map according to the given predicate
1394
    /// (the index of the first element of the second partition).
1395
    ///
1396
    /// See [`slice::partition_point`] for more details.
1397
    ///
1398
    /// Computes in **O(log(n))** time.
1399
    #[must_use]
1400
    pub fn partition_point<P>(&self, pred: P) -> usize
1401
    where
1402
        P: FnMut(&K, &V) -> bool,
1403
    {
1404
        self.as_slice().partition_point(pred)
1405
    }
1406
1407
    /// Reverses the order of the map's key-value pairs in place.
1408
    ///
1409
    /// Computes in **O(n)** time and **O(1)** space.
1410
    pub fn reverse(&mut self) {
1411
        self.core.reverse()
1412
    }
1413
1414
    /// Returns a slice of all the key-value pairs in the map.
1415
    ///
1416
    /// Computes in **O(1)** time.
1417
    pub fn as_slice(&self) -> &Slice<K, V> {
1418
        Slice::from_slice(self.as_entries())
1419
    }
1420
1421
    /// Returns a mutable slice of all the key-value pairs in the map.
1422
    ///
1423
    /// Computes in **O(1)** time.
1424
    pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
1425
        Slice::from_mut_slice(self.as_entries_mut())
1426
    }
1427
1428
    /// Converts into a boxed slice of all the key-value pairs in the map.
1429
    ///
1430
    /// Note that this will drop the inner hash table and any excess capacity.
1431
    pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
1432
        Slice::from_boxed(self.into_entries().into_boxed_slice())
1433
    }
1434
1435
    /// Get a key-value pair by index
1436
    ///
1437
    /// Valid indices are `0 <= index < self.len()`.
1438
    ///
1439
    /// Computes in **O(1)** time.
1440
0
    pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
1441
0
        self.as_entries().get(index).map(Bucket::refs)
1442
0
    }
1443
1444
    /// Get a key-value pair by index
1445
    ///
1446
    /// Valid indices are `0 <= index < self.len()`.
1447
    ///
1448
    /// Computes in **O(1)** time.
1449
0
    pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
1450
0
        self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
1451
0
    }
1452
1453
    /// Get an entry in the map by index for in-place manipulation.
1454
    ///
1455
    /// Valid indices are `0 <= index < self.len()`.
1456
    ///
1457
    /// Computes in **O(1)** time.
1458
    pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
1459
        IndexedEntry::new(&mut self.core, index)
1460
    }
1461
1462
    /// Get an array of `N` key-value pairs by `N` indices
1463
    ///
1464
    /// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
1465
    ///
1466
    /// # Examples
1467
    ///
1468
    /// ```
1469
    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
1470
    /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')]));
1471
    /// ```
1472
    pub fn get_disjoint_indices_mut<const N: usize>(
1473
        &mut self,
1474
        indices: [usize; N],
1475
    ) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
1476
        self.as_mut_slice().get_disjoint_mut(indices)
1477
    }
1478
1479
    /// Returns a slice of key-value pairs in the given range of indices.
1480
    ///
1481
    /// Valid indices are `0 <= index < self.len()`.
1482
    ///
1483
    /// Computes in **O(1)** time.
1484
    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
1485
        let entries = self.as_entries();
1486
        let range = try_simplify_range(range, entries.len())?;
1487
        entries.get(range).map(Slice::from_slice)
1488
    }
1489
1490
    /// Returns a mutable slice of key-value pairs in the given range of indices.
1491
    ///
1492
    /// Valid indices are `0 <= index < self.len()`.
1493
    ///
1494
    /// Computes in **O(1)** time.
1495
    pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
1496
        let entries = self.as_entries_mut();
1497
        let range = try_simplify_range(range, entries.len())?;
1498
        entries.get_mut(range).map(Slice::from_mut_slice)
1499
    }
1500
1501
    /// Get the first key-value pair
1502
    ///
1503
    /// Computes in **O(1)** time.
1504
    #[doc(alias = "first_key_value")] // like `BTreeMap`
1505
    pub fn first(&self) -> Option<(&K, &V)> {
1506
        self.as_entries().first().map(Bucket::refs)
1507
    }
1508
1509
    /// Get the first key-value pair, with mutable access to the value
1510
    ///
1511
    /// Computes in **O(1)** time.
1512
    pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
1513
        self.as_entries_mut().first_mut().map(Bucket::ref_mut)
1514
    }
1515
1516
    /// Get the first entry in the map for in-place manipulation.
1517
    ///
1518
    /// Computes in **O(1)** time.
1519
    pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1520
        self.get_index_entry(0)
1521
    }
1522
1523
    /// Get the last key-value pair
1524
    ///
1525
    /// Computes in **O(1)** time.
1526
    #[doc(alias = "last_key_value")] // like `BTreeMap`
1527
    pub fn last(&self) -> Option<(&K, &V)> {
1528
        self.as_entries().last().map(Bucket::refs)
1529
    }
1530
1531
    /// Get the last key-value pair, with mutable access to the value
1532
    ///
1533
    /// Computes in **O(1)** time.
1534
    pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
1535
        self.as_entries_mut().last_mut().map(Bucket::ref_mut)
1536
    }
1537
1538
    /// Get the last entry in the map for in-place manipulation.
1539
    ///
1540
    /// Computes in **O(1)** time.
1541
    pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1542
        self.get_index_entry(self.len().checked_sub(1)?)
1543
    }
1544
1545
    /// Remove the key-value pair by index
1546
    ///
1547
    /// Valid indices are `0 <= index < self.len()`.
1548
    ///
1549
    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1550
    /// last element of the map and popping it off. **This perturbs
1551
    /// the position of what used to be the last element!**
1552
    ///
1553
    /// Computes in **O(1)** time (average).
1554
    pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1555
        self.core.swap_remove_index(index)
1556
    }
1557
1558
    /// Remove the key-value pair by index
1559
    ///
1560
    /// Valid indices are `0 <= index < self.len()`.
1561
    ///
1562
    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1563
    /// elements that follow it, preserving their relative order.
1564
    /// **This perturbs the index of all of those elements!**
1565
    ///
1566
    /// Computes in **O(n)** time (average).
1567
    pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1568
        self.core.shift_remove_index(index)
1569
    }
1570
1571
    /// Moves the position of a key-value pair from one index to another
1572
    /// by shifting all other pairs in-between.
1573
    ///
1574
    /// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
1575
    /// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
1576
    ///
1577
    /// ***Panics*** if `from` or `to` are out of bounds.
1578
    ///
1579
    /// Computes in **O(n)** time (average).
1580
    #[track_caller]
1581
    pub fn move_index(&mut self, from: usize, to: usize) {
1582
        self.core.move_index(from, to)
1583
    }
1584
1585
    /// Swaps the position of two key-value pairs in the map.
1586
    ///
1587
    /// ***Panics*** if `a` or `b` are out of bounds.
1588
    ///
1589
    /// Computes in **O(1)** time (average).
1590
    #[track_caller]
1591
    pub fn swap_indices(&mut self, a: usize, b: usize) {
1592
        self.core.swap_indices(a, b)
1593
    }
1594
}
1595
1596
/// Access [`IndexMap`] values corresponding to a key.
1597
///
1598
/// # Examples
1599
///
1600
/// ```
1601
/// use indexmap::IndexMap;
1602
///
1603
/// let mut map = IndexMap::new();
1604
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1605
///     map.insert(word.to_lowercase(), word.to_uppercase());
1606
/// }
1607
/// assert_eq!(map["lorem"], "LOREM");
1608
/// assert_eq!(map["ipsum"], "IPSUM");
1609
/// ```
1610
///
1611
/// ```should_panic
1612
/// use indexmap::IndexMap;
1613
///
1614
/// let mut map = IndexMap::new();
1615
/// map.insert("foo", 1);
1616
/// println!("{:?}", map["bar"]); // panics!
1617
/// ```
1618
impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
1619
where
1620
    Q: Hash + Equivalent<K>,
1621
    S: BuildHasher,
1622
{
1623
    type Output = V;
1624
1625
    /// Returns a reference to the value corresponding to the supplied `key`.
1626
    ///
1627
    /// ***Panics*** if `key` is not present in the map.
1628
    fn index(&self, key: &Q) -> &V {
1629
        self.get(key).expect("no entry found for key")
1630
    }
1631
}
1632
1633
/// Access [`IndexMap`] values corresponding to a key.
1634
///
1635
/// Mutable indexing allows changing / updating values of key-value
1636
/// pairs that are already present.
1637
///
1638
/// You can **not** insert new pairs with index syntax, use `.insert()`.
1639
///
1640
/// # Examples
1641
///
1642
/// ```
1643
/// use indexmap::IndexMap;
1644
///
1645
/// let mut map = IndexMap::new();
1646
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1647
///     map.insert(word.to_lowercase(), word.to_string());
1648
/// }
1649
/// let lorem = &mut map["lorem"];
1650
/// assert_eq!(lorem, "Lorem");
1651
/// lorem.retain(char::is_lowercase);
1652
/// assert_eq!(map["lorem"], "orem");
1653
/// ```
1654
///
1655
/// ```should_panic
1656
/// use indexmap::IndexMap;
1657
///
1658
/// let mut map = IndexMap::new();
1659
/// map.insert("foo", 1);
1660
/// map["bar"] = 1; // panics!
1661
/// ```
1662
impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
1663
where
1664
    Q: Hash + Equivalent<K>,
1665
    S: BuildHasher,
1666
{
1667
    /// Returns a mutable reference to the value corresponding to the supplied `key`.
1668
    ///
1669
    /// ***Panics*** if `key` is not present in the map.
1670
    fn index_mut(&mut self, key: &Q) -> &mut V {
1671
        self.get_mut(key).expect("no entry found for key")
1672
    }
1673
}
1674
1675
/// Access [`IndexMap`] values at indexed positions.
1676
///
1677
/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
1678
///
1679
/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
1680
///
1681
/// # Examples
1682
///
1683
/// ```
1684
/// use indexmap::IndexMap;
1685
///
1686
/// let mut map = IndexMap::new();
1687
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1688
///     map.insert(word.to_lowercase(), word.to_uppercase());
1689
/// }
1690
/// assert_eq!(map[0], "LOREM");
1691
/// assert_eq!(map[1], "IPSUM");
1692
/// map.reverse();
1693
/// assert_eq!(map[0], "AMET");
1694
/// assert_eq!(map[1], "SIT");
1695
/// map.sort_keys();
1696
/// assert_eq!(map[0], "AMET");
1697
/// assert_eq!(map[1], "DOLOR");
1698
/// ```
1699
///
1700
/// ```should_panic
1701
/// use indexmap::IndexMap;
1702
///
1703
/// let mut map = IndexMap::new();
1704
/// map.insert("foo", 1);
1705
/// println!("{:?}", map[10]); // panics!
1706
/// ```
1707
impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
1708
    type Output = V;
1709
1710
    /// Returns a reference to the value at the supplied `index`.
1711
    ///
1712
    /// ***Panics*** if `index` is out of bounds.
1713
    fn index(&self, index: usize) -> &V {
1714
        if let Some((_, value)) = self.get_index(index) {
1715
            value
1716
        } else {
1717
            panic!(
1718
                "index out of bounds: the len is {len} but the index is {index}",
1719
                len = self.len()
1720
            );
1721
        }
1722
    }
1723
}
1724
1725
/// Access [`IndexMap`] values at indexed positions.
1726
///
1727
/// Mutable indexing allows changing / updating indexed values
1728
/// that are already present.
1729
///
1730
/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
1731
///
1732
/// # Examples
1733
///
1734
/// ```
1735
/// use indexmap::IndexMap;
1736
///
1737
/// let mut map = IndexMap::new();
1738
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1739
///     map.insert(word.to_lowercase(), word.to_string());
1740
/// }
1741
/// let lorem = &mut map[0];
1742
/// assert_eq!(lorem, "Lorem");
1743
/// lorem.retain(char::is_lowercase);
1744
/// assert_eq!(map["lorem"], "orem");
1745
/// ```
1746
///
1747
/// ```should_panic
1748
/// use indexmap::IndexMap;
1749
///
1750
/// let mut map = IndexMap::new();
1751
/// map.insert("foo", 1);
1752
/// map[10] = 1; // panics!
1753
/// ```
1754
impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
1755
    /// Returns a mutable reference to the value at the supplied `index`.
1756
    ///
1757
    /// ***Panics*** if `index` is out of bounds.
1758
    fn index_mut(&mut self, index: usize) -> &mut V {
1759
        let len: usize = self.len();
1760
1761
        if let Some((_, value)) = self.get_index_mut(index) {
1762
            value
1763
        } else {
1764
            panic!("index out of bounds: the len is {len} but the index is {index}");
1765
        }
1766
    }
1767
}
1768
1769
impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
1770
where
1771
    K: Hash + Eq,
1772
    S: BuildHasher + Default,
1773
{
1774
    /// Create an `IndexMap` from the sequence of key-value pairs in the
1775
    /// iterable.
1776
    ///
1777
    /// `from_iter` uses the same logic as `extend`. See
1778
    /// [`extend`][IndexMap::extend] for more details.
1779
    fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
1780
        let iter = iterable.into_iter();
1781
        let (low, _) = iter.size_hint();
1782
        let mut map = Self::with_capacity_and_hasher(low, <_>::default());
1783
        map.extend(iter);
1784
        map
1785
    }
1786
}
1787
1788
#[cfg(feature = "std")]
1789
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1790
impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
1791
where
1792
    K: Hash + Eq,
1793
{
1794
    /// # Examples
1795
    ///
1796
    /// ```
1797
    /// use indexmap::IndexMap;
1798
    ///
1799
    /// let map1 = IndexMap::from([(1, 2), (3, 4)]);
1800
    /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
1801
    /// assert_eq!(map1, map2);
1802
    /// ```
1803
    fn from(arr: [(K, V); N]) -> Self {
1804
        Self::from_iter(arr)
1805
    }
1806
}
1807
1808
impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
1809
where
1810
    K: Hash + Eq,
1811
    S: BuildHasher,
1812
{
1813
    /// Extend the map with all key-value pairs in the iterable.
1814
    ///
1815
    /// This is equivalent to calling [`insert`][IndexMap::insert] for each of
1816
    /// them in order, which means that for keys that already existed
1817
    /// in the map, their value is updated but it keeps the existing order.
1818
    ///
1819
    /// New keys are inserted in the order they appear in the sequence. If
1820
    /// equivalents of a key occur more than once, the last corresponding value
1821
    /// prevails.
1822
    fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
1823
        // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
1824
        // Keys may be already present or show multiple times in the iterator.
1825
        // Reserve the entire hint lower bound if the map is empty.
1826
        // Otherwise reserve half the hint (rounded up), so the map
1827
        // will only resize twice in the worst case.
1828
        let iter = iterable.into_iter();
1829
        let (lower_len, _) = iter.size_hint();
1830
        let reserve = if self.is_empty() {
1831
            lower_len
1832
        } else {
1833
            lower_len.div_ceil(2)
1834
        };
1835
        self.reserve(reserve);
1836
        iter.for_each(move |(k, v)| {
1837
            self.insert(k, v);
1838
        });
1839
    }
1840
}
1841
1842
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
1843
where
1844
    K: Hash + Eq + Copy,
1845
    V: Copy,
1846
    S: BuildHasher,
1847
{
1848
    /// Extend the map with all key-value pairs in the iterable.
1849
    ///
1850
    /// See the first extend method for more details.
1851
    fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
1852
        self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
1853
    }
1854
}
1855
1856
impl<K, V, S> Default for IndexMap<K, V, S>
1857
where
1858
    S: Default,
1859
{
1860
    /// Return an empty [`IndexMap`]
1861
0
    fn default() -> Self {
1862
0
        Self::with_capacity_and_hasher(0, S::default())
1863
0
    }
Unexecuted instantiation: <indexmap::map::IndexMap<alloc::vec::Vec<u8>, (), core::hash::BuildHasherDefault<fnv::FnvHasher>> as core::default::Default>::default
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::loc::LocationList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>> as core::default::Default>::default
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::line::LineString, (), core::hash::BuildHasherDefault<fnv::FnvHasher>> as core::default::Default>::default
Unexecuted instantiation: <indexmap::map::IndexMap<gimli::write::range::RangeList, (), core::hash::BuildHasherDefault<fnv::FnvHasher>> as core::default::Default>::default
Unexecuted instantiation: <indexmap::map::IndexMap<(gimli::write::line::LineString, gimli::write::line::DirectoryId), gimli::write::line::FileInfo, core::hash::BuildHasherDefault<fnv::FnvHasher>> as core::default::Default>::default
1864
}
1865
1866
impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
1867
where
1868
    K: Hash + Eq,
1869
    V1: PartialEq<V2>,
1870
    S1: BuildHasher,
1871
    S2: BuildHasher,
1872
{
1873
    fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
1874
        if self.len() != other.len() {
1875
            return false;
1876
        }
1877
1878
        self.iter()
1879
            .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
1880
    }
1881
}
1882
1883
impl<K, V, S> Eq for IndexMap<K, V, S>
1884
where
1885
    K: Eq + Hash,
1886
    V: Eq,
1887
    S: BuildHasher,
1888
{
1889
}