/src/git/refs/reftable-backend.c
Line | Count | Source (jump to first uncovered line) |
1 | | #define USE_THE_REPOSITORY_VARIABLE |
2 | | |
3 | | #include "../git-compat-util.h" |
4 | | #include "../abspath.h" |
5 | | #include "../chdir-notify.h" |
6 | | #include "../config.h" |
7 | | #include "../dir.h" |
8 | | #include "../environment.h" |
9 | | #include "../gettext.h" |
10 | | #include "../hash.h" |
11 | | #include "../hex.h" |
12 | | #include "../iterator.h" |
13 | | #include "../ident.h" |
14 | | #include "../lockfile.h" |
15 | | #include "../object.h" |
16 | | #include "../path.h" |
17 | | #include "../refs.h" |
18 | | #include "../reftable/reftable-stack.h" |
19 | | #include "../reftable/reftable-record.h" |
20 | | #include "../reftable/reftable-error.h" |
21 | | #include "../reftable/reftable-iterator.h" |
22 | | #include "../setup.h" |
23 | | #include "../strmap.h" |
24 | | #include "parse.h" |
25 | | #include "refs-internal.h" |
26 | | |
27 | | /* |
28 | | * Used as a flag in ref_update::flags when the ref_update was via an |
29 | | * update to HEAD. |
30 | | */ |
31 | 0 | #define REF_UPDATE_VIA_HEAD (1 << 8) |
32 | | |
33 | | struct reftable_ref_store { |
34 | | struct ref_store base; |
35 | | |
36 | | /* |
37 | | * The main stack refers to the common dir and thus contains common |
38 | | * refs as well as refs of the main repository. |
39 | | */ |
40 | | struct reftable_stack *main_stack; |
41 | | /* |
42 | | * The worktree stack refers to the gitdir in case the refdb is opened |
43 | | * via a worktree. It thus contains the per-worktree refs. |
44 | | */ |
45 | | struct reftable_stack *worktree_stack; |
46 | | /* |
47 | | * Map of worktree stacks by their respective worktree names. The map |
48 | | * is populated lazily when we try to resolve `worktrees/$worktree` refs. |
49 | | */ |
50 | | struct strmap worktree_stacks; |
51 | | struct reftable_write_options write_options; |
52 | | |
53 | | unsigned int store_flags; |
54 | | int err; |
55 | | }; |
56 | | |
57 | | /* |
58 | | * Downcast ref_store to reftable_ref_store. Die if ref_store is not a |
59 | | * reftable_ref_store. required_flags is compared with ref_store's store_flags |
60 | | * to ensure the ref_store has all required capabilities. "caller" is used in |
61 | | * any necessary error messages. |
62 | | */ |
63 | | static struct reftable_ref_store *reftable_be_downcast(struct ref_store *ref_store, |
64 | | unsigned int required_flags, |
65 | | const char *caller) |
66 | 0 | { |
67 | 0 | struct reftable_ref_store *refs; |
68 | |
|
69 | 0 | if (ref_store->be != &refs_be_reftable) |
70 | 0 | BUG("ref_store is type \"%s\" not \"reftables\" in %s", |
71 | 0 | ref_store->be->name, caller); |
72 | | |
73 | 0 | refs = (struct reftable_ref_store *)ref_store; |
74 | |
|
75 | 0 | if ((refs->store_flags & required_flags) != required_flags) |
76 | 0 | BUG("operation %s requires abilities 0x%x, but only have 0x%x", |
77 | 0 | caller, required_flags, refs->store_flags); |
78 | | |
79 | 0 | return refs; |
80 | 0 | } |
81 | | |
82 | | /* |
83 | | * Some refs are global to the repository (refs/heads/{*}), while others are |
84 | | * local to the worktree (eg. HEAD, refs/bisect/{*}). We solve this by having |
85 | | * multiple separate databases (ie. multiple reftable/ directories), one for |
86 | | * the shared refs, one for the current worktree refs, and one for each |
87 | | * additional worktree. For reading, we merge the view of both the shared and |
88 | | * the current worktree's refs, when necessary. |
89 | | * |
90 | | * This function also optionally assigns the rewritten reference name that is |
91 | | * local to the stack. This translation is required when using worktree refs |
92 | | * like `worktrees/$worktree/refs/heads/foo` as worktree stacks will store |
93 | | * those references in their normalized form. |
94 | | */ |
95 | | static struct reftable_stack *stack_for(struct reftable_ref_store *store, |
96 | | const char *refname, |
97 | | const char **rewritten_ref) |
98 | 0 | { |
99 | 0 | const char *wtname; |
100 | 0 | int wtname_len; |
101 | |
|
102 | 0 | if (!refname) |
103 | 0 | return store->main_stack; |
104 | | |
105 | 0 | switch (parse_worktree_ref(refname, &wtname, &wtname_len, rewritten_ref)) { |
106 | 0 | case REF_WORKTREE_OTHER: { |
107 | 0 | static struct strbuf wtname_buf = STRBUF_INIT; |
108 | 0 | struct strbuf wt_dir = STRBUF_INIT; |
109 | 0 | struct reftable_stack *stack; |
110 | | |
111 | | /* |
112 | | * We're using a static buffer here so that we don't need to |
113 | | * allocate the worktree name whenever we look up a reference. |
114 | | * This could be avoided if the strmap interface knew how to |
115 | | * handle keys with a length. |
116 | | */ |
117 | 0 | strbuf_reset(&wtname_buf); |
118 | 0 | strbuf_add(&wtname_buf, wtname, wtname_len); |
119 | | |
120 | | /* |
121 | | * There is an edge case here: when the worktree references the |
122 | | * current worktree, then we set up the stack once via |
123 | | * `worktree_stacks` and once via `worktree_stack`. This is |
124 | | * wasteful, but in the reading case it shouldn't matter. And |
125 | | * in the writing case we would notice that the stack is locked |
126 | | * already and error out when trying to write a reference via |
127 | | * both stacks. |
128 | | */ |
129 | 0 | stack = strmap_get(&store->worktree_stacks, wtname_buf.buf); |
130 | 0 | if (!stack) { |
131 | 0 | strbuf_addf(&wt_dir, "%s/worktrees/%s/reftable", |
132 | 0 | store->base.repo->commondir, wtname_buf.buf); |
133 | |
|
134 | 0 | store->err = reftable_new_stack(&stack, wt_dir.buf, |
135 | 0 | &store->write_options); |
136 | 0 | assert(store->err != REFTABLE_API_ERROR); |
137 | 0 | strmap_put(&store->worktree_stacks, wtname_buf.buf, stack); |
138 | 0 | } |
139 | | |
140 | 0 | strbuf_release(&wt_dir); |
141 | 0 | return stack; |
142 | 0 | } |
143 | 0 | case REF_WORKTREE_CURRENT: |
144 | | /* |
145 | | * If there is no worktree stack then we're currently in the |
146 | | * main worktree. We thus return the main stack in that case. |
147 | | */ |
148 | 0 | if (!store->worktree_stack) |
149 | 0 | return store->main_stack; |
150 | 0 | return store->worktree_stack; |
151 | 0 | case REF_WORKTREE_MAIN: |
152 | 0 | case REF_WORKTREE_SHARED: |
153 | 0 | return store->main_stack; |
154 | 0 | default: |
155 | 0 | BUG("unhandled worktree reference type"); |
156 | 0 | } |
157 | 0 | } |
158 | | |
159 | | static int should_write_log(struct ref_store *refs, const char *refname) |
160 | 0 | { |
161 | 0 | if (log_all_ref_updates == LOG_REFS_UNSET) |
162 | 0 | log_all_ref_updates = is_bare_repository() ? LOG_REFS_NONE : LOG_REFS_NORMAL; |
163 | |
|
164 | 0 | switch (log_all_ref_updates) { |
165 | 0 | case LOG_REFS_NONE: |
166 | 0 | return refs_reflog_exists(refs, refname); |
167 | 0 | case LOG_REFS_ALWAYS: |
168 | 0 | return 1; |
169 | 0 | case LOG_REFS_NORMAL: |
170 | 0 | if (should_autocreate_reflog(refname)) |
171 | 0 | return 1; |
172 | 0 | return refs_reflog_exists(refs, refname); |
173 | 0 | default: |
174 | 0 | BUG("unhandled core.logAllRefUpdates value %d", log_all_ref_updates); |
175 | 0 | } |
176 | 0 | } |
177 | | |
178 | | static void fill_reftable_log_record(struct reftable_log_record *log, const struct ident_split *split) |
179 | 0 | { |
180 | 0 | const char *tz_begin; |
181 | 0 | int sign = 1; |
182 | |
|
183 | 0 | reftable_log_record_release(log); |
184 | 0 | log->value_type = REFTABLE_LOG_UPDATE; |
185 | 0 | log->value.update.name = |
186 | 0 | xstrndup(split->name_begin, split->name_end - split->name_begin); |
187 | 0 | log->value.update.email = |
188 | 0 | xstrndup(split->mail_begin, split->mail_end - split->mail_begin); |
189 | 0 | log->value.update.time = atol(split->date_begin); |
190 | |
|
191 | 0 | tz_begin = split->tz_begin; |
192 | 0 | if (*tz_begin == '-') { |
193 | 0 | sign = -1; |
194 | 0 | tz_begin++; |
195 | 0 | } |
196 | 0 | if (*tz_begin == '+') { |
197 | 0 | sign = 1; |
198 | 0 | tz_begin++; |
199 | 0 | } |
200 | |
|
201 | 0 | log->value.update.tz_offset = sign * atoi(tz_begin); |
202 | 0 | } |
203 | | |
204 | | static int read_ref_without_reload(struct reftable_ref_store *refs, |
205 | | struct reftable_stack *stack, |
206 | | const char *refname, |
207 | | struct object_id *oid, |
208 | | struct strbuf *referent, |
209 | | unsigned int *type) |
210 | 0 | { |
211 | 0 | struct reftable_ref_record ref = {0}; |
212 | 0 | int ret; |
213 | |
|
214 | 0 | ret = reftable_stack_read_ref(stack, refname, &ref); |
215 | 0 | if (ret) |
216 | 0 | goto done; |
217 | | |
218 | 0 | if (ref.value_type == REFTABLE_REF_SYMREF) { |
219 | 0 | strbuf_reset(referent); |
220 | 0 | strbuf_addstr(referent, ref.value.symref); |
221 | 0 | *type |= REF_ISSYMREF; |
222 | 0 | } else if (reftable_ref_record_val1(&ref)) { |
223 | 0 | oidread(oid, reftable_ref_record_val1(&ref), |
224 | 0 | refs->base.repo->hash_algo); |
225 | 0 | } else { |
226 | | /* We got a tombstone, which should not happen. */ |
227 | 0 | BUG("unhandled reference value type %d", ref.value_type); |
228 | 0 | } |
229 | | |
230 | 0 | done: |
231 | 0 | assert(ret != REFTABLE_API_ERROR); |
232 | 0 | reftable_ref_record_release(&ref); |
233 | 0 | return ret; |
234 | 0 | } |
235 | | |
236 | | static int reftable_be_config(const char *var, const char *value, |
237 | | const struct config_context *ctx, |
238 | | void *_opts) |
239 | 0 | { |
240 | 0 | struct reftable_write_options *opts = _opts; |
241 | |
|
242 | 0 | if (!strcmp(var, "reftable.blocksize")) { |
243 | 0 | unsigned long block_size = git_config_ulong(var, value, ctx->kvi); |
244 | 0 | if (block_size > 16777215) |
245 | 0 | die("reftable block size cannot exceed 16MB"); |
246 | 0 | opts->block_size = block_size; |
247 | 0 | } else if (!strcmp(var, "reftable.restartinterval")) { |
248 | 0 | unsigned long restart_interval = git_config_ulong(var, value, ctx->kvi); |
249 | 0 | if (restart_interval > UINT16_MAX) |
250 | 0 | die("reftable block size cannot exceed %u", (unsigned)UINT16_MAX); |
251 | 0 | opts->restart_interval = restart_interval; |
252 | 0 | } else if (!strcmp(var, "reftable.indexobjects")) { |
253 | 0 | opts->skip_index_objects = !git_config_bool(var, value); |
254 | 0 | } else if (!strcmp(var, "reftable.geometricfactor")) { |
255 | 0 | unsigned long factor = git_config_ulong(var, value, ctx->kvi); |
256 | 0 | if (factor > UINT8_MAX) |
257 | 0 | die("reftable geometric factor cannot exceed %u", (unsigned)UINT8_MAX); |
258 | 0 | opts->auto_compaction_factor = factor; |
259 | 0 | } |
260 | | |
261 | 0 | return 0; |
262 | 0 | } |
263 | | |
264 | | static struct ref_store *reftable_be_init(struct repository *repo, |
265 | | const char *gitdir, |
266 | | unsigned int store_flags) |
267 | 0 | { |
268 | 0 | struct reftable_ref_store *refs = xcalloc(1, sizeof(*refs)); |
269 | 0 | struct strbuf path = STRBUF_INIT; |
270 | 0 | int is_worktree; |
271 | 0 | mode_t mask; |
272 | |
|
273 | 0 | mask = umask(0); |
274 | 0 | umask(mask); |
275 | |
|
276 | 0 | base_ref_store_init(&refs->base, repo, gitdir, &refs_be_reftable); |
277 | 0 | strmap_init(&refs->worktree_stacks); |
278 | 0 | refs->store_flags = store_flags; |
279 | |
|
280 | 0 | refs->write_options.hash_id = repo->hash_algo->format_id; |
281 | 0 | refs->write_options.default_permissions = calc_shared_perm(0666 & ~mask); |
282 | 0 | refs->write_options.disable_auto_compact = |
283 | 0 | !git_env_bool("GIT_TEST_REFTABLE_AUTOCOMPACTION", 1); |
284 | |
|
285 | 0 | git_config(reftable_be_config, &refs->write_options); |
286 | | |
287 | | /* |
288 | | * It is somewhat unfortunate that we have to mirror the default block |
289 | | * size of the reftable library here. But given that the write options |
290 | | * wouldn't be updated by the library here, and given that we require |
291 | | * the proper block size to trim reflog message so that they fit, we |
292 | | * must set up a proper value here. |
293 | | */ |
294 | 0 | if (!refs->write_options.block_size) |
295 | 0 | refs->write_options.block_size = 4096; |
296 | | |
297 | | /* |
298 | | * Set up the main reftable stack that is hosted in GIT_COMMON_DIR. |
299 | | * This stack contains both the shared and the main worktree refs. |
300 | | * |
301 | | * Note that we don't try to resolve the path in case we have a |
302 | | * worktree because `get_common_dir_noenv()` already does it for us. |
303 | | */ |
304 | 0 | is_worktree = get_common_dir_noenv(&path, gitdir); |
305 | 0 | if (!is_worktree) { |
306 | 0 | strbuf_reset(&path); |
307 | 0 | strbuf_realpath(&path, gitdir, 0); |
308 | 0 | } |
309 | 0 | strbuf_addstr(&path, "/reftable"); |
310 | 0 | refs->err = reftable_new_stack(&refs->main_stack, path.buf, |
311 | 0 | &refs->write_options); |
312 | 0 | if (refs->err) |
313 | 0 | goto done; |
314 | | |
315 | | /* |
316 | | * If we're in a worktree we also need to set up the worktree reftable |
317 | | * stack that is contained in the per-worktree GIT_DIR. |
318 | | * |
319 | | * Ideally, we would also add the stack to our worktree stack map. But |
320 | | * we have no way to figure out the worktree name here and thus can't |
321 | | * do it efficiently. |
322 | | */ |
323 | 0 | if (is_worktree) { |
324 | 0 | strbuf_reset(&path); |
325 | 0 | strbuf_addf(&path, "%s/reftable", gitdir); |
326 | |
|
327 | 0 | refs->err = reftable_new_stack(&refs->worktree_stack, path.buf, |
328 | 0 | &refs->write_options); |
329 | 0 | if (refs->err) |
330 | 0 | goto done; |
331 | 0 | } |
332 | | |
333 | 0 | chdir_notify_reparent("reftables-backend $GIT_DIR", &refs->base.gitdir); |
334 | |
|
335 | 0 | done: |
336 | 0 | assert(refs->err != REFTABLE_API_ERROR); |
337 | 0 | strbuf_release(&path); |
338 | 0 | return &refs->base; |
339 | 0 | } |
340 | | |
341 | | static void reftable_be_release(struct ref_store *ref_store) |
342 | 0 | { |
343 | 0 | struct reftable_ref_store *refs = reftable_be_downcast(ref_store, 0, "release"); |
344 | 0 | struct strmap_entry *entry; |
345 | 0 | struct hashmap_iter iter; |
346 | |
|
347 | 0 | if (refs->main_stack) { |
348 | 0 | reftable_stack_destroy(refs->main_stack); |
349 | 0 | refs->main_stack = NULL; |
350 | 0 | } |
351 | |
|
352 | 0 | if (refs->worktree_stack) { |
353 | 0 | reftable_stack_destroy(refs->worktree_stack); |
354 | 0 | refs->worktree_stack = NULL; |
355 | 0 | } |
356 | |
|
357 | 0 | strmap_for_each_entry(&refs->worktree_stacks, &iter, entry) |
358 | 0 | reftable_stack_destroy(entry->value); |
359 | 0 | strmap_clear(&refs->worktree_stacks, 0); |
360 | 0 | } |
361 | | |
362 | | static int reftable_be_create_on_disk(struct ref_store *ref_store, |
363 | | int flags UNUSED, |
364 | | struct strbuf *err UNUSED) |
365 | 0 | { |
366 | 0 | struct reftable_ref_store *refs = |
367 | 0 | reftable_be_downcast(ref_store, REF_STORE_WRITE, "create"); |
368 | 0 | struct strbuf sb = STRBUF_INIT; |
369 | |
|
370 | 0 | strbuf_addf(&sb, "%s/reftable", refs->base.gitdir); |
371 | 0 | safe_create_dir(sb.buf, 1); |
372 | 0 | strbuf_reset(&sb); |
373 | |
|
374 | 0 | strbuf_addf(&sb, "%s/HEAD", refs->base.gitdir); |
375 | 0 | write_file(sb.buf, "ref: refs/heads/.invalid"); |
376 | 0 | adjust_shared_perm(sb.buf); |
377 | 0 | strbuf_reset(&sb); |
378 | |
|
379 | 0 | strbuf_addf(&sb, "%s/refs", refs->base.gitdir); |
380 | 0 | safe_create_dir(sb.buf, 1); |
381 | 0 | strbuf_reset(&sb); |
382 | |
|
383 | 0 | strbuf_addf(&sb, "%s/refs/heads", refs->base.gitdir); |
384 | 0 | write_file(sb.buf, "this repository uses the reftable format"); |
385 | 0 | adjust_shared_perm(sb.buf); |
386 | |
|
387 | 0 | strbuf_release(&sb); |
388 | 0 | return 0; |
389 | 0 | } |
390 | | |
391 | | static int reftable_be_remove_on_disk(struct ref_store *ref_store, |
392 | | struct strbuf *err) |
393 | 0 | { |
394 | 0 | struct reftable_ref_store *refs = |
395 | 0 | reftable_be_downcast(ref_store, REF_STORE_WRITE, "remove"); |
396 | 0 | struct strbuf sb = STRBUF_INIT; |
397 | 0 | int ret = 0; |
398 | | |
399 | | /* |
400 | | * Release the ref store such that all stacks are closed. This is |
401 | | * required so that the "tables.list" file is not open anymore, which |
402 | | * would otherwise make it impossible to remove the file on Windows. |
403 | | */ |
404 | 0 | reftable_be_release(ref_store); |
405 | |
|
406 | 0 | strbuf_addf(&sb, "%s/reftable", refs->base.gitdir); |
407 | 0 | if (remove_dir_recursively(&sb, 0) < 0) { |
408 | 0 | strbuf_addf(err, "could not delete reftables: %s", |
409 | 0 | strerror(errno)); |
410 | 0 | ret = -1; |
411 | 0 | } |
412 | 0 | strbuf_reset(&sb); |
413 | |
|
414 | 0 | strbuf_addf(&sb, "%s/HEAD", refs->base.gitdir); |
415 | 0 | if (unlink(sb.buf) < 0) { |
416 | 0 | strbuf_addf(err, "could not delete stub HEAD: %s", |
417 | 0 | strerror(errno)); |
418 | 0 | ret = -1; |
419 | 0 | } |
420 | 0 | strbuf_reset(&sb); |
421 | |
|
422 | 0 | strbuf_addf(&sb, "%s/refs/heads", refs->base.gitdir); |
423 | 0 | if (unlink(sb.buf) < 0) { |
424 | 0 | strbuf_addf(err, "could not delete stub heads: %s", |
425 | 0 | strerror(errno)); |
426 | 0 | ret = -1; |
427 | 0 | } |
428 | 0 | strbuf_reset(&sb); |
429 | |
|
430 | 0 | strbuf_addf(&sb, "%s/refs", refs->base.gitdir); |
431 | 0 | if (rmdir(sb.buf) < 0) { |
432 | 0 | strbuf_addf(err, "could not delete refs directory: %s", |
433 | 0 | strerror(errno)); |
434 | 0 | ret = -1; |
435 | 0 | } |
436 | |
|
437 | 0 | strbuf_release(&sb); |
438 | 0 | return ret; |
439 | 0 | } |
440 | | |
441 | | struct reftable_ref_iterator { |
442 | | struct ref_iterator base; |
443 | | struct reftable_ref_store *refs; |
444 | | struct reftable_iterator iter; |
445 | | struct reftable_ref_record ref; |
446 | | struct object_id oid; |
447 | | |
448 | | const char *prefix; |
449 | | size_t prefix_len; |
450 | | unsigned int flags; |
451 | | int err; |
452 | | }; |
453 | | |
454 | | static int reftable_ref_iterator_advance(struct ref_iterator *ref_iterator) |
455 | 0 | { |
456 | 0 | struct reftable_ref_iterator *iter = |
457 | 0 | (struct reftable_ref_iterator *)ref_iterator; |
458 | 0 | struct reftable_ref_store *refs = iter->refs; |
459 | 0 | const char *referent = NULL; |
460 | |
|
461 | 0 | while (!iter->err) { |
462 | 0 | int flags = 0; |
463 | |
|
464 | 0 | iter->err = reftable_iterator_next_ref(&iter->iter, &iter->ref); |
465 | 0 | if (iter->err) |
466 | 0 | break; |
467 | | |
468 | | /* |
469 | | * The files backend only lists references contained in "refs/" unless |
470 | | * the root refs are to be included. We emulate the same behaviour here. |
471 | | */ |
472 | 0 | if (!starts_with(iter->ref.refname, "refs/") && |
473 | 0 | !(iter->flags & DO_FOR_EACH_INCLUDE_ROOT_REFS && |
474 | 0 | is_root_ref(iter->ref.refname))) { |
475 | 0 | continue; |
476 | 0 | } |
477 | | |
478 | 0 | if (iter->prefix_len && |
479 | 0 | strncmp(iter->prefix, iter->ref.refname, iter->prefix_len)) { |
480 | 0 | iter->err = 1; |
481 | 0 | break; |
482 | 0 | } |
483 | | |
484 | 0 | if (iter->flags & DO_FOR_EACH_PER_WORKTREE_ONLY && |
485 | 0 | parse_worktree_ref(iter->ref.refname, NULL, NULL, NULL) != |
486 | 0 | REF_WORKTREE_CURRENT) |
487 | 0 | continue; |
488 | | |
489 | 0 | switch (iter->ref.value_type) { |
490 | 0 | case REFTABLE_REF_VAL1: |
491 | 0 | oidread(&iter->oid, iter->ref.value.val1, |
492 | 0 | refs->base.repo->hash_algo); |
493 | 0 | break; |
494 | 0 | case REFTABLE_REF_VAL2: |
495 | 0 | oidread(&iter->oid, iter->ref.value.val2.value, |
496 | 0 | refs->base.repo->hash_algo); |
497 | 0 | break; |
498 | 0 | case REFTABLE_REF_SYMREF: |
499 | 0 | referent = refs_resolve_ref_unsafe(&iter->refs->base, |
500 | 0 | iter->ref.refname, |
501 | 0 | RESOLVE_REF_READING, |
502 | 0 | &iter->oid, &flags); |
503 | 0 | if (!referent) |
504 | 0 | oidclr(&iter->oid, refs->base.repo->hash_algo); |
505 | 0 | break; |
506 | 0 | default: |
507 | 0 | BUG("unhandled reference value type %d", iter->ref.value_type); |
508 | 0 | } |
509 | | |
510 | 0 | if (is_null_oid(&iter->oid)) |
511 | 0 | flags |= REF_ISBROKEN; |
512 | |
|
513 | 0 | if (check_refname_format(iter->ref.refname, REFNAME_ALLOW_ONELEVEL)) { |
514 | 0 | if (!refname_is_safe(iter->ref.refname)) |
515 | 0 | die(_("refname is dangerous: %s"), iter->ref.refname); |
516 | 0 | oidclr(&iter->oid, refs->base.repo->hash_algo); |
517 | 0 | flags |= REF_BAD_NAME | REF_ISBROKEN; |
518 | 0 | } |
519 | | |
520 | 0 | if (iter->flags & DO_FOR_EACH_OMIT_DANGLING_SYMREFS && |
521 | 0 | flags & REF_ISSYMREF && |
522 | 0 | flags & REF_ISBROKEN) |
523 | 0 | continue; |
524 | | |
525 | 0 | if (!(iter->flags & DO_FOR_EACH_INCLUDE_BROKEN) && |
526 | 0 | !ref_resolves_to_object(iter->ref.refname, refs->base.repo, |
527 | 0 | &iter->oid, flags)) |
528 | 0 | continue; |
529 | | |
530 | 0 | iter->base.refname = iter->ref.refname; |
531 | 0 | iter->base.referent = referent; |
532 | 0 | iter->base.oid = &iter->oid; |
533 | 0 | iter->base.flags = flags; |
534 | |
|
535 | 0 | break; |
536 | 0 | } |
537 | | |
538 | 0 | if (iter->err > 0) { |
539 | 0 | if (ref_iterator_abort(ref_iterator) != ITER_DONE) |
540 | 0 | return ITER_ERROR; |
541 | 0 | return ITER_DONE; |
542 | 0 | } |
543 | | |
544 | 0 | if (iter->err < 0) { |
545 | 0 | ref_iterator_abort(ref_iterator); |
546 | 0 | return ITER_ERROR; |
547 | 0 | } |
548 | | |
549 | 0 | return ITER_OK; |
550 | 0 | } |
551 | | |
552 | | static int reftable_ref_iterator_peel(struct ref_iterator *ref_iterator, |
553 | | struct object_id *peeled) |
554 | 0 | { |
555 | 0 | struct reftable_ref_iterator *iter = |
556 | 0 | (struct reftable_ref_iterator *)ref_iterator; |
557 | |
|
558 | 0 | if (iter->ref.value_type == REFTABLE_REF_VAL2) { |
559 | 0 | oidread(peeled, iter->ref.value.val2.target_value, |
560 | 0 | iter->refs->base.repo->hash_algo); |
561 | 0 | return 0; |
562 | 0 | } |
563 | | |
564 | 0 | return -1; |
565 | 0 | } |
566 | | |
567 | | static int reftable_ref_iterator_abort(struct ref_iterator *ref_iterator) |
568 | 0 | { |
569 | 0 | struct reftable_ref_iterator *iter = |
570 | 0 | (struct reftable_ref_iterator *)ref_iterator; |
571 | 0 | reftable_ref_record_release(&iter->ref); |
572 | 0 | reftable_iterator_destroy(&iter->iter); |
573 | 0 | free(iter); |
574 | 0 | return ITER_DONE; |
575 | 0 | } |
576 | | |
577 | | static struct ref_iterator_vtable reftable_ref_iterator_vtable = { |
578 | | .advance = reftable_ref_iterator_advance, |
579 | | .peel = reftable_ref_iterator_peel, |
580 | | .abort = reftable_ref_iterator_abort |
581 | | }; |
582 | | |
583 | | static struct reftable_ref_iterator *ref_iterator_for_stack(struct reftable_ref_store *refs, |
584 | | struct reftable_stack *stack, |
585 | | const char *prefix, |
586 | | int flags) |
587 | 0 | { |
588 | 0 | struct reftable_ref_iterator *iter; |
589 | 0 | int ret; |
590 | |
|
591 | 0 | iter = xcalloc(1, sizeof(*iter)); |
592 | 0 | base_ref_iterator_init(&iter->base, &reftable_ref_iterator_vtable); |
593 | 0 | iter->prefix = prefix; |
594 | 0 | iter->prefix_len = prefix ? strlen(prefix) : 0; |
595 | 0 | iter->base.oid = &iter->oid; |
596 | 0 | iter->flags = flags; |
597 | 0 | iter->refs = refs; |
598 | |
|
599 | 0 | ret = refs->err; |
600 | 0 | if (ret) |
601 | 0 | goto done; |
602 | | |
603 | 0 | ret = reftable_stack_reload(stack); |
604 | 0 | if (ret) |
605 | 0 | goto done; |
606 | | |
607 | 0 | reftable_stack_init_ref_iterator(stack, &iter->iter); |
608 | 0 | ret = reftable_iterator_seek_ref(&iter->iter, prefix); |
609 | 0 | if (ret) |
610 | 0 | goto done; |
611 | | |
612 | 0 | done: |
613 | 0 | iter->err = ret; |
614 | 0 | return iter; |
615 | 0 | } |
616 | | |
617 | | static struct ref_iterator *reftable_be_iterator_begin(struct ref_store *ref_store, |
618 | | const char *prefix, |
619 | | const char **exclude_patterns UNUSED, |
620 | | unsigned int flags) |
621 | 0 | { |
622 | 0 | struct reftable_ref_iterator *main_iter, *worktree_iter; |
623 | 0 | struct reftable_ref_store *refs; |
624 | 0 | unsigned int required_flags = REF_STORE_READ; |
625 | |
|
626 | 0 | if (!(flags & DO_FOR_EACH_INCLUDE_BROKEN)) |
627 | 0 | required_flags |= REF_STORE_ODB; |
628 | 0 | refs = reftable_be_downcast(ref_store, required_flags, "ref_iterator_begin"); |
629 | |
|
630 | 0 | main_iter = ref_iterator_for_stack(refs, refs->main_stack, prefix, flags); |
631 | | |
632 | | /* |
633 | | * The worktree stack is only set when we're in an actual worktree |
634 | | * right now. If we aren't, then we return the common reftable |
635 | | * iterator, only. |
636 | | */ |
637 | 0 | if (!refs->worktree_stack) |
638 | 0 | return &main_iter->base; |
639 | | |
640 | | /* |
641 | | * Otherwise we merge both the common and the per-worktree refs into a |
642 | | * single iterator. |
643 | | */ |
644 | 0 | worktree_iter = ref_iterator_for_stack(refs, refs->worktree_stack, prefix, flags); |
645 | 0 | return merge_ref_iterator_begin(&worktree_iter->base, &main_iter->base, |
646 | 0 | ref_iterator_select, NULL); |
647 | 0 | } |
648 | | |
649 | | static int reftable_be_read_raw_ref(struct ref_store *ref_store, |
650 | | const char *refname, |
651 | | struct object_id *oid, |
652 | | struct strbuf *referent, |
653 | | unsigned int *type, |
654 | | int *failure_errno) |
655 | 0 | { |
656 | 0 | struct reftable_ref_store *refs = |
657 | 0 | reftable_be_downcast(ref_store, REF_STORE_READ, "read_raw_ref"); |
658 | 0 | struct reftable_stack *stack = stack_for(refs, refname, &refname); |
659 | 0 | int ret; |
660 | |
|
661 | 0 | if (refs->err < 0) |
662 | 0 | return refs->err; |
663 | | |
664 | 0 | ret = reftable_stack_reload(stack); |
665 | 0 | if (ret) |
666 | 0 | return ret; |
667 | | |
668 | 0 | ret = read_ref_without_reload(refs, stack, refname, oid, referent, type); |
669 | 0 | if (ret < 0) |
670 | 0 | return ret; |
671 | 0 | if (ret > 0) { |
672 | 0 | *failure_errno = ENOENT; |
673 | 0 | return -1; |
674 | 0 | } |
675 | | |
676 | 0 | return 0; |
677 | 0 | } |
678 | | |
679 | | static int reftable_be_read_symbolic_ref(struct ref_store *ref_store, |
680 | | const char *refname, |
681 | | struct strbuf *referent) |
682 | 0 | { |
683 | 0 | struct reftable_ref_store *refs = |
684 | 0 | reftable_be_downcast(ref_store, REF_STORE_READ, "read_symbolic_ref"); |
685 | 0 | struct reftable_stack *stack = stack_for(refs, refname, &refname); |
686 | 0 | struct reftable_ref_record ref = {0}; |
687 | 0 | int ret; |
688 | |
|
689 | 0 | ret = reftable_stack_reload(stack); |
690 | 0 | if (ret) |
691 | 0 | return ret; |
692 | | |
693 | 0 | ret = reftable_stack_read_ref(stack, refname, &ref); |
694 | 0 | if (ret == 0 && ref.value_type == REFTABLE_REF_SYMREF) |
695 | 0 | strbuf_addstr(referent, ref.value.symref); |
696 | 0 | else |
697 | 0 | ret = -1; |
698 | |
|
699 | 0 | reftable_ref_record_release(&ref); |
700 | 0 | return ret; |
701 | 0 | } |
702 | | |
703 | | struct reftable_transaction_update { |
704 | | struct ref_update *update; |
705 | | struct object_id current_oid; |
706 | | }; |
707 | | |
708 | | struct write_transaction_table_arg { |
709 | | struct reftable_ref_store *refs; |
710 | | struct reftable_stack *stack; |
711 | | struct reftable_addition *addition; |
712 | | struct reftable_transaction_update *updates; |
713 | | size_t updates_nr; |
714 | | size_t updates_alloc; |
715 | | size_t updates_expected; |
716 | | }; |
717 | | |
718 | | struct reftable_transaction_data { |
719 | | struct write_transaction_table_arg *args; |
720 | | size_t args_nr, args_alloc; |
721 | | }; |
722 | | |
723 | | static void free_transaction_data(struct reftable_transaction_data *tx_data) |
724 | 0 | { |
725 | 0 | if (!tx_data) |
726 | 0 | return; |
727 | 0 | for (size_t i = 0; i < tx_data->args_nr; i++) { |
728 | 0 | reftable_addition_destroy(tx_data->args[i].addition); |
729 | 0 | free(tx_data->args[i].updates); |
730 | 0 | } |
731 | 0 | free(tx_data->args); |
732 | 0 | free(tx_data); |
733 | 0 | } |
734 | | |
735 | | /* |
736 | | * Prepare transaction update for the given reference update. This will cause |
737 | | * us to lock the corresponding reftable stack for concurrent modification. |
738 | | */ |
739 | | static int prepare_transaction_update(struct write_transaction_table_arg **out, |
740 | | struct reftable_ref_store *refs, |
741 | | struct reftable_transaction_data *tx_data, |
742 | | struct ref_update *update, |
743 | | struct strbuf *err) |
744 | 0 | { |
745 | 0 | struct reftable_stack *stack = stack_for(refs, update->refname, NULL); |
746 | 0 | struct write_transaction_table_arg *arg = NULL; |
747 | 0 | size_t i; |
748 | 0 | int ret; |
749 | | |
750 | | /* |
751 | | * Search for a preexisting stack update. If there is one then we add |
752 | | * the update to it, otherwise we set up a new stack update. |
753 | | */ |
754 | 0 | for (i = 0; !arg && i < tx_data->args_nr; i++) |
755 | 0 | if (tx_data->args[i].stack == stack) |
756 | 0 | arg = &tx_data->args[i]; |
757 | |
|
758 | 0 | if (!arg) { |
759 | 0 | struct reftable_addition *addition; |
760 | |
|
761 | 0 | ret = reftable_stack_reload(stack); |
762 | 0 | if (ret) |
763 | 0 | return ret; |
764 | | |
765 | 0 | ret = reftable_stack_new_addition(&addition, stack); |
766 | 0 | if (ret) { |
767 | 0 | if (ret == REFTABLE_LOCK_ERROR) |
768 | 0 | strbuf_addstr(err, "cannot lock references"); |
769 | 0 | return ret; |
770 | 0 | } |
771 | | |
772 | 0 | ALLOC_GROW(tx_data->args, tx_data->args_nr + 1, |
773 | 0 | tx_data->args_alloc); |
774 | 0 | arg = &tx_data->args[tx_data->args_nr++]; |
775 | 0 | arg->refs = refs; |
776 | 0 | arg->stack = stack; |
777 | 0 | arg->addition = addition; |
778 | 0 | arg->updates = NULL; |
779 | 0 | arg->updates_nr = 0; |
780 | 0 | arg->updates_alloc = 0; |
781 | 0 | arg->updates_expected = 0; |
782 | 0 | } |
783 | | |
784 | 0 | arg->updates_expected++; |
785 | |
|
786 | 0 | if (out) |
787 | 0 | *out = arg; |
788 | |
|
789 | 0 | return 0; |
790 | 0 | } |
791 | | |
792 | | /* |
793 | | * Queue a reference update for the correct stack. We potentially need to |
794 | | * handle multiple stack updates in a single transaction when it spans across |
795 | | * multiple worktrees. |
796 | | */ |
797 | | static int queue_transaction_update(struct reftable_ref_store *refs, |
798 | | struct reftable_transaction_data *tx_data, |
799 | | struct ref_update *update, |
800 | | struct object_id *current_oid, |
801 | | struct strbuf *err) |
802 | 0 | { |
803 | 0 | struct write_transaction_table_arg *arg = NULL; |
804 | 0 | int ret; |
805 | |
|
806 | 0 | if (update->backend_data) |
807 | 0 | BUG("reference update queued more than once"); |
808 | | |
809 | 0 | ret = prepare_transaction_update(&arg, refs, tx_data, update, err); |
810 | 0 | if (ret < 0) |
811 | 0 | return ret; |
812 | | |
813 | 0 | ALLOC_GROW(arg->updates, arg->updates_nr + 1, |
814 | 0 | arg->updates_alloc); |
815 | 0 | arg->updates[arg->updates_nr].update = update; |
816 | 0 | oidcpy(&arg->updates[arg->updates_nr].current_oid, current_oid); |
817 | 0 | update->backend_data = &arg->updates[arg->updates_nr++]; |
818 | |
|
819 | 0 | return 0; |
820 | 0 | } |
821 | | |
822 | | static int reftable_be_transaction_prepare(struct ref_store *ref_store, |
823 | | struct ref_transaction *transaction, |
824 | | struct strbuf *err) |
825 | 0 | { |
826 | 0 | struct reftable_ref_store *refs = |
827 | 0 | reftable_be_downcast(ref_store, REF_STORE_WRITE|REF_STORE_MAIN, "ref_transaction_prepare"); |
828 | 0 | struct strbuf referent = STRBUF_INIT, head_referent = STRBUF_INIT; |
829 | 0 | struct string_list affected_refnames = STRING_LIST_INIT_NODUP; |
830 | 0 | struct reftable_transaction_data *tx_data = NULL; |
831 | 0 | struct object_id head_oid; |
832 | 0 | unsigned int head_type = 0; |
833 | 0 | size_t i; |
834 | 0 | int ret; |
835 | |
|
836 | 0 | ret = refs->err; |
837 | 0 | if (ret < 0) |
838 | 0 | goto done; |
839 | | |
840 | 0 | tx_data = xcalloc(1, sizeof(*tx_data)); |
841 | | |
842 | | /* |
843 | | * Preprocess all updates. For one we check that there are no duplicate |
844 | | * reference updates in this transaction. Second, we lock all stacks |
845 | | * that will be modified during the transaction. |
846 | | */ |
847 | 0 | for (i = 0; i < transaction->nr; i++) { |
848 | 0 | ret = prepare_transaction_update(NULL, refs, tx_data, |
849 | 0 | transaction->updates[i], err); |
850 | 0 | if (ret) |
851 | 0 | goto done; |
852 | | |
853 | 0 | string_list_append(&affected_refnames, |
854 | 0 | transaction->updates[i]->refname); |
855 | 0 | } |
856 | | |
857 | | /* |
858 | | * Now that we have counted updates per stack we can preallocate their |
859 | | * arrays. This avoids having to reallocate many times. |
860 | | */ |
861 | 0 | for (i = 0; i < tx_data->args_nr; i++) { |
862 | 0 | CALLOC_ARRAY(tx_data->args[i].updates, tx_data->args[i].updates_expected); |
863 | 0 | tx_data->args[i].updates_alloc = tx_data->args[i].updates_expected; |
864 | 0 | } |
865 | | |
866 | | /* |
867 | | * Fail if a refname appears more than once in the transaction. |
868 | | * This code is taken from the files backend and is a good candidate to |
869 | | * be moved into the generic layer. |
870 | | */ |
871 | 0 | string_list_sort(&affected_refnames); |
872 | 0 | if (ref_update_reject_duplicates(&affected_refnames, err)) { |
873 | 0 | ret = TRANSACTION_GENERIC_ERROR; |
874 | 0 | goto done; |
875 | 0 | } |
876 | | |
877 | 0 | ret = read_ref_without_reload(refs, stack_for(refs, "HEAD", NULL), "HEAD", |
878 | 0 | &head_oid, &head_referent, &head_type); |
879 | 0 | if (ret < 0) |
880 | 0 | goto done; |
881 | 0 | ret = 0; |
882 | |
|
883 | 0 | for (i = 0; i < transaction->nr; i++) { |
884 | 0 | struct ref_update *u = transaction->updates[i]; |
885 | 0 | struct object_id current_oid = {0}; |
886 | 0 | struct reftable_stack *stack; |
887 | 0 | const char *rewritten_ref; |
888 | |
|
889 | 0 | stack = stack_for(refs, u->refname, &rewritten_ref); |
890 | | |
891 | | /* Verify that the new object ID is valid. */ |
892 | 0 | if ((u->flags & REF_HAVE_NEW) && !is_null_oid(&u->new_oid) && |
893 | 0 | !(u->flags & REF_SKIP_OID_VERIFICATION) && |
894 | 0 | !(u->flags & REF_LOG_ONLY)) { |
895 | 0 | struct object *o = parse_object(refs->base.repo, &u->new_oid); |
896 | 0 | if (!o) { |
897 | 0 | strbuf_addf(err, |
898 | 0 | _("trying to write ref '%s' with nonexistent object %s"), |
899 | 0 | u->refname, oid_to_hex(&u->new_oid)); |
900 | 0 | ret = -1; |
901 | 0 | goto done; |
902 | 0 | } |
903 | | |
904 | 0 | if (o->type != OBJ_COMMIT && is_branch(u->refname)) { |
905 | 0 | strbuf_addf(err, _("trying to write non-commit object %s to branch '%s'"), |
906 | 0 | oid_to_hex(&u->new_oid), u->refname); |
907 | 0 | ret = -1; |
908 | 0 | goto done; |
909 | 0 | } |
910 | 0 | } |
911 | | |
912 | | /* |
913 | | * When we update the reference that HEAD points to we enqueue |
914 | | * a second log-only update for HEAD so that its reflog is |
915 | | * updated accordingly. |
916 | | */ |
917 | 0 | if (head_type == REF_ISSYMREF && |
918 | 0 | !(u->flags & REF_LOG_ONLY) && |
919 | 0 | !(u->flags & REF_UPDATE_VIA_HEAD) && |
920 | 0 | !strcmp(rewritten_ref, head_referent.buf)) { |
921 | 0 | struct ref_update *new_update; |
922 | | |
923 | | /* |
924 | | * First make sure that HEAD is not already in the |
925 | | * transaction. This check is O(lg N) in the transaction |
926 | | * size, but it happens at most once per transaction. |
927 | | */ |
928 | 0 | if (string_list_has_string(&affected_refnames, "HEAD")) { |
929 | | /* An entry already existed */ |
930 | 0 | strbuf_addf(err, |
931 | 0 | _("multiple updates for 'HEAD' (including one " |
932 | 0 | "via its referent '%s') are not allowed"), |
933 | 0 | u->refname); |
934 | 0 | ret = TRANSACTION_NAME_CONFLICT; |
935 | 0 | goto done; |
936 | 0 | } |
937 | | |
938 | 0 | new_update = ref_transaction_add_update( |
939 | 0 | transaction, "HEAD", |
940 | 0 | u->flags | REF_LOG_ONLY | REF_NO_DEREF, |
941 | 0 | &u->new_oid, &u->old_oid, NULL, NULL, u->msg); |
942 | 0 | string_list_insert(&affected_refnames, new_update->refname); |
943 | 0 | } |
944 | | |
945 | 0 | ret = read_ref_without_reload(refs, stack, rewritten_ref, |
946 | 0 | ¤t_oid, &referent, &u->type); |
947 | 0 | if (ret < 0) |
948 | 0 | goto done; |
949 | 0 | if (ret > 0 && !ref_update_expects_existing_old_ref(u)) { |
950 | | /* |
951 | | * The reference does not exist, and we either have no |
952 | | * old object ID or expect the reference to not exist. |
953 | | * We can thus skip below safety checks as well as the |
954 | | * symref splitting. But we do want to verify that |
955 | | * there is no conflicting reference here so that we |
956 | | * can output a proper error message instead of failing |
957 | | * at a later point. |
958 | | */ |
959 | 0 | ret = refs_verify_refname_available(ref_store, u->refname, |
960 | 0 | &affected_refnames, NULL, err); |
961 | 0 | if (ret < 0) |
962 | 0 | goto done; |
963 | | |
964 | | /* |
965 | | * There is no need to write the reference deletion |
966 | | * when the reference in question doesn't exist. |
967 | | */ |
968 | 0 | if ((u->flags & REF_HAVE_NEW) && !ref_update_has_null_new_value(u)) { |
969 | 0 | ret = queue_transaction_update(refs, tx_data, u, |
970 | 0 | ¤t_oid, err); |
971 | 0 | if (ret) |
972 | 0 | goto done; |
973 | 0 | } |
974 | | |
975 | 0 | continue; |
976 | 0 | } |
977 | 0 | if (ret > 0) { |
978 | | /* The reference does not exist, but we expected it to. */ |
979 | 0 | strbuf_addf(err, _("cannot lock ref '%s': " |
980 | 0 | "unable to resolve reference '%s'"), |
981 | 0 | ref_update_original_update_refname(u), u->refname); |
982 | 0 | ret = -1; |
983 | 0 | goto done; |
984 | 0 | } |
985 | | |
986 | 0 | if (u->type & REF_ISSYMREF) { |
987 | | /* |
988 | | * The reftable stack is locked at this point already, |
989 | | * so it is safe to call `refs_resolve_ref_unsafe()` |
990 | | * here without causing races. |
991 | | */ |
992 | 0 | const char *resolved = refs_resolve_ref_unsafe(&refs->base, u->refname, 0, |
993 | 0 | ¤t_oid, NULL); |
994 | |
|
995 | 0 | if (u->flags & REF_NO_DEREF) { |
996 | 0 | if (u->flags & REF_HAVE_OLD && !resolved) { |
997 | 0 | strbuf_addf(err, _("cannot lock ref '%s': " |
998 | 0 | "error reading reference"), u->refname); |
999 | 0 | ret = -1; |
1000 | 0 | goto done; |
1001 | 0 | } |
1002 | 0 | } else { |
1003 | 0 | struct ref_update *new_update; |
1004 | 0 | int new_flags; |
1005 | |
|
1006 | 0 | new_flags = u->flags; |
1007 | 0 | if (!strcmp(rewritten_ref, "HEAD")) |
1008 | 0 | new_flags |= REF_UPDATE_VIA_HEAD; |
1009 | | |
1010 | | /* |
1011 | | * If we are updating a symref (eg. HEAD), we should also |
1012 | | * update the branch that the symref points to. |
1013 | | * |
1014 | | * This is generic functionality, and would be better |
1015 | | * done in refs.c, but the current implementation is |
1016 | | * intertwined with the locking in files-backend.c. |
1017 | | */ |
1018 | 0 | new_update = ref_transaction_add_update( |
1019 | 0 | transaction, referent.buf, new_flags, |
1020 | 0 | u->new_target ? NULL : &u->new_oid, |
1021 | 0 | u->old_target ? NULL : &u->old_oid, |
1022 | 0 | u->new_target, u->old_target, u->msg); |
1023 | |
|
1024 | 0 | new_update->parent_update = u; |
1025 | | |
1026 | | /* |
1027 | | * Change the symbolic ref update to log only. Also, it |
1028 | | * doesn't need to check its old OID value, as that will be |
1029 | | * done when new_update is processed. |
1030 | | */ |
1031 | 0 | u->flags |= REF_LOG_ONLY | REF_NO_DEREF; |
1032 | 0 | u->flags &= ~REF_HAVE_OLD; |
1033 | |
|
1034 | 0 | if (string_list_has_string(&affected_refnames, new_update->refname)) { |
1035 | 0 | strbuf_addf(err, |
1036 | 0 | _("multiple updates for '%s' (including one " |
1037 | 0 | "via symref '%s') are not allowed"), |
1038 | 0 | referent.buf, u->refname); |
1039 | 0 | ret = TRANSACTION_NAME_CONFLICT; |
1040 | 0 | goto done; |
1041 | 0 | } |
1042 | 0 | string_list_insert(&affected_refnames, new_update->refname); |
1043 | 0 | } |
1044 | 0 | } |
1045 | | |
1046 | | /* |
1047 | | * Verify that the old object matches our expectations. Note |
1048 | | * that the error messages here do not make a lot of sense in |
1049 | | * the context of the reftable backend as we never lock |
1050 | | * individual refs. But the error messages match what the files |
1051 | | * backend returns, which keeps our tests happy. |
1052 | | */ |
1053 | 0 | if (u->old_target) { |
1054 | 0 | if (!(u->type & REF_ISSYMREF)) { |
1055 | 0 | strbuf_addf(err, _("cannot lock ref '%s': " |
1056 | 0 | "expected symref with target '%s': " |
1057 | 0 | "but is a regular ref"), |
1058 | 0 | ref_update_original_update_refname(u), |
1059 | 0 | u->old_target); |
1060 | 0 | ret = -1; |
1061 | 0 | goto done; |
1062 | 0 | } |
1063 | | |
1064 | 0 | if (ref_update_check_old_target(referent.buf, u, err)) { |
1065 | 0 | ret = -1; |
1066 | 0 | goto done; |
1067 | 0 | } |
1068 | 0 | } else if ((u->flags & REF_HAVE_OLD) && !oideq(¤t_oid, &u->old_oid)) { |
1069 | 0 | if (is_null_oid(&u->old_oid)) |
1070 | 0 | strbuf_addf(err, _("cannot lock ref '%s': " |
1071 | 0 | "reference already exists"), |
1072 | 0 | ref_update_original_update_refname(u)); |
1073 | 0 | else if (is_null_oid(¤t_oid)) |
1074 | 0 | strbuf_addf(err, _("cannot lock ref '%s': " |
1075 | 0 | "reference is missing but expected %s"), |
1076 | 0 | ref_update_original_update_refname(u), |
1077 | 0 | oid_to_hex(&u->old_oid)); |
1078 | 0 | else |
1079 | 0 | strbuf_addf(err, _("cannot lock ref '%s': " |
1080 | 0 | "is at %s but expected %s"), |
1081 | 0 | ref_update_original_update_refname(u), |
1082 | 0 | oid_to_hex(¤t_oid), |
1083 | 0 | oid_to_hex(&u->old_oid)); |
1084 | 0 | ret = -1; |
1085 | 0 | goto done; |
1086 | 0 | } |
1087 | | |
1088 | | /* |
1089 | | * If all of the following conditions are true: |
1090 | | * |
1091 | | * - We're not about to write a symref. |
1092 | | * - We're not about to write a log-only entry. |
1093 | | * - Old and new object ID are different. |
1094 | | * |
1095 | | * Then we're essentially doing a no-op update that can be |
1096 | | * skipped. This is not only for the sake of efficiency, but |
1097 | | * also skips writing unneeded reflog entries. |
1098 | | */ |
1099 | 0 | if ((u->type & REF_ISSYMREF) || |
1100 | 0 | (u->flags & REF_LOG_ONLY) || |
1101 | 0 | (u->flags & REF_HAVE_NEW && !oideq(¤t_oid, &u->new_oid))) { |
1102 | 0 | ret = queue_transaction_update(refs, tx_data, u, |
1103 | 0 | ¤t_oid, err); |
1104 | 0 | if (ret) |
1105 | 0 | goto done; |
1106 | 0 | } |
1107 | 0 | } |
1108 | | |
1109 | 0 | transaction->backend_data = tx_data; |
1110 | 0 | transaction->state = REF_TRANSACTION_PREPARED; |
1111 | |
|
1112 | 0 | done: |
1113 | 0 | assert(ret != REFTABLE_API_ERROR); |
1114 | 0 | if (ret < 0) { |
1115 | 0 | free_transaction_data(tx_data); |
1116 | 0 | transaction->state = REF_TRANSACTION_CLOSED; |
1117 | 0 | if (!err->len) |
1118 | 0 | strbuf_addf(err, _("reftable: transaction prepare: %s"), |
1119 | 0 | reftable_error_str(ret)); |
1120 | 0 | } |
1121 | 0 | string_list_clear(&affected_refnames, 0); |
1122 | 0 | strbuf_release(&referent); |
1123 | 0 | strbuf_release(&head_referent); |
1124 | |
|
1125 | 0 | return ret; |
1126 | 0 | } |
1127 | | |
1128 | | static int reftable_be_transaction_abort(struct ref_store *ref_store UNUSED, |
1129 | | struct ref_transaction *transaction, |
1130 | | struct strbuf *err UNUSED) |
1131 | 0 | { |
1132 | 0 | struct reftable_transaction_data *tx_data = transaction->backend_data; |
1133 | 0 | free_transaction_data(tx_data); |
1134 | 0 | transaction->state = REF_TRANSACTION_CLOSED; |
1135 | 0 | return 0; |
1136 | 0 | } |
1137 | | |
1138 | | static int transaction_update_cmp(const void *a, const void *b) |
1139 | 0 | { |
1140 | 0 | return strcmp(((struct reftable_transaction_update *)a)->update->refname, |
1141 | 0 | ((struct reftable_transaction_update *)b)->update->refname); |
1142 | 0 | } |
1143 | | |
1144 | | static int write_transaction_table(struct reftable_writer *writer, void *cb_data) |
1145 | 0 | { |
1146 | 0 | struct write_transaction_table_arg *arg = cb_data; |
1147 | 0 | uint64_t ts = reftable_stack_next_update_index(arg->stack); |
1148 | 0 | struct reftable_log_record *logs = NULL; |
1149 | 0 | struct ident_split committer_ident = {0}; |
1150 | 0 | size_t logs_nr = 0, logs_alloc = 0, i; |
1151 | 0 | const char *committer_info; |
1152 | 0 | int ret = 0; |
1153 | |
|
1154 | 0 | committer_info = git_committer_info(0); |
1155 | 0 | if (split_ident_line(&committer_ident, committer_info, strlen(committer_info))) |
1156 | 0 | BUG("failed splitting committer info"); |
1157 | | |
1158 | 0 | QSORT(arg->updates, arg->updates_nr, transaction_update_cmp); |
1159 | |
|
1160 | 0 | reftable_writer_set_limits(writer, ts, ts); |
1161 | |
|
1162 | 0 | for (i = 0; i < arg->updates_nr; i++) { |
1163 | 0 | struct reftable_transaction_update *tx_update = &arg->updates[i]; |
1164 | 0 | struct ref_update *u = tx_update->update; |
1165 | | |
1166 | | /* |
1167 | | * Write a reflog entry when updating a ref to point to |
1168 | | * something new in either of the following cases: |
1169 | | * |
1170 | | * - The reference is about to be deleted. We always want to |
1171 | | * delete the reflog in that case. |
1172 | | * - REF_FORCE_CREATE_REFLOG is set, asking us to always create |
1173 | | * the reflog entry. |
1174 | | * - `core.logAllRefUpdates` tells us to create the reflog for |
1175 | | * the given ref. |
1176 | | */ |
1177 | 0 | if ((u->flags & REF_HAVE_NEW) && |
1178 | 0 | !(u->type & REF_ISSYMREF) && |
1179 | 0 | ref_update_has_null_new_value(u)) { |
1180 | 0 | struct reftable_log_record log = {0}; |
1181 | 0 | struct reftable_iterator it = {0}; |
1182 | |
|
1183 | 0 | reftable_stack_init_log_iterator(arg->stack, &it); |
1184 | | |
1185 | | /* |
1186 | | * When deleting refs we also delete all reflog entries |
1187 | | * with them. While it is not strictly required to |
1188 | | * delete reflogs together with their refs, this |
1189 | | * matches the behaviour of the files backend. |
1190 | | * |
1191 | | * Unfortunately, we have no better way than to delete |
1192 | | * all reflog entries one by one. |
1193 | | */ |
1194 | 0 | ret = reftable_iterator_seek_log(&it, u->refname); |
1195 | 0 | while (ret == 0) { |
1196 | 0 | struct reftable_log_record *tombstone; |
1197 | |
|
1198 | 0 | ret = reftable_iterator_next_log(&it, &log); |
1199 | 0 | if (ret < 0) |
1200 | 0 | break; |
1201 | 0 | if (ret > 0 || strcmp(log.refname, u->refname)) { |
1202 | 0 | ret = 0; |
1203 | 0 | break; |
1204 | 0 | } |
1205 | | |
1206 | 0 | ALLOC_GROW(logs, logs_nr + 1, logs_alloc); |
1207 | 0 | tombstone = &logs[logs_nr++]; |
1208 | 0 | tombstone->refname = xstrdup(u->refname); |
1209 | 0 | tombstone->value_type = REFTABLE_LOG_DELETION; |
1210 | 0 | tombstone->update_index = log.update_index; |
1211 | 0 | } |
1212 | |
|
1213 | 0 | reftable_log_record_release(&log); |
1214 | 0 | reftable_iterator_destroy(&it); |
1215 | |
|
1216 | 0 | if (ret) |
1217 | 0 | goto done; |
1218 | 0 | } else if (!(u->flags & REF_SKIP_CREATE_REFLOG) && |
1219 | 0 | (u->flags & REF_HAVE_NEW) && |
1220 | 0 | (u->flags & REF_FORCE_CREATE_REFLOG || |
1221 | 0 | should_write_log(&arg->refs->base, u->refname))) { |
1222 | 0 | struct reftable_log_record *log; |
1223 | 0 | int create_reflog = 1; |
1224 | |
|
1225 | 0 | if (u->new_target) { |
1226 | 0 | if (!refs_resolve_ref_unsafe(&arg->refs->base, u->new_target, |
1227 | 0 | RESOLVE_REF_READING, &u->new_oid, NULL)) { |
1228 | | /* |
1229 | | * TODO: currently we skip creating reflogs for dangling |
1230 | | * symref updates. It would be nice to capture this as |
1231 | | * zero oid updates however. |
1232 | | */ |
1233 | 0 | create_reflog = 0; |
1234 | 0 | } |
1235 | 0 | } |
1236 | |
|
1237 | 0 | if (create_reflog) { |
1238 | 0 | ALLOC_GROW(logs, logs_nr + 1, logs_alloc); |
1239 | 0 | log = &logs[logs_nr++]; |
1240 | 0 | memset(log, 0, sizeof(*log)); |
1241 | |
|
1242 | 0 | fill_reftable_log_record(log, &committer_ident); |
1243 | 0 | log->update_index = ts; |
1244 | 0 | log->refname = xstrdup(u->refname); |
1245 | 0 | memcpy(log->value.update.new_hash, |
1246 | 0 | u->new_oid.hash, GIT_MAX_RAWSZ); |
1247 | 0 | memcpy(log->value.update.old_hash, |
1248 | 0 | tx_update->current_oid.hash, GIT_MAX_RAWSZ); |
1249 | 0 | log->value.update.message = |
1250 | 0 | xstrndup(u->msg, arg->refs->write_options.block_size / 2); |
1251 | 0 | } |
1252 | 0 | } |
1253 | | |
1254 | 0 | if (u->flags & REF_LOG_ONLY) |
1255 | 0 | continue; |
1256 | | |
1257 | 0 | if (u->new_target) { |
1258 | 0 | struct reftable_ref_record ref = { |
1259 | 0 | .refname = (char *)u->refname, |
1260 | 0 | .value_type = REFTABLE_REF_SYMREF, |
1261 | 0 | .value.symref = (char *)u->new_target, |
1262 | 0 | .update_index = ts, |
1263 | 0 | }; |
1264 | |
|
1265 | 0 | ret = reftable_writer_add_ref(writer, &ref); |
1266 | 0 | if (ret < 0) |
1267 | 0 | goto done; |
1268 | 0 | } else if ((u->flags & REF_HAVE_NEW) && ref_update_has_null_new_value(u)) { |
1269 | 0 | struct reftable_ref_record ref = { |
1270 | 0 | .refname = (char *)u->refname, |
1271 | 0 | .update_index = ts, |
1272 | 0 | .value_type = REFTABLE_REF_DELETION, |
1273 | 0 | }; |
1274 | |
|
1275 | 0 | ret = reftable_writer_add_ref(writer, &ref); |
1276 | 0 | if (ret < 0) |
1277 | 0 | goto done; |
1278 | 0 | } else if (u->flags & REF_HAVE_NEW) { |
1279 | 0 | struct reftable_ref_record ref = {0}; |
1280 | 0 | struct object_id peeled; |
1281 | 0 | int peel_error; |
1282 | |
|
1283 | 0 | ref.refname = (char *)u->refname; |
1284 | 0 | ref.update_index = ts; |
1285 | |
|
1286 | 0 | peel_error = peel_object(arg->refs->base.repo, &u->new_oid, &peeled); |
1287 | 0 | if (!peel_error) { |
1288 | 0 | ref.value_type = REFTABLE_REF_VAL2; |
1289 | 0 | memcpy(ref.value.val2.target_value, peeled.hash, GIT_MAX_RAWSZ); |
1290 | 0 | memcpy(ref.value.val2.value, u->new_oid.hash, GIT_MAX_RAWSZ); |
1291 | 0 | } else if (!is_null_oid(&u->new_oid)) { |
1292 | 0 | ref.value_type = REFTABLE_REF_VAL1; |
1293 | 0 | memcpy(ref.value.val1, u->new_oid.hash, GIT_MAX_RAWSZ); |
1294 | 0 | } |
1295 | |
|
1296 | 0 | ret = reftable_writer_add_ref(writer, &ref); |
1297 | 0 | if (ret < 0) |
1298 | 0 | goto done; |
1299 | 0 | } |
1300 | 0 | } |
1301 | | |
1302 | | /* |
1303 | | * Logs are written at the end so that we do not have intermixed ref |
1304 | | * and log blocks. |
1305 | | */ |
1306 | 0 | if (logs) { |
1307 | 0 | ret = reftable_writer_add_logs(writer, logs, logs_nr); |
1308 | 0 | if (ret < 0) |
1309 | 0 | goto done; |
1310 | 0 | } |
1311 | | |
1312 | 0 | done: |
1313 | 0 | assert(ret != REFTABLE_API_ERROR); |
1314 | 0 | for (i = 0; i < logs_nr; i++) |
1315 | 0 | reftable_log_record_release(&logs[i]); |
1316 | 0 | free(logs); |
1317 | 0 | return ret; |
1318 | 0 | } |
1319 | | |
1320 | | static int reftable_be_transaction_finish(struct ref_store *ref_store UNUSED, |
1321 | | struct ref_transaction *transaction, |
1322 | | struct strbuf *err) |
1323 | 0 | { |
1324 | 0 | struct reftable_transaction_data *tx_data = transaction->backend_data; |
1325 | 0 | int ret = 0; |
1326 | |
|
1327 | 0 | for (size_t i = 0; i < tx_data->args_nr; i++) { |
1328 | 0 | ret = reftable_addition_add(tx_data->args[i].addition, |
1329 | 0 | write_transaction_table, &tx_data->args[i]); |
1330 | 0 | if (ret < 0) |
1331 | 0 | goto done; |
1332 | | |
1333 | 0 | ret = reftable_addition_commit(tx_data->args[i].addition); |
1334 | 0 | if (ret < 0) |
1335 | 0 | goto done; |
1336 | 0 | } |
1337 | | |
1338 | 0 | done: |
1339 | 0 | assert(ret != REFTABLE_API_ERROR); |
1340 | 0 | free_transaction_data(tx_data); |
1341 | 0 | transaction->state = REF_TRANSACTION_CLOSED; |
1342 | |
|
1343 | 0 | if (ret) { |
1344 | 0 | strbuf_addf(err, _("reftable: transaction failure: %s"), |
1345 | 0 | reftable_error_str(ret)); |
1346 | 0 | return -1; |
1347 | 0 | } |
1348 | 0 | return ret; |
1349 | 0 | } |
1350 | | |
1351 | | static int reftable_be_initial_transaction_commit(struct ref_store *ref_store UNUSED, |
1352 | | struct ref_transaction *transaction, |
1353 | | struct strbuf *err) |
1354 | 0 | { |
1355 | 0 | return ref_transaction_commit(transaction, err); |
1356 | 0 | } |
1357 | | |
1358 | | static int reftable_be_pack_refs(struct ref_store *ref_store, |
1359 | | struct pack_refs_opts *opts) |
1360 | 0 | { |
1361 | 0 | struct reftable_ref_store *refs = |
1362 | 0 | reftable_be_downcast(ref_store, REF_STORE_WRITE | REF_STORE_ODB, "pack_refs"); |
1363 | 0 | struct reftable_stack *stack; |
1364 | 0 | int ret; |
1365 | |
|
1366 | 0 | if (refs->err) |
1367 | 0 | return refs->err; |
1368 | | |
1369 | 0 | stack = refs->worktree_stack; |
1370 | 0 | if (!stack) |
1371 | 0 | stack = refs->main_stack; |
1372 | |
|
1373 | 0 | if (opts->flags & PACK_REFS_AUTO) |
1374 | 0 | ret = reftable_stack_auto_compact(stack); |
1375 | 0 | else |
1376 | 0 | ret = reftable_stack_compact_all(stack, NULL); |
1377 | 0 | if (ret < 0) { |
1378 | 0 | ret = error(_("unable to compact stack: %s"), |
1379 | 0 | reftable_error_str(ret)); |
1380 | 0 | goto out; |
1381 | 0 | } |
1382 | | |
1383 | 0 | ret = reftable_stack_clean(stack); |
1384 | 0 | if (ret) |
1385 | 0 | goto out; |
1386 | | |
1387 | 0 | out: |
1388 | 0 | return ret; |
1389 | 0 | } |
1390 | | |
1391 | | struct write_create_symref_arg { |
1392 | | struct reftable_ref_store *refs; |
1393 | | struct reftable_stack *stack; |
1394 | | struct strbuf *err; |
1395 | | const char *refname; |
1396 | | const char *target; |
1397 | | const char *logmsg; |
1398 | | }; |
1399 | | |
1400 | | struct write_copy_arg { |
1401 | | struct reftable_ref_store *refs; |
1402 | | struct reftable_stack *stack; |
1403 | | const char *oldname; |
1404 | | const char *newname; |
1405 | | const char *logmsg; |
1406 | | int delete_old; |
1407 | | }; |
1408 | | |
1409 | | static int write_copy_table(struct reftable_writer *writer, void *cb_data) |
1410 | 0 | { |
1411 | 0 | struct write_copy_arg *arg = cb_data; |
1412 | 0 | uint64_t deletion_ts, creation_ts; |
1413 | 0 | struct reftable_ref_record old_ref = {0}, refs[2] = {0}; |
1414 | 0 | struct reftable_log_record old_log = {0}, *logs = NULL; |
1415 | 0 | struct reftable_iterator it = {0}; |
1416 | 0 | struct string_list skip = STRING_LIST_INIT_NODUP; |
1417 | 0 | struct ident_split committer_ident = {0}; |
1418 | 0 | struct strbuf errbuf = STRBUF_INIT; |
1419 | 0 | size_t logs_nr = 0, logs_alloc = 0, i; |
1420 | 0 | const char *committer_info; |
1421 | 0 | int ret; |
1422 | |
|
1423 | 0 | committer_info = git_committer_info(0); |
1424 | 0 | if (split_ident_line(&committer_ident, committer_info, strlen(committer_info))) |
1425 | 0 | BUG("failed splitting committer info"); |
1426 | | |
1427 | 0 | if (reftable_stack_read_ref(arg->stack, arg->oldname, &old_ref)) { |
1428 | 0 | ret = error(_("refname %s not found"), arg->oldname); |
1429 | 0 | goto done; |
1430 | 0 | } |
1431 | 0 | if (old_ref.value_type == REFTABLE_REF_SYMREF) { |
1432 | 0 | ret = error(_("refname %s is a symbolic ref, copying it is not supported"), |
1433 | 0 | arg->oldname); |
1434 | 0 | goto done; |
1435 | 0 | } |
1436 | | |
1437 | | /* |
1438 | | * There's nothing to do in case the old and new name are the same, so |
1439 | | * we exit early in that case. |
1440 | | */ |
1441 | 0 | if (!strcmp(arg->oldname, arg->newname)) { |
1442 | 0 | ret = 0; |
1443 | 0 | goto done; |
1444 | 0 | } |
1445 | | |
1446 | | /* |
1447 | | * Verify that the new refname is available. |
1448 | | */ |
1449 | 0 | if (arg->delete_old) |
1450 | 0 | string_list_insert(&skip, arg->oldname); |
1451 | 0 | ret = refs_verify_refname_available(&arg->refs->base, arg->newname, |
1452 | 0 | NULL, &skip, &errbuf); |
1453 | 0 | if (ret < 0) { |
1454 | 0 | error("%s", errbuf.buf); |
1455 | 0 | goto done; |
1456 | 0 | } |
1457 | | |
1458 | | /* |
1459 | | * When deleting the old reference we have to use two update indices: |
1460 | | * once to delete the old ref and its reflog, and once to create the |
1461 | | * new ref and its reflog. They need to be staged with two separate |
1462 | | * indices because the new reflog needs to encode both the deletion of |
1463 | | * the old branch and the creation of the new branch, and we cannot do |
1464 | | * two changes to a reflog in a single update. |
1465 | | */ |
1466 | 0 | deletion_ts = creation_ts = reftable_stack_next_update_index(arg->stack); |
1467 | 0 | if (arg->delete_old) |
1468 | 0 | creation_ts++; |
1469 | 0 | reftable_writer_set_limits(writer, deletion_ts, creation_ts); |
1470 | | |
1471 | | /* |
1472 | | * Add the new reference. If this is a rename then we also delete the |
1473 | | * old reference. |
1474 | | */ |
1475 | 0 | refs[0] = old_ref; |
1476 | 0 | refs[0].refname = xstrdup(arg->newname); |
1477 | 0 | refs[0].update_index = creation_ts; |
1478 | 0 | if (arg->delete_old) { |
1479 | 0 | refs[1].refname = xstrdup(arg->oldname); |
1480 | 0 | refs[1].value_type = REFTABLE_REF_DELETION; |
1481 | 0 | refs[1].update_index = deletion_ts; |
1482 | 0 | } |
1483 | 0 | ret = reftable_writer_add_refs(writer, refs, arg->delete_old ? 2 : 1); |
1484 | 0 | if (ret < 0) |
1485 | 0 | goto done; |
1486 | | |
1487 | | /* |
1488 | | * When deleting the old branch we need to create a reflog entry on the |
1489 | | * new branch name that indicates that the old branch has been deleted |
1490 | | * and then recreated. This is a tad weird, but matches what the files |
1491 | | * backend does. |
1492 | | */ |
1493 | 0 | if (arg->delete_old) { |
1494 | 0 | struct strbuf head_referent = STRBUF_INIT; |
1495 | 0 | struct object_id head_oid; |
1496 | 0 | int append_head_reflog; |
1497 | 0 | unsigned head_type = 0; |
1498 | |
|
1499 | 0 | ALLOC_GROW(logs, logs_nr + 1, logs_alloc); |
1500 | 0 | memset(&logs[logs_nr], 0, sizeof(logs[logs_nr])); |
1501 | 0 | fill_reftable_log_record(&logs[logs_nr], &committer_ident); |
1502 | 0 | logs[logs_nr].refname = xstrdup(arg->newname); |
1503 | 0 | logs[logs_nr].update_index = deletion_ts; |
1504 | 0 | logs[logs_nr].value.update.message = |
1505 | 0 | xstrndup(arg->logmsg, arg->refs->write_options.block_size / 2); |
1506 | 0 | memcpy(logs[logs_nr].value.update.old_hash, old_ref.value.val1, GIT_MAX_RAWSZ); |
1507 | 0 | logs_nr++; |
1508 | |
|
1509 | 0 | ret = read_ref_without_reload(arg->refs, arg->stack, "HEAD", &head_oid, |
1510 | 0 | &head_referent, &head_type); |
1511 | 0 | if (ret < 0) |
1512 | 0 | goto done; |
1513 | 0 | append_head_reflog = (head_type & REF_ISSYMREF) && !strcmp(head_referent.buf, arg->oldname); |
1514 | 0 | strbuf_release(&head_referent); |
1515 | | |
1516 | | /* |
1517 | | * The files backend uses `refs_delete_ref()` to delete the old |
1518 | | * branch name, which will append a reflog entry for HEAD in |
1519 | | * case it points to the old branch. |
1520 | | */ |
1521 | 0 | if (append_head_reflog) { |
1522 | 0 | ALLOC_GROW(logs, logs_nr + 1, logs_alloc); |
1523 | 0 | logs[logs_nr] = logs[logs_nr - 1]; |
1524 | 0 | logs[logs_nr].refname = xstrdup("HEAD"); |
1525 | 0 | logs[logs_nr].value.update.name = |
1526 | 0 | xstrdup(logs[logs_nr].value.update.name); |
1527 | 0 | logs[logs_nr].value.update.email = |
1528 | 0 | xstrdup(logs[logs_nr].value.update.email); |
1529 | 0 | logs[logs_nr].value.update.message = |
1530 | 0 | xstrdup(logs[logs_nr].value.update.message); |
1531 | 0 | logs_nr++; |
1532 | 0 | } |
1533 | 0 | } |
1534 | | |
1535 | | /* |
1536 | | * Create the reflog entry for the newly created branch. |
1537 | | */ |
1538 | 0 | ALLOC_GROW(logs, logs_nr + 1, logs_alloc); |
1539 | 0 | memset(&logs[logs_nr], 0, sizeof(logs[logs_nr])); |
1540 | 0 | fill_reftable_log_record(&logs[logs_nr], &committer_ident); |
1541 | 0 | logs[logs_nr].refname = xstrdup(arg->newname); |
1542 | 0 | logs[logs_nr].update_index = creation_ts; |
1543 | 0 | logs[logs_nr].value.update.message = |
1544 | 0 | xstrndup(arg->logmsg, arg->refs->write_options.block_size / 2); |
1545 | 0 | memcpy(logs[logs_nr].value.update.new_hash, old_ref.value.val1, GIT_MAX_RAWSZ); |
1546 | 0 | logs_nr++; |
1547 | | |
1548 | | /* |
1549 | | * In addition to writing the reflog entry for the new branch, we also |
1550 | | * copy over all log entries from the old reflog. Last but not least, |
1551 | | * when renaming we also have to delete all the old reflog entries. |
1552 | | */ |
1553 | 0 | reftable_stack_init_log_iterator(arg->stack, &it); |
1554 | 0 | ret = reftable_iterator_seek_log(&it, arg->oldname); |
1555 | 0 | if (ret < 0) |
1556 | 0 | goto done; |
1557 | | |
1558 | 0 | while (1) { |
1559 | 0 | ret = reftable_iterator_next_log(&it, &old_log); |
1560 | 0 | if (ret < 0) |
1561 | 0 | goto done; |
1562 | 0 | if (ret > 0 || strcmp(old_log.refname, arg->oldname)) { |
1563 | 0 | ret = 0; |
1564 | 0 | break; |
1565 | 0 | } |
1566 | | |
1567 | 0 | free(old_log.refname); |
1568 | | |
1569 | | /* |
1570 | | * Copy over the old reflog entry with the new refname. |
1571 | | */ |
1572 | 0 | ALLOC_GROW(logs, logs_nr + 1, logs_alloc); |
1573 | 0 | logs[logs_nr] = old_log; |
1574 | 0 | logs[logs_nr].refname = xstrdup(arg->newname); |
1575 | 0 | logs_nr++; |
1576 | | |
1577 | | /* |
1578 | | * Delete the old reflog entry in case we are renaming. |
1579 | | */ |
1580 | 0 | if (arg->delete_old) { |
1581 | 0 | ALLOC_GROW(logs, logs_nr + 1, logs_alloc); |
1582 | 0 | memset(&logs[logs_nr], 0, sizeof(logs[logs_nr])); |
1583 | 0 | logs[logs_nr].refname = xstrdup(arg->oldname); |
1584 | 0 | logs[logs_nr].value_type = REFTABLE_LOG_DELETION; |
1585 | 0 | logs[logs_nr].update_index = old_log.update_index; |
1586 | 0 | logs_nr++; |
1587 | 0 | } |
1588 | | |
1589 | | /* |
1590 | | * Transfer ownership of the log record we're iterating over to |
1591 | | * the array of log records. Otherwise, the pointers would get |
1592 | | * free'd or reallocated by the iterator. |
1593 | | */ |
1594 | 0 | memset(&old_log, 0, sizeof(old_log)); |
1595 | 0 | } |
1596 | | |
1597 | 0 | ret = reftable_writer_add_logs(writer, logs, logs_nr); |
1598 | 0 | if (ret < 0) |
1599 | 0 | goto done; |
1600 | | |
1601 | 0 | done: |
1602 | 0 | assert(ret != REFTABLE_API_ERROR); |
1603 | 0 | reftable_iterator_destroy(&it); |
1604 | 0 | string_list_clear(&skip, 0); |
1605 | 0 | strbuf_release(&errbuf); |
1606 | 0 | for (i = 0; i < logs_nr; i++) |
1607 | 0 | reftable_log_record_release(&logs[i]); |
1608 | 0 | free(logs); |
1609 | 0 | for (i = 0; i < ARRAY_SIZE(refs); i++) |
1610 | 0 | reftable_ref_record_release(&refs[i]); |
1611 | 0 | reftable_ref_record_release(&old_ref); |
1612 | 0 | reftable_log_record_release(&old_log); |
1613 | 0 | return ret; |
1614 | 0 | } |
1615 | | |
1616 | | static int reftable_be_rename_ref(struct ref_store *ref_store, |
1617 | | const char *oldrefname, |
1618 | | const char *newrefname, |
1619 | | const char *logmsg) |
1620 | 0 | { |
1621 | 0 | struct reftable_ref_store *refs = |
1622 | 0 | reftable_be_downcast(ref_store, REF_STORE_WRITE, "rename_ref"); |
1623 | 0 | struct reftable_stack *stack = stack_for(refs, newrefname, &newrefname); |
1624 | 0 | struct write_copy_arg arg = { |
1625 | 0 | .refs = refs, |
1626 | 0 | .stack = stack, |
1627 | 0 | .oldname = oldrefname, |
1628 | 0 | .newname = newrefname, |
1629 | 0 | .logmsg = logmsg, |
1630 | 0 | .delete_old = 1, |
1631 | 0 | }; |
1632 | 0 | int ret; |
1633 | |
|
1634 | 0 | ret = refs->err; |
1635 | 0 | if (ret < 0) |
1636 | 0 | goto done; |
1637 | | |
1638 | 0 | ret = reftable_stack_reload(stack); |
1639 | 0 | if (ret) |
1640 | 0 | goto done; |
1641 | 0 | ret = reftable_stack_add(stack, &write_copy_table, &arg); |
1642 | |
|
1643 | 0 | done: |
1644 | 0 | assert(ret != REFTABLE_API_ERROR); |
1645 | 0 | return ret; |
1646 | 0 | } |
1647 | | |
1648 | | static int reftable_be_copy_ref(struct ref_store *ref_store, |
1649 | | const char *oldrefname, |
1650 | | const char *newrefname, |
1651 | | const char *logmsg) |
1652 | 0 | { |
1653 | 0 | struct reftable_ref_store *refs = |
1654 | 0 | reftable_be_downcast(ref_store, REF_STORE_WRITE, "copy_ref"); |
1655 | 0 | struct reftable_stack *stack = stack_for(refs, newrefname, &newrefname); |
1656 | 0 | struct write_copy_arg arg = { |
1657 | 0 | .refs = refs, |
1658 | 0 | .stack = stack, |
1659 | 0 | .oldname = oldrefname, |
1660 | 0 | .newname = newrefname, |
1661 | 0 | .logmsg = logmsg, |
1662 | 0 | }; |
1663 | 0 | int ret; |
1664 | |
|
1665 | 0 | ret = refs->err; |
1666 | 0 | if (ret < 0) |
1667 | 0 | goto done; |
1668 | | |
1669 | 0 | ret = reftable_stack_reload(stack); |
1670 | 0 | if (ret) |
1671 | 0 | goto done; |
1672 | 0 | ret = reftable_stack_add(stack, &write_copy_table, &arg); |
1673 | |
|
1674 | 0 | done: |
1675 | 0 | assert(ret != REFTABLE_API_ERROR); |
1676 | 0 | return ret; |
1677 | 0 | } |
1678 | | |
1679 | | struct reftable_reflog_iterator { |
1680 | | struct ref_iterator base; |
1681 | | struct reftable_ref_store *refs; |
1682 | | struct reftable_iterator iter; |
1683 | | struct reftable_log_record log; |
1684 | | struct strbuf last_name; |
1685 | | int err; |
1686 | | }; |
1687 | | |
1688 | | static int reftable_reflog_iterator_advance(struct ref_iterator *ref_iterator) |
1689 | 0 | { |
1690 | 0 | struct reftable_reflog_iterator *iter = |
1691 | 0 | (struct reftable_reflog_iterator *)ref_iterator; |
1692 | |
|
1693 | 0 | while (!iter->err) { |
1694 | 0 | iter->err = reftable_iterator_next_log(&iter->iter, &iter->log); |
1695 | 0 | if (iter->err) |
1696 | 0 | break; |
1697 | | |
1698 | | /* |
1699 | | * We want the refnames that we have reflogs for, so we skip if |
1700 | | * we've already produced this name. This could be faster by |
1701 | | * seeking directly to reflog@update_index==0. |
1702 | | */ |
1703 | 0 | if (!strcmp(iter->log.refname, iter->last_name.buf)) |
1704 | 0 | continue; |
1705 | | |
1706 | 0 | if (check_refname_format(iter->log.refname, |
1707 | 0 | REFNAME_ALLOW_ONELEVEL)) |
1708 | 0 | continue; |
1709 | | |
1710 | 0 | strbuf_reset(&iter->last_name); |
1711 | 0 | strbuf_addstr(&iter->last_name, iter->log.refname); |
1712 | 0 | iter->base.refname = iter->log.refname; |
1713 | |
|
1714 | 0 | break; |
1715 | 0 | } |
1716 | |
|
1717 | 0 | if (iter->err > 0) { |
1718 | 0 | if (ref_iterator_abort(ref_iterator) != ITER_DONE) |
1719 | 0 | return ITER_ERROR; |
1720 | 0 | return ITER_DONE; |
1721 | 0 | } |
1722 | | |
1723 | 0 | if (iter->err < 0) { |
1724 | 0 | ref_iterator_abort(ref_iterator); |
1725 | 0 | return ITER_ERROR; |
1726 | 0 | } |
1727 | | |
1728 | 0 | return ITER_OK; |
1729 | 0 | } |
1730 | | |
1731 | | static int reftable_reflog_iterator_peel(struct ref_iterator *ref_iterator UNUSED, |
1732 | | struct object_id *peeled UNUSED) |
1733 | 0 | { |
1734 | 0 | BUG("reftable reflog iterator cannot be peeled"); |
1735 | 0 | return -1; |
1736 | 0 | } |
1737 | | |
1738 | | static int reftable_reflog_iterator_abort(struct ref_iterator *ref_iterator) |
1739 | 0 | { |
1740 | 0 | struct reftable_reflog_iterator *iter = |
1741 | 0 | (struct reftable_reflog_iterator *)ref_iterator; |
1742 | 0 | reftable_log_record_release(&iter->log); |
1743 | 0 | reftable_iterator_destroy(&iter->iter); |
1744 | 0 | strbuf_release(&iter->last_name); |
1745 | 0 | free(iter); |
1746 | 0 | return ITER_DONE; |
1747 | 0 | } |
1748 | | |
1749 | | static struct ref_iterator_vtable reftable_reflog_iterator_vtable = { |
1750 | | .advance = reftable_reflog_iterator_advance, |
1751 | | .peel = reftable_reflog_iterator_peel, |
1752 | | .abort = reftable_reflog_iterator_abort |
1753 | | }; |
1754 | | |
1755 | | static struct reftable_reflog_iterator *reflog_iterator_for_stack(struct reftable_ref_store *refs, |
1756 | | struct reftable_stack *stack) |
1757 | 0 | { |
1758 | 0 | struct reftable_reflog_iterator *iter; |
1759 | 0 | int ret; |
1760 | |
|
1761 | 0 | iter = xcalloc(1, sizeof(*iter)); |
1762 | 0 | base_ref_iterator_init(&iter->base, &reftable_reflog_iterator_vtable); |
1763 | 0 | strbuf_init(&iter->last_name, 0); |
1764 | 0 | iter->refs = refs; |
1765 | |
|
1766 | 0 | ret = refs->err; |
1767 | 0 | if (ret) |
1768 | 0 | goto done; |
1769 | | |
1770 | 0 | ret = reftable_stack_reload(stack); |
1771 | 0 | if (ret < 0) |
1772 | 0 | goto done; |
1773 | | |
1774 | 0 | reftable_stack_init_log_iterator(stack, &iter->iter); |
1775 | 0 | ret = reftable_iterator_seek_log(&iter->iter, ""); |
1776 | 0 | if (ret < 0) |
1777 | 0 | goto done; |
1778 | | |
1779 | 0 | done: |
1780 | 0 | iter->err = ret; |
1781 | 0 | return iter; |
1782 | 0 | } |
1783 | | |
1784 | | static struct ref_iterator *reftable_be_reflog_iterator_begin(struct ref_store *ref_store) |
1785 | 0 | { |
1786 | 0 | struct reftable_ref_store *refs = |
1787 | 0 | reftable_be_downcast(ref_store, REF_STORE_READ, "reflog_iterator_begin"); |
1788 | 0 | struct reftable_reflog_iterator *main_iter, *worktree_iter; |
1789 | |
|
1790 | 0 | main_iter = reflog_iterator_for_stack(refs, refs->main_stack); |
1791 | 0 | if (!refs->worktree_stack) |
1792 | 0 | return &main_iter->base; |
1793 | | |
1794 | 0 | worktree_iter = reflog_iterator_for_stack(refs, refs->worktree_stack); |
1795 | |
|
1796 | 0 | return merge_ref_iterator_begin(&worktree_iter->base, &main_iter->base, |
1797 | 0 | ref_iterator_select, NULL); |
1798 | 0 | } |
1799 | | |
1800 | | static int yield_log_record(struct reftable_ref_store *refs, |
1801 | | struct reftable_log_record *log, |
1802 | | each_reflog_ent_fn fn, |
1803 | | void *cb_data) |
1804 | 0 | { |
1805 | 0 | struct object_id old_oid, new_oid; |
1806 | 0 | const char *full_committer; |
1807 | |
|
1808 | 0 | oidread(&old_oid, log->value.update.old_hash, refs->base.repo->hash_algo); |
1809 | 0 | oidread(&new_oid, log->value.update.new_hash, refs->base.repo->hash_algo); |
1810 | | |
1811 | | /* |
1812 | | * When both the old object ID and the new object ID are null |
1813 | | * then this is the reflog existence marker. The caller must |
1814 | | * not be aware of it. |
1815 | | */ |
1816 | 0 | if (is_null_oid(&old_oid) && is_null_oid(&new_oid)) |
1817 | 0 | return 0; |
1818 | | |
1819 | 0 | full_committer = fmt_ident(log->value.update.name, log->value.update.email, |
1820 | 0 | WANT_COMMITTER_IDENT, NULL, IDENT_NO_DATE); |
1821 | 0 | return fn(&old_oid, &new_oid, full_committer, |
1822 | 0 | log->value.update.time, log->value.update.tz_offset, |
1823 | 0 | log->value.update.message, cb_data); |
1824 | 0 | } |
1825 | | |
1826 | | static int reftable_be_for_each_reflog_ent_reverse(struct ref_store *ref_store, |
1827 | | const char *refname, |
1828 | | each_reflog_ent_fn fn, |
1829 | | void *cb_data) |
1830 | 0 | { |
1831 | 0 | struct reftable_ref_store *refs = |
1832 | 0 | reftable_be_downcast(ref_store, REF_STORE_READ, "for_each_reflog_ent_reverse"); |
1833 | 0 | struct reftable_stack *stack = stack_for(refs, refname, &refname); |
1834 | 0 | struct reftable_log_record log = {0}; |
1835 | 0 | struct reftable_iterator it = {0}; |
1836 | 0 | int ret; |
1837 | |
|
1838 | 0 | if (refs->err < 0) |
1839 | 0 | return refs->err; |
1840 | | |
1841 | 0 | reftable_stack_init_log_iterator(stack, &it); |
1842 | 0 | ret = reftable_iterator_seek_log(&it, refname); |
1843 | 0 | while (!ret) { |
1844 | 0 | ret = reftable_iterator_next_log(&it, &log); |
1845 | 0 | if (ret < 0) |
1846 | 0 | break; |
1847 | 0 | if (ret > 0 || strcmp(log.refname, refname)) { |
1848 | 0 | ret = 0; |
1849 | 0 | break; |
1850 | 0 | } |
1851 | | |
1852 | 0 | ret = yield_log_record(refs, &log, fn, cb_data); |
1853 | 0 | if (ret) |
1854 | 0 | break; |
1855 | 0 | } |
1856 | |
|
1857 | 0 | reftable_log_record_release(&log); |
1858 | 0 | reftable_iterator_destroy(&it); |
1859 | 0 | return ret; |
1860 | 0 | } |
1861 | | |
1862 | | static int reftable_be_for_each_reflog_ent(struct ref_store *ref_store, |
1863 | | const char *refname, |
1864 | | each_reflog_ent_fn fn, |
1865 | | void *cb_data) |
1866 | 0 | { |
1867 | 0 | struct reftable_ref_store *refs = |
1868 | 0 | reftable_be_downcast(ref_store, REF_STORE_READ, "for_each_reflog_ent"); |
1869 | 0 | struct reftable_stack *stack = stack_for(refs, refname, &refname); |
1870 | 0 | struct reftable_log_record *logs = NULL; |
1871 | 0 | struct reftable_iterator it = {0}; |
1872 | 0 | size_t logs_alloc = 0, logs_nr = 0, i; |
1873 | 0 | int ret; |
1874 | |
|
1875 | 0 | if (refs->err < 0) |
1876 | 0 | return refs->err; |
1877 | | |
1878 | 0 | reftable_stack_init_log_iterator(stack, &it); |
1879 | 0 | ret = reftable_iterator_seek_log(&it, refname); |
1880 | 0 | while (!ret) { |
1881 | 0 | struct reftable_log_record log = {0}; |
1882 | |
|
1883 | 0 | ret = reftable_iterator_next_log(&it, &log); |
1884 | 0 | if (ret < 0) |
1885 | 0 | goto done; |
1886 | 0 | if (ret > 0 || strcmp(log.refname, refname)) { |
1887 | 0 | reftable_log_record_release(&log); |
1888 | 0 | ret = 0; |
1889 | 0 | break; |
1890 | 0 | } |
1891 | | |
1892 | 0 | ALLOC_GROW(logs, logs_nr + 1, logs_alloc); |
1893 | 0 | logs[logs_nr++] = log; |
1894 | 0 | } |
1895 | | |
1896 | 0 | for (i = logs_nr; i--;) { |
1897 | 0 | ret = yield_log_record(refs, &logs[i], fn, cb_data); |
1898 | 0 | if (ret) |
1899 | 0 | goto done; |
1900 | 0 | } |
1901 | | |
1902 | 0 | done: |
1903 | 0 | reftable_iterator_destroy(&it); |
1904 | 0 | for (i = 0; i < logs_nr; i++) |
1905 | 0 | reftable_log_record_release(&logs[i]); |
1906 | 0 | free(logs); |
1907 | 0 | return ret; |
1908 | 0 | } |
1909 | | |
1910 | | static int reftable_be_reflog_exists(struct ref_store *ref_store, |
1911 | | const char *refname) |
1912 | 0 | { |
1913 | 0 | struct reftable_ref_store *refs = |
1914 | 0 | reftable_be_downcast(ref_store, REF_STORE_READ, "reflog_exists"); |
1915 | 0 | struct reftable_stack *stack = stack_for(refs, refname, &refname); |
1916 | 0 | struct reftable_log_record log = {0}; |
1917 | 0 | struct reftable_iterator it = {0}; |
1918 | 0 | int ret; |
1919 | |
|
1920 | 0 | ret = refs->err; |
1921 | 0 | if (ret < 0) |
1922 | 0 | goto done; |
1923 | | |
1924 | 0 | ret = reftable_stack_reload(stack); |
1925 | 0 | if (ret < 0) |
1926 | 0 | goto done; |
1927 | | |
1928 | 0 | reftable_stack_init_log_iterator(stack, &it); |
1929 | 0 | ret = reftable_iterator_seek_log(&it, refname); |
1930 | 0 | if (ret < 0) |
1931 | 0 | goto done; |
1932 | | |
1933 | | /* |
1934 | | * Check whether we get at least one log record for the given ref name. |
1935 | | * If so, the reflog exists, otherwise it doesn't. |
1936 | | */ |
1937 | 0 | ret = reftable_iterator_next_log(&it, &log); |
1938 | 0 | if (ret < 0) |
1939 | 0 | goto done; |
1940 | 0 | if (ret > 0) { |
1941 | 0 | ret = 0; |
1942 | 0 | goto done; |
1943 | 0 | } |
1944 | | |
1945 | 0 | ret = strcmp(log.refname, refname) == 0; |
1946 | |
|
1947 | 0 | done: |
1948 | 0 | reftable_iterator_destroy(&it); |
1949 | 0 | reftable_log_record_release(&log); |
1950 | 0 | if (ret < 0) |
1951 | 0 | ret = 0; |
1952 | 0 | return ret; |
1953 | 0 | } |
1954 | | |
1955 | | struct write_reflog_existence_arg { |
1956 | | struct reftable_ref_store *refs; |
1957 | | const char *refname; |
1958 | | struct reftable_stack *stack; |
1959 | | }; |
1960 | | |
1961 | | static int write_reflog_existence_table(struct reftable_writer *writer, |
1962 | | void *cb_data) |
1963 | 0 | { |
1964 | 0 | struct write_reflog_existence_arg *arg = cb_data; |
1965 | 0 | uint64_t ts = reftable_stack_next_update_index(arg->stack); |
1966 | 0 | struct reftable_log_record log = {0}; |
1967 | 0 | int ret; |
1968 | |
|
1969 | 0 | ret = reftable_stack_read_log(arg->stack, arg->refname, &log); |
1970 | 0 | if (ret <= 0) |
1971 | 0 | goto done; |
1972 | | |
1973 | 0 | reftable_writer_set_limits(writer, ts, ts); |
1974 | | |
1975 | | /* |
1976 | | * The existence entry has both old and new object ID set to the the |
1977 | | * null object ID. Our iterators are aware of this and will not present |
1978 | | * them to their callers. |
1979 | | */ |
1980 | 0 | log.refname = xstrdup(arg->refname); |
1981 | 0 | log.update_index = ts; |
1982 | 0 | log.value_type = REFTABLE_LOG_UPDATE; |
1983 | 0 | ret = reftable_writer_add_log(writer, &log); |
1984 | |
|
1985 | 0 | done: |
1986 | 0 | assert(ret != REFTABLE_API_ERROR); |
1987 | 0 | reftable_log_record_release(&log); |
1988 | 0 | return ret; |
1989 | 0 | } |
1990 | | |
1991 | | static int reftable_be_create_reflog(struct ref_store *ref_store, |
1992 | | const char *refname, |
1993 | | struct strbuf *errmsg UNUSED) |
1994 | 0 | { |
1995 | 0 | struct reftable_ref_store *refs = |
1996 | 0 | reftable_be_downcast(ref_store, REF_STORE_WRITE, "create_reflog"); |
1997 | 0 | struct reftable_stack *stack = stack_for(refs, refname, &refname); |
1998 | 0 | struct write_reflog_existence_arg arg = { |
1999 | 0 | .refs = refs, |
2000 | 0 | .stack = stack, |
2001 | 0 | .refname = refname, |
2002 | 0 | }; |
2003 | 0 | int ret; |
2004 | |
|
2005 | 0 | ret = refs->err; |
2006 | 0 | if (ret < 0) |
2007 | 0 | goto done; |
2008 | | |
2009 | 0 | ret = reftable_stack_reload(stack); |
2010 | 0 | if (ret) |
2011 | 0 | goto done; |
2012 | | |
2013 | 0 | ret = reftable_stack_add(stack, &write_reflog_existence_table, &arg); |
2014 | |
|
2015 | 0 | done: |
2016 | 0 | return ret; |
2017 | 0 | } |
2018 | | |
2019 | | struct write_reflog_delete_arg { |
2020 | | struct reftable_stack *stack; |
2021 | | const char *refname; |
2022 | | }; |
2023 | | |
2024 | | static int write_reflog_delete_table(struct reftable_writer *writer, void *cb_data) |
2025 | 0 | { |
2026 | 0 | struct write_reflog_delete_arg *arg = cb_data; |
2027 | 0 | struct reftable_log_record log = {0}, tombstone = {0}; |
2028 | 0 | struct reftable_iterator it = {0}; |
2029 | 0 | uint64_t ts = reftable_stack_next_update_index(arg->stack); |
2030 | 0 | int ret; |
2031 | |
|
2032 | 0 | reftable_writer_set_limits(writer, ts, ts); |
2033 | |
|
2034 | 0 | reftable_stack_init_log_iterator(arg->stack, &it); |
2035 | | |
2036 | | /* |
2037 | | * In order to delete a table we need to delete all reflog entries one |
2038 | | * by one. This is inefficient, but the reftable format does not have a |
2039 | | * better marker right now. |
2040 | | */ |
2041 | 0 | ret = reftable_iterator_seek_log(&it, arg->refname); |
2042 | 0 | while (ret == 0) { |
2043 | 0 | ret = reftable_iterator_next_log(&it, &log); |
2044 | 0 | if (ret < 0) |
2045 | 0 | break; |
2046 | 0 | if (ret > 0 || strcmp(log.refname, arg->refname)) { |
2047 | 0 | ret = 0; |
2048 | 0 | break; |
2049 | 0 | } |
2050 | | |
2051 | 0 | tombstone.refname = (char *)arg->refname; |
2052 | 0 | tombstone.value_type = REFTABLE_LOG_DELETION; |
2053 | 0 | tombstone.update_index = log.update_index; |
2054 | |
|
2055 | 0 | ret = reftable_writer_add_log(writer, &tombstone); |
2056 | 0 | } |
2057 | |
|
2058 | 0 | reftable_log_record_release(&log); |
2059 | 0 | reftable_iterator_destroy(&it); |
2060 | 0 | return ret; |
2061 | 0 | } |
2062 | | |
2063 | | static int reftable_be_delete_reflog(struct ref_store *ref_store, |
2064 | | const char *refname) |
2065 | 0 | { |
2066 | 0 | struct reftable_ref_store *refs = |
2067 | 0 | reftable_be_downcast(ref_store, REF_STORE_WRITE, "delete_reflog"); |
2068 | 0 | struct reftable_stack *stack = stack_for(refs, refname, &refname); |
2069 | 0 | struct write_reflog_delete_arg arg = { |
2070 | 0 | .stack = stack, |
2071 | 0 | .refname = refname, |
2072 | 0 | }; |
2073 | 0 | int ret; |
2074 | |
|
2075 | 0 | ret = reftable_stack_reload(stack); |
2076 | 0 | if (ret) |
2077 | 0 | return ret; |
2078 | 0 | ret = reftable_stack_add(stack, &write_reflog_delete_table, &arg); |
2079 | |
|
2080 | 0 | assert(ret != REFTABLE_API_ERROR); |
2081 | 0 | return ret; |
2082 | 0 | } |
2083 | | |
2084 | | struct reflog_expiry_arg { |
2085 | | struct reftable_ref_store *refs; |
2086 | | struct reftable_stack *stack; |
2087 | | struct reftable_log_record *records; |
2088 | | struct object_id update_oid; |
2089 | | const char *refname; |
2090 | | size_t len; |
2091 | | }; |
2092 | | |
2093 | | static int write_reflog_expiry_table(struct reftable_writer *writer, void *cb_data) |
2094 | 0 | { |
2095 | 0 | struct reflog_expiry_arg *arg = cb_data; |
2096 | 0 | uint64_t ts = reftable_stack_next_update_index(arg->stack); |
2097 | 0 | uint64_t live_records = 0; |
2098 | 0 | size_t i; |
2099 | 0 | int ret; |
2100 | |
|
2101 | 0 | for (i = 0; i < arg->len; i++) |
2102 | 0 | if (arg->records[i].value_type == REFTABLE_LOG_UPDATE) |
2103 | 0 | live_records++; |
2104 | |
|
2105 | 0 | reftable_writer_set_limits(writer, ts, ts); |
2106 | |
|
2107 | 0 | if (!is_null_oid(&arg->update_oid)) { |
2108 | 0 | struct reftable_ref_record ref = {0}; |
2109 | 0 | struct object_id peeled; |
2110 | |
|
2111 | 0 | ref.refname = (char *)arg->refname; |
2112 | 0 | ref.update_index = ts; |
2113 | |
|
2114 | 0 | if (!peel_object(arg->refs->base.repo, &arg->update_oid, &peeled)) { |
2115 | 0 | ref.value_type = REFTABLE_REF_VAL2; |
2116 | 0 | memcpy(ref.value.val2.target_value, peeled.hash, GIT_MAX_RAWSZ); |
2117 | 0 | memcpy(ref.value.val2.value, arg->update_oid.hash, GIT_MAX_RAWSZ); |
2118 | 0 | } else { |
2119 | 0 | ref.value_type = REFTABLE_REF_VAL1; |
2120 | 0 | memcpy(ref.value.val1, arg->update_oid.hash, GIT_MAX_RAWSZ); |
2121 | 0 | } |
2122 | |
|
2123 | 0 | ret = reftable_writer_add_ref(writer, &ref); |
2124 | 0 | if (ret < 0) |
2125 | 0 | return ret; |
2126 | 0 | } |
2127 | | |
2128 | | /* |
2129 | | * When there are no more entries left in the reflog we empty it |
2130 | | * completely, but write a placeholder reflog entry that indicates that |
2131 | | * the reflog still exists. |
2132 | | */ |
2133 | 0 | if (!live_records) { |
2134 | 0 | struct reftable_log_record log = { |
2135 | 0 | .refname = (char *)arg->refname, |
2136 | 0 | .value_type = REFTABLE_LOG_UPDATE, |
2137 | 0 | .update_index = ts, |
2138 | 0 | }; |
2139 | |
|
2140 | 0 | ret = reftable_writer_add_log(writer, &log); |
2141 | 0 | if (ret) |
2142 | 0 | return ret; |
2143 | 0 | } |
2144 | | |
2145 | 0 | for (i = 0; i < arg->len; i++) { |
2146 | 0 | ret = reftable_writer_add_log(writer, &arg->records[i]); |
2147 | 0 | if (ret) |
2148 | 0 | return ret; |
2149 | 0 | } |
2150 | | |
2151 | 0 | return 0; |
2152 | 0 | } |
2153 | | |
2154 | | static int reftable_be_reflog_expire(struct ref_store *ref_store, |
2155 | | const char *refname, |
2156 | | unsigned int flags, |
2157 | | reflog_expiry_prepare_fn prepare_fn, |
2158 | | reflog_expiry_should_prune_fn should_prune_fn, |
2159 | | reflog_expiry_cleanup_fn cleanup_fn, |
2160 | | void *policy_cb_data) |
2161 | 0 | { |
2162 | | /* |
2163 | | * For log expiry, we write tombstones for every single reflog entry |
2164 | | * that is to be expired. This means that the entries are still |
2165 | | * retrievable by delving into the stack, and expiring entries |
2166 | | * paradoxically takes extra memory. This memory is only reclaimed when |
2167 | | * compacting the reftable stack. |
2168 | | * |
2169 | | * It would be better if the refs backend supported an API that sets a |
2170 | | * criterion for all refs, passing the criterion to pack_refs(). |
2171 | | * |
2172 | | * On the plus side, because we do the expiration per ref, we can easily |
2173 | | * insert the reflog existence dummies. |
2174 | | */ |
2175 | 0 | struct reftable_ref_store *refs = |
2176 | 0 | reftable_be_downcast(ref_store, REF_STORE_WRITE, "reflog_expire"); |
2177 | 0 | struct reftable_stack *stack = stack_for(refs, refname, &refname); |
2178 | 0 | struct reftable_log_record *logs = NULL; |
2179 | 0 | struct reftable_log_record *rewritten = NULL; |
2180 | 0 | struct reftable_ref_record ref_record = {0}; |
2181 | 0 | struct reftable_iterator it = {0}; |
2182 | 0 | struct reftable_addition *add = NULL; |
2183 | 0 | struct reflog_expiry_arg arg = {0}; |
2184 | 0 | struct object_id oid = {0}; |
2185 | 0 | uint8_t *last_hash = NULL; |
2186 | 0 | size_t logs_nr = 0, logs_alloc = 0, i; |
2187 | 0 | int ret; |
2188 | |
|
2189 | 0 | if (refs->err < 0) |
2190 | 0 | return refs->err; |
2191 | | |
2192 | 0 | ret = reftable_stack_reload(stack); |
2193 | 0 | if (ret < 0) |
2194 | 0 | goto done; |
2195 | | |
2196 | 0 | reftable_stack_init_log_iterator(stack, &it); |
2197 | |
|
2198 | 0 | ret = reftable_iterator_seek_log(&it, refname); |
2199 | 0 | if (ret < 0) |
2200 | 0 | goto done; |
2201 | | |
2202 | 0 | ret = reftable_stack_new_addition(&add, stack); |
2203 | 0 | if (ret < 0) |
2204 | 0 | goto done; |
2205 | | |
2206 | 0 | ret = reftable_stack_read_ref(stack, refname, &ref_record); |
2207 | 0 | if (ret < 0) |
2208 | 0 | goto done; |
2209 | 0 | if (reftable_ref_record_val1(&ref_record)) |
2210 | 0 | oidread(&oid, reftable_ref_record_val1(&ref_record), |
2211 | 0 | ref_store->repo->hash_algo); |
2212 | 0 | prepare_fn(refname, &oid, policy_cb_data); |
2213 | |
|
2214 | 0 | while (1) { |
2215 | 0 | struct reftable_log_record log = {0}; |
2216 | 0 | struct object_id old_oid, new_oid; |
2217 | |
|
2218 | 0 | ret = reftable_iterator_next_log(&it, &log); |
2219 | 0 | if (ret < 0) |
2220 | 0 | goto done; |
2221 | 0 | if (ret > 0 || strcmp(log.refname, refname)) { |
2222 | 0 | reftable_log_record_release(&log); |
2223 | 0 | break; |
2224 | 0 | } |
2225 | | |
2226 | 0 | oidread(&old_oid, log.value.update.old_hash, |
2227 | 0 | ref_store->repo->hash_algo); |
2228 | 0 | oidread(&new_oid, log.value.update.new_hash, |
2229 | 0 | ref_store->repo->hash_algo); |
2230 | | |
2231 | | /* |
2232 | | * Skip over the reflog existence marker. We will add it back |
2233 | | * in when there are no live reflog records. |
2234 | | */ |
2235 | 0 | if (is_null_oid(&old_oid) && is_null_oid(&new_oid)) { |
2236 | 0 | reftable_log_record_release(&log); |
2237 | 0 | continue; |
2238 | 0 | } |
2239 | | |
2240 | 0 | ALLOC_GROW(logs, logs_nr + 1, logs_alloc); |
2241 | 0 | logs[logs_nr++] = log; |
2242 | 0 | } |
2243 | | |
2244 | | /* |
2245 | | * We need to rewrite all reflog entries according to the pruning |
2246 | | * callback function: |
2247 | | * |
2248 | | * - If a reflog entry shall be pruned we mark the record for |
2249 | | * deletion. |
2250 | | * |
2251 | | * - Otherwise we may have to rewrite the chain of reflog entries so |
2252 | | * that gaps created by just-deleted records get backfilled. |
2253 | | */ |
2254 | 0 | CALLOC_ARRAY(rewritten, logs_nr); |
2255 | 0 | for (i = logs_nr; i--;) { |
2256 | 0 | struct reftable_log_record *dest = &rewritten[i]; |
2257 | 0 | struct object_id old_oid, new_oid; |
2258 | |
|
2259 | 0 | *dest = logs[i]; |
2260 | 0 | oidread(&old_oid, logs[i].value.update.old_hash, |
2261 | 0 | ref_store->repo->hash_algo); |
2262 | 0 | oidread(&new_oid, logs[i].value.update.new_hash, |
2263 | 0 | ref_store->repo->hash_algo); |
2264 | |
|
2265 | 0 | if (should_prune_fn(&old_oid, &new_oid, logs[i].value.update.email, |
2266 | 0 | (timestamp_t)logs[i].value.update.time, |
2267 | 0 | logs[i].value.update.tz_offset, |
2268 | 0 | logs[i].value.update.message, |
2269 | 0 | policy_cb_data)) { |
2270 | 0 | dest->value_type = REFTABLE_LOG_DELETION; |
2271 | 0 | } else { |
2272 | 0 | if ((flags & EXPIRE_REFLOGS_REWRITE) && last_hash) |
2273 | 0 | memcpy(dest->value.update.old_hash, last_hash, GIT_MAX_RAWSZ); |
2274 | 0 | last_hash = logs[i].value.update.new_hash; |
2275 | 0 | } |
2276 | 0 | } |
2277 | |
|
2278 | 0 | if (flags & EXPIRE_REFLOGS_UPDATE_REF && last_hash && |
2279 | 0 | reftable_ref_record_val1(&ref_record)) |
2280 | 0 | oidread(&arg.update_oid, last_hash, ref_store->repo->hash_algo); |
2281 | |
|
2282 | 0 | arg.refs = refs; |
2283 | 0 | arg.records = rewritten; |
2284 | 0 | arg.len = logs_nr; |
2285 | 0 | arg.stack = stack, |
2286 | 0 | arg.refname = refname, |
2287 | |
|
2288 | 0 | ret = reftable_addition_add(add, &write_reflog_expiry_table, &arg); |
2289 | 0 | if (ret < 0) |
2290 | 0 | goto done; |
2291 | | |
2292 | | /* |
2293 | | * Future improvement: we could skip writing records that were |
2294 | | * not changed. |
2295 | | */ |
2296 | 0 | if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) |
2297 | 0 | ret = reftable_addition_commit(add); |
2298 | |
|
2299 | 0 | done: |
2300 | 0 | if (add) |
2301 | 0 | cleanup_fn(policy_cb_data); |
2302 | 0 | assert(ret != REFTABLE_API_ERROR); |
2303 | | |
2304 | 0 | reftable_ref_record_release(&ref_record); |
2305 | 0 | reftable_iterator_destroy(&it); |
2306 | 0 | reftable_addition_destroy(add); |
2307 | 0 | for (i = 0; i < logs_nr; i++) |
2308 | 0 | reftable_log_record_release(&logs[i]); |
2309 | 0 | free(logs); |
2310 | 0 | free(rewritten); |
2311 | 0 | return ret; |
2312 | 0 | } |
2313 | | |
2314 | | static int reftable_be_fsck(struct ref_store *ref_store UNUSED, |
2315 | | struct fsck_options *o UNUSED) |
2316 | 0 | { |
2317 | 0 | return 0; |
2318 | 0 | } |
2319 | | |
2320 | | struct ref_storage_be refs_be_reftable = { |
2321 | | .name = "reftable", |
2322 | | .init = reftable_be_init, |
2323 | | .release = reftable_be_release, |
2324 | | .create_on_disk = reftable_be_create_on_disk, |
2325 | | .remove_on_disk = reftable_be_remove_on_disk, |
2326 | | |
2327 | | .transaction_prepare = reftable_be_transaction_prepare, |
2328 | | .transaction_finish = reftable_be_transaction_finish, |
2329 | | .transaction_abort = reftable_be_transaction_abort, |
2330 | | .initial_transaction_commit = reftable_be_initial_transaction_commit, |
2331 | | |
2332 | | .pack_refs = reftable_be_pack_refs, |
2333 | | .rename_ref = reftable_be_rename_ref, |
2334 | | .copy_ref = reftable_be_copy_ref, |
2335 | | |
2336 | | .iterator_begin = reftable_be_iterator_begin, |
2337 | | .read_raw_ref = reftable_be_read_raw_ref, |
2338 | | .read_symbolic_ref = reftable_be_read_symbolic_ref, |
2339 | | |
2340 | | .reflog_iterator_begin = reftable_be_reflog_iterator_begin, |
2341 | | .for_each_reflog_ent = reftable_be_for_each_reflog_ent, |
2342 | | .for_each_reflog_ent_reverse = reftable_be_for_each_reflog_ent_reverse, |
2343 | | .reflog_exists = reftable_be_reflog_exists, |
2344 | | .create_reflog = reftable_be_create_reflog, |
2345 | | .delete_reflog = reftable_be_delete_reflog, |
2346 | | .reflog_expire = reftable_be_reflog_expire, |
2347 | | |
2348 | | .fsck = reftable_be_fsck, |
2349 | | }; |