Coverage Report

Created: 2024-09-16 06:11

/src/git/linear-assignment.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Based on: Jonker, R., & Volgenant, A. (1987). <i>A shortest augmenting path
3
 * algorithm for dense and sparse linear assignment problems</i>. Computing,
4
 * 38(4), 325-340.
5
 */
6
#include "git-compat-util.h"
7
#include "linear-assignment.h"
8
9
0
#define COST(column, row) cost[(column) + column_count * (row)]
10
11
/*
12
 * The parameter `cost` is the cost matrix: the cost to assign column j to row
13
 * i is `cost[j + column_count * i].
14
 */
15
void compute_assignment(int column_count, int row_count, int *cost,
16
      int *column2row, int *row2column)
17
0
{
18
0
  int *v, *d;
19
0
  int *free_row, free_count = 0, saved_free_count, *pred, *col;
20
0
  int i, j, phase;
21
22
0
  if (column_count < 2) {
23
0
    memset(column2row, 0, sizeof(int) * column_count);
24
0
    memset(row2column, 0, sizeof(int) * row_count);
25
0
    return;
26
0
  }
27
28
0
  memset(column2row, -1, sizeof(int) * column_count);
29
0
  memset(row2column, -1, sizeof(int) * row_count);
30
0
  ALLOC_ARRAY(v, column_count);
31
32
  /* column reduction */
33
0
  for (j = column_count - 1; j >= 0; j--) {
34
0
    int i1 = 0;
35
36
0
    for (i = 1; i < row_count; i++)
37
0
      if (COST(j, i1) > COST(j, i))
38
0
        i1 = i;
39
0
    v[j] = COST(j, i1);
40
0
    if (row2column[i1] == -1) {
41
      /* row i1 unassigned */
42
0
      row2column[i1] = j;
43
0
      column2row[j] = i1;
44
0
    } else {
45
0
      if (row2column[i1] >= 0)
46
0
        row2column[i1] = -2 - row2column[i1];
47
0
      column2row[j] = -1;
48
0
    }
49
0
  }
50
51
  /* reduction transfer */
52
0
  ALLOC_ARRAY(free_row, row_count);
53
0
  for (i = 0; i < row_count; i++) {
54
0
    int j1 = row2column[i];
55
0
    if (j1 == -1)
56
0
      free_row[free_count++] = i;
57
0
    else if (j1 < -1)
58
0
      row2column[i] = -2 - j1;
59
0
    else {
60
0
      int min = COST(!j1, i) - v[!j1];
61
0
      for (j = 1; j < column_count; j++)
62
0
        if (j != j1 && min > COST(j, i) - v[j])
63
0
          min = COST(j, i) - v[j];
64
0
      v[j1] -= min;
65
0
    }
66
0
  }
67
68
0
  if (free_count ==
69
0
      (column_count < row_count ? row_count - column_count : 0)) {
70
0
    free(v);
71
0
    free(free_row);
72
0
    return;
73
0
  }
74
75
  /* augmenting row reduction */
76
0
  for (phase = 0; phase < 2; phase++) {
77
0
    int k = 0;
78
79
0
    saved_free_count = free_count;
80
0
    free_count = 0;
81
0
    while (k < saved_free_count) {
82
0
      int u1, u2;
83
0
      int j1 = 0, j2, i0;
84
85
0
      i = free_row[k++];
86
0
      u1 = COST(j1, i) - v[j1];
87
0
      j2 = -1;
88
0
      u2 = INT_MAX;
89
0
      for (j = 1; j < column_count; j++) {
90
0
        int c = COST(j, i) - v[j];
91
0
        if (u2 > c) {
92
0
          if (u1 < c) {
93
0
            u2 = c;
94
0
            j2 = j;
95
0
          } else {
96
0
            u2 = u1;
97
0
            u1 = c;
98
0
            j2 = j1;
99
0
            j1 = j;
100
0
          }
101
0
        }
102
0
      }
103
0
      if (j2 < 0) {
104
0
        j2 = j1;
105
0
        u2 = u1;
106
0
      }
107
108
0
      i0 = column2row[j1];
109
0
      if (u1 < u2)
110
0
        v[j1] -= u2 - u1;
111
0
      else if (i0 >= 0) {
112
0
        j1 = j2;
113
0
        i0 = column2row[j1];
114
0
      }
115
116
0
      if (i0 >= 0) {
117
0
        if (u1 < u2)
118
0
          free_row[--k] = i0;
119
0
        else
120
0
          free_row[free_count++] = i0;
121
0
      }
122
0
      row2column[i] = j1;
123
0
      column2row[j1] = i;
124
0
    }
125
0
  }
126
127
  /* augmentation */
128
0
  saved_free_count = free_count;
129
0
  ALLOC_ARRAY(d, column_count);
130
0
  ALLOC_ARRAY(pred, column_count);
131
0
  ALLOC_ARRAY(col, column_count);
132
0
  for (free_count = 0; free_count < saved_free_count; free_count++) {
133
0
    int i1 = free_row[free_count], low = 0, up = 0, last, k;
134
0
    int min, c, u1;
135
136
0
    for (j = 0; j < column_count; j++) {
137
0
      d[j] = COST(j, i1) - v[j];
138
0
      pred[j] = i1;
139
0
      col[j] = j;
140
0
    }
141
142
0
    j = -1;
143
0
    do {
144
0
      last = low;
145
0
      min = d[col[up++]];
146
0
      for (k = up; k < column_count; k++) {
147
0
        j = col[k];
148
0
        c = d[j];
149
0
        if (c <= min) {
150
0
          if (c < min) {
151
0
            up = low;
152
0
            min = c;
153
0
          }
154
0
          col[k] = col[up];
155
0
          col[up++] = j;
156
0
        }
157
0
      }
158
0
      for (k = low; k < up; k++)
159
0
        if (column2row[col[k]] == -1)
160
0
          goto update;
161
162
      /* scan a row */
163
0
      do {
164
0
        int j1 = col[low++];
165
166
0
        i = column2row[j1];
167
0
        u1 = COST(j1, i) - v[j1] - min;
168
0
        for (k = up; k < column_count; k++) {
169
0
          j = col[k];
170
0
          c = COST(j, i) - v[j] - u1;
171
0
          if (c < d[j]) {
172
0
            d[j] = c;
173
0
            pred[j] = i;
174
0
            if (c == min) {
175
0
              if (column2row[j] == -1)
176
0
                goto update;
177
0
              col[k] = col[up];
178
0
              col[up++] = j;
179
0
            }
180
0
          }
181
0
        }
182
0
      } while (low != up);
183
0
    } while (low == up);
184
185
0
update:
186
    /* updating of the column pieces */
187
0
    for (k = 0; k < last; k++) {
188
0
      int j1 = col[k];
189
0
      v[j1] += d[j1] - min;
190
0
    }
191
192
    /* augmentation */
193
0
    do {
194
0
      if (j < 0)
195
0
        BUG("negative j: %d", j);
196
0
      i = pred[j];
197
0
      column2row[j] = i;
198
0
      SWAP(j, row2column[i]);
199
0
    } while (i1 != i);
200
0
  }
201
202
0
  free(col);
203
0
  free(pred);
204
0
  free(d);
205
0
  free(v);
206
0
  free(free_row);
207
0
}