Line | Count | Source |
1 | | /* |
2 | | * LibXDiff by Davide Libenzi ( File Differential Library ) |
3 | | * Copyright (C) 2003 Davide Libenzi |
4 | | * |
5 | | * This library is free software; you can redistribute it and/or |
6 | | * modify it under the terms of the GNU Lesser General Public |
7 | | * License as published by the Free Software Foundation; either |
8 | | * version 2.1 of the License, or (at your option) any later version. |
9 | | * |
10 | | * This library is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | | * Lesser General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU Lesser General Public |
16 | | * License along with this library; if not, see |
17 | | * <http://www.gnu.org/licenses/>. |
18 | | * |
19 | | * Davide Libenzi <davidel@xmailserver.org> |
20 | | * |
21 | | */ |
22 | | |
23 | | #include "xinclude.h" |
24 | | |
25 | | static size_t get_hash(xdfile_t *xdf, long index) |
26 | 0 | { |
27 | 0 | return xdf->recs[xdf->reference_index[index]].minimal_perfect_hash; |
28 | 0 | } |
29 | | |
30 | 0 | #define XDL_MAX_COST_MIN 256 |
31 | 0 | #define XDL_HEUR_MIN_COST 256 |
32 | 0 | #define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1) |
33 | 0 | #define XDL_SNAKE_CNT 20 |
34 | 0 | #define XDL_K_HEUR 4 |
35 | | |
36 | | typedef struct s_xdpsplit { |
37 | | long i1, i2; |
38 | | int min_lo, min_hi; |
39 | | } xdpsplit_t; |
40 | | |
41 | | /* |
42 | | * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers. |
43 | | * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both |
44 | | * the forward diagonal starting from (off1, off2) and the backward diagonal |
45 | | * starting from (lim1, lim2). If the K values on the same diagonal crosses |
46 | | * returns the furthest point of reach. We might encounter expensive edge cases |
47 | | * using this algorithm, so a little bit of heuristic is needed to cut the |
48 | | * search and to return a suboptimal point. |
49 | | */ |
50 | | static long xdl_split(xdfile_t *xdf1, long off1, long lim1, |
51 | | xdfile_t *xdf2, long off2, long lim2, |
52 | | long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl, |
53 | 0 | xdalgoenv_t *xenv) { |
54 | 0 | long dmin = off1 - lim2, dmax = lim1 - off2; |
55 | 0 | long fmid = off1 - off2, bmid = lim1 - lim2; |
56 | 0 | long odd = (fmid - bmid) & 1; |
57 | 0 | long fmin = fmid, fmax = fmid; |
58 | 0 | long bmin = bmid, bmax = bmid; |
59 | 0 | long ec, d, i1, i2, prev1, best, dd, v, k; |
60 | | |
61 | | /* |
62 | | * Set initial diagonal values for both forward and backward path. |
63 | | */ |
64 | 0 | kvdf[fmid] = off1; |
65 | 0 | kvdb[bmid] = lim1; |
66 | |
|
67 | 0 | for (ec = 1;; ec++) { |
68 | 0 | int got_snake = 0; |
69 | | |
70 | | /* |
71 | | * We need to extend the diagonal "domain" by one. If the next |
72 | | * values exits the box boundaries we need to change it in the |
73 | | * opposite direction because (max - min) must be a power of |
74 | | * two. |
75 | | * |
76 | | * Also we initialize the external K value to -1 so that we can |
77 | | * avoid extra conditions in the check inside the core loop. |
78 | | */ |
79 | 0 | if (fmin > dmin) |
80 | 0 | kvdf[--fmin - 1] = -1; |
81 | 0 | else |
82 | 0 | ++fmin; |
83 | 0 | if (fmax < dmax) |
84 | 0 | kvdf[++fmax + 1] = -1; |
85 | 0 | else |
86 | 0 | --fmax; |
87 | |
|
88 | 0 | for (d = fmax; d >= fmin; d -= 2) { |
89 | 0 | if (kvdf[d - 1] >= kvdf[d + 1]) |
90 | 0 | i1 = kvdf[d - 1] + 1; |
91 | 0 | else |
92 | 0 | i1 = kvdf[d + 1]; |
93 | 0 | prev1 = i1; |
94 | 0 | i2 = i1 - d; |
95 | 0 | for (; i1 < lim1 && i2 < lim2 && get_hash(xdf1, i1) == get_hash(xdf2, i2); i1++, i2++); |
96 | 0 | if (i1 - prev1 > xenv->snake_cnt) |
97 | 0 | got_snake = 1; |
98 | 0 | kvdf[d] = i1; |
99 | 0 | if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) { |
100 | 0 | spl->i1 = i1; |
101 | 0 | spl->i2 = i2; |
102 | 0 | spl->min_lo = spl->min_hi = 1; |
103 | 0 | return ec; |
104 | 0 | } |
105 | 0 | } |
106 | | |
107 | | /* |
108 | | * We need to extend the diagonal "domain" by one. If the next |
109 | | * values exits the box boundaries we need to change it in the |
110 | | * opposite direction because (max - min) must be a power of |
111 | | * two. |
112 | | * |
113 | | * Also we initialize the external K value to -1 so that we can |
114 | | * avoid extra conditions in the check inside the core loop. |
115 | | */ |
116 | 0 | if (bmin > dmin) |
117 | 0 | kvdb[--bmin - 1] = XDL_LINE_MAX; |
118 | 0 | else |
119 | 0 | ++bmin; |
120 | 0 | if (bmax < dmax) |
121 | 0 | kvdb[++bmax + 1] = XDL_LINE_MAX; |
122 | 0 | else |
123 | 0 | --bmax; |
124 | |
|
125 | 0 | for (d = bmax; d >= bmin; d -= 2) { |
126 | 0 | if (kvdb[d - 1] < kvdb[d + 1]) |
127 | 0 | i1 = kvdb[d - 1]; |
128 | 0 | else |
129 | 0 | i1 = kvdb[d + 1] - 1; |
130 | 0 | prev1 = i1; |
131 | 0 | i2 = i1 - d; |
132 | 0 | for (; i1 > off1 && i2 > off2 && get_hash(xdf1, i1 - 1) == get_hash(xdf2, i2 - 1); i1--, i2--); |
133 | 0 | if (prev1 - i1 > xenv->snake_cnt) |
134 | 0 | got_snake = 1; |
135 | 0 | kvdb[d] = i1; |
136 | 0 | if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) { |
137 | 0 | spl->i1 = i1; |
138 | 0 | spl->i2 = i2; |
139 | 0 | spl->min_lo = spl->min_hi = 1; |
140 | 0 | return ec; |
141 | 0 | } |
142 | 0 | } |
143 | | |
144 | 0 | if (need_min) |
145 | 0 | continue; |
146 | | |
147 | | /* |
148 | | * If the edit cost is above the heuristic trigger and if |
149 | | * we got a good snake, we sample current diagonals to see |
150 | | * if some of them have reached an "interesting" path. Our |
151 | | * measure is a function of the distance from the diagonal |
152 | | * corner (i1 + i2) penalized with the distance from the |
153 | | * mid diagonal itself. If this value is above the current |
154 | | * edit cost times a magic factor (XDL_K_HEUR) we consider |
155 | | * it interesting. |
156 | | */ |
157 | 0 | if (got_snake && ec > xenv->heur_min) { |
158 | 0 | for (best = 0, d = fmax; d >= fmin; d -= 2) { |
159 | 0 | dd = d > fmid ? d - fmid: fmid - d; |
160 | 0 | i1 = kvdf[d]; |
161 | 0 | i2 = i1 - d; |
162 | 0 | v = (i1 - off1) + (i2 - off2) - dd; |
163 | |
|
164 | 0 | if (v > XDL_K_HEUR * ec && v > best && |
165 | 0 | off1 + xenv->snake_cnt <= i1 && i1 < lim1 && |
166 | 0 | off2 + xenv->snake_cnt <= i2 && i2 < lim2) { |
167 | 0 | for (k = 1; get_hash(xdf1, i1 - k) == get_hash(xdf2, i2 - k); k++) |
168 | 0 | if (k == xenv->snake_cnt) { |
169 | 0 | best = v; |
170 | 0 | spl->i1 = i1; |
171 | 0 | spl->i2 = i2; |
172 | 0 | break; |
173 | 0 | } |
174 | 0 | } |
175 | 0 | } |
176 | 0 | if (best > 0) { |
177 | 0 | spl->min_lo = 1; |
178 | 0 | spl->min_hi = 0; |
179 | 0 | return ec; |
180 | 0 | } |
181 | | |
182 | 0 | for (best = 0, d = bmax; d >= bmin; d -= 2) { |
183 | 0 | dd = d > bmid ? d - bmid: bmid - d; |
184 | 0 | i1 = kvdb[d]; |
185 | 0 | i2 = i1 - d; |
186 | 0 | v = (lim1 - i1) + (lim2 - i2) - dd; |
187 | |
|
188 | 0 | if (v > XDL_K_HEUR * ec && v > best && |
189 | 0 | off1 < i1 && i1 <= lim1 - xenv->snake_cnt && |
190 | 0 | off2 < i2 && i2 <= lim2 - xenv->snake_cnt) { |
191 | 0 | for (k = 0; get_hash(xdf1, i1 + k) == get_hash(xdf2, i2 + k); k++) |
192 | 0 | if (k == xenv->snake_cnt - 1) { |
193 | 0 | best = v; |
194 | 0 | spl->i1 = i1; |
195 | 0 | spl->i2 = i2; |
196 | 0 | break; |
197 | 0 | } |
198 | 0 | } |
199 | 0 | } |
200 | 0 | if (best > 0) { |
201 | 0 | spl->min_lo = 0; |
202 | 0 | spl->min_hi = 1; |
203 | 0 | return ec; |
204 | 0 | } |
205 | 0 | } |
206 | | |
207 | | /* |
208 | | * Enough is enough. We spent too much time here and now we |
209 | | * collect the furthest reaching path using the (i1 + i2) |
210 | | * measure. |
211 | | */ |
212 | 0 | if (ec >= xenv->mxcost) { |
213 | 0 | long fbest, fbest1, bbest, bbest1; |
214 | |
|
215 | 0 | fbest = fbest1 = -1; |
216 | 0 | for (d = fmax; d >= fmin; d -= 2) { |
217 | 0 | i1 = XDL_MIN(kvdf[d], lim1); |
218 | 0 | i2 = i1 - d; |
219 | 0 | if (lim2 < i2) { |
220 | 0 | i1 = lim2 + d; |
221 | 0 | i2 = lim2; |
222 | 0 | } |
223 | 0 | if (fbest < i1 + i2) { |
224 | 0 | fbest = i1 + i2; |
225 | 0 | fbest1 = i1; |
226 | 0 | } |
227 | 0 | } |
228 | |
|
229 | 0 | bbest = bbest1 = XDL_LINE_MAX; |
230 | 0 | for (d = bmax; d >= bmin; d -= 2) { |
231 | 0 | i1 = XDL_MAX(off1, kvdb[d]); |
232 | 0 | i2 = i1 - d; |
233 | 0 | if (i2 < off2) { |
234 | 0 | i1 = off2 + d; |
235 | 0 | i2 = off2; |
236 | 0 | } |
237 | 0 | if (i1 + i2 < bbest) { |
238 | 0 | bbest = i1 + i2; |
239 | 0 | bbest1 = i1; |
240 | 0 | } |
241 | 0 | } |
242 | |
|
243 | 0 | if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) { |
244 | 0 | spl->i1 = fbest1; |
245 | 0 | spl->i2 = fbest - fbest1; |
246 | 0 | spl->min_lo = 1; |
247 | 0 | spl->min_hi = 0; |
248 | 0 | } else { |
249 | 0 | spl->i1 = bbest1; |
250 | 0 | spl->i2 = bbest - bbest1; |
251 | 0 | spl->min_lo = 0; |
252 | 0 | spl->min_hi = 1; |
253 | 0 | } |
254 | 0 | return ec; |
255 | 0 | } |
256 | 0 | } |
257 | 0 | } |
258 | | |
259 | | |
260 | | /* |
261 | | * Rule: "Divide et Impera" (divide & conquer). Recursively split the box in |
262 | | * sub-boxes by calling the box splitting function. Note that the real job |
263 | | * (marking changed lines) is done in the two boundary reaching checks. |
264 | | */ |
265 | | int xdl_recs_cmp(xdfile_t *xdf1, long off1, long lim1, |
266 | | xdfile_t *xdf2, long off2, long lim2, |
267 | 0 | long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) { |
268 | | |
269 | | /* |
270 | | * Shrink the box by walking through each diagonal snake (SW and NE). |
271 | | */ |
272 | 0 | for (; off1 < lim1 && off2 < lim2 && get_hash(xdf1, off1) == get_hash(xdf2, off2); off1++, off2++); |
273 | 0 | for (; off1 < lim1 && off2 < lim2 && get_hash(xdf1, lim1 - 1) == get_hash(xdf2, lim2 - 1); lim1--, lim2--); |
274 | | |
275 | | /* |
276 | | * If one dimension is empty, then all records on the other one must |
277 | | * be obviously changed. |
278 | | */ |
279 | 0 | if (off1 == lim1) { |
280 | 0 | for (; off2 < lim2; off2++) |
281 | 0 | xdf2->changed[xdf2->reference_index[off2]] = true; |
282 | 0 | } else if (off2 == lim2) { |
283 | 0 | for (; off1 < lim1; off1++) |
284 | 0 | xdf1->changed[xdf1->reference_index[off1]] = true; |
285 | 0 | } else { |
286 | 0 | xdpsplit_t spl; |
287 | 0 | spl.i1 = spl.i2 = 0; |
288 | | |
289 | | /* |
290 | | * Divide ... |
291 | | */ |
292 | 0 | if (xdl_split(xdf1, off1, lim1, xdf2, off2, lim2, kvdf, kvdb, |
293 | 0 | need_min, &spl, xenv) < 0) { |
294 | |
|
295 | 0 | return -1; |
296 | 0 | } |
297 | | |
298 | | /* |
299 | | * ... et Impera. |
300 | | */ |
301 | 0 | if (xdl_recs_cmp(xdf1, off1, spl.i1, xdf2, off2, spl.i2, |
302 | 0 | kvdf, kvdb, spl.min_lo, xenv) < 0 || |
303 | 0 | xdl_recs_cmp(xdf1, spl.i1, lim1, xdf2, spl.i2, lim2, |
304 | 0 | kvdf, kvdb, spl.min_hi, xenv) < 0) { |
305 | |
|
306 | 0 | return -1; |
307 | 0 | } |
308 | 0 | } |
309 | | |
310 | 0 | return 0; |
311 | 0 | } |
312 | | |
313 | | |
314 | | int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, |
315 | 0 | xdfenv_t *xe) { |
316 | 0 | long ndiags; |
317 | 0 | long *kvd, *kvdf, *kvdb; |
318 | 0 | xdalgoenv_t xenv; |
319 | 0 | int res; |
320 | |
|
321 | 0 | if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) |
322 | 0 | return -1; |
323 | | |
324 | 0 | if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF) { |
325 | 0 | res = xdl_do_patience_diff(xpp, xe); |
326 | 0 | goto out; |
327 | 0 | } |
328 | | |
329 | 0 | if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF) { |
330 | 0 | res = xdl_do_histogram_diff(xpp, xe); |
331 | 0 | goto out; |
332 | 0 | } |
333 | | |
334 | | /* |
335 | | * Allocate and setup K vectors to be used by the differential |
336 | | * algorithm. |
337 | | * |
338 | | * One is to store the forward path and one to store the backward path. |
339 | | */ |
340 | 0 | ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3; |
341 | 0 | if (!XDL_ALLOC_ARRAY(kvd, 2 * ndiags + 2)) { |
342 | |
|
343 | 0 | xdl_free_env(xe); |
344 | 0 | return -1; |
345 | 0 | } |
346 | 0 | kvdf = kvd; |
347 | 0 | kvdb = kvdf + ndiags; |
348 | 0 | kvdf += xe->xdf2.nreff + 1; |
349 | 0 | kvdb += xe->xdf2.nreff + 1; |
350 | |
|
351 | 0 | xenv.mxcost = xdl_bogosqrt(ndiags); |
352 | 0 | if (xenv.mxcost < XDL_MAX_COST_MIN) |
353 | 0 | xenv.mxcost = XDL_MAX_COST_MIN; |
354 | 0 | xenv.snake_cnt = XDL_SNAKE_CNT; |
355 | 0 | xenv.heur_min = XDL_HEUR_MIN_COST; |
356 | |
|
357 | 0 | res = xdl_recs_cmp(&xe->xdf1, 0, xe->xdf1.nreff, &xe->xdf2, 0, xe->xdf2.nreff, |
358 | 0 | kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, |
359 | 0 | &xenv); |
360 | 0 | xdl_free(kvd); |
361 | 0 | out: |
362 | 0 | if (res < 0) |
363 | 0 | xdl_free_env(xe); |
364 | |
|
365 | 0 | return res; |
366 | 0 | } |
367 | | |
368 | | |
369 | 0 | static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) { |
370 | 0 | xdchange_t *xch; |
371 | |
|
372 | 0 | if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t)))) |
373 | 0 | return NULL; |
374 | | |
375 | 0 | xch->next = xscr; |
376 | 0 | xch->i1 = i1; |
377 | 0 | xch->i2 = i2; |
378 | 0 | xch->chg1 = chg1; |
379 | 0 | xch->chg2 = chg2; |
380 | 0 | xch->ignore = 0; |
381 | |
|
382 | 0 | return xch; |
383 | 0 | } |
384 | | |
385 | | |
386 | | static int recs_match(xrecord_t *rec1, xrecord_t *rec2) |
387 | 0 | { |
388 | 0 | return rec1->minimal_perfect_hash == rec2->minimal_perfect_hash; |
389 | 0 | } |
390 | | |
391 | | /* |
392 | | * If a line is indented more than this, get_indent() just returns this value. |
393 | | * This avoids having to do absurd amounts of work for data that are not |
394 | | * human-readable text, and also ensures that the output of get_indent fits |
395 | | * within an int. |
396 | | */ |
397 | 0 | #define MAX_INDENT 200 |
398 | | |
399 | | /* |
400 | | * Return the amount of indentation of the specified line, treating TAB as 8 |
401 | | * columns. Return -1 if line is empty or contains only whitespace. Clamp the |
402 | | * output value at MAX_INDENT. |
403 | | */ |
404 | | static int get_indent(xrecord_t *rec) |
405 | 0 | { |
406 | 0 | int ret = 0; |
407 | |
|
408 | 0 | for (size_t i = 0; i < rec->size; i++) { |
409 | 0 | char c = (char) rec->ptr[i]; |
410 | |
|
411 | 0 | if (!XDL_ISSPACE(c)) |
412 | 0 | return ret; |
413 | 0 | else if (c == ' ') |
414 | 0 | ret += 1; |
415 | 0 | else if (c == '\t') |
416 | 0 | ret += 8 - ret % 8; |
417 | | /* ignore other whitespace characters */ |
418 | | |
419 | 0 | if (ret >= MAX_INDENT) |
420 | 0 | return MAX_INDENT; |
421 | 0 | } |
422 | | |
423 | | /* The line contains only whitespace. */ |
424 | 0 | return -1; |
425 | 0 | } |
426 | | |
427 | | /* |
428 | | * If more than this number of consecutive blank rows are found, just return |
429 | | * this value. This avoids requiring O(N^2) work for pathological cases, and |
430 | | * also ensures that the output of score_split fits in an int. |
431 | | */ |
432 | 0 | #define MAX_BLANKS 20 |
433 | | |
434 | | /* Characteristics measured about a hypothetical split position. */ |
435 | | struct split_measurement { |
436 | | /* |
437 | | * Is the split at the end of the file (aside from any blank lines)? |
438 | | */ |
439 | | int end_of_file; |
440 | | |
441 | | /* |
442 | | * How much is the line immediately following the split indented (or -1 |
443 | | * if the line is blank): |
444 | | */ |
445 | | int indent; |
446 | | |
447 | | /* |
448 | | * How many consecutive lines above the split are blank? |
449 | | */ |
450 | | int pre_blank; |
451 | | |
452 | | /* |
453 | | * How much is the nearest non-blank line above the split indented (or |
454 | | * -1 if there is no such line)? |
455 | | */ |
456 | | int pre_indent; |
457 | | |
458 | | /* |
459 | | * How many lines after the line following the split are blank? |
460 | | */ |
461 | | int post_blank; |
462 | | |
463 | | /* |
464 | | * How much is the nearest non-blank line after the line following the |
465 | | * split indented (or -1 if there is no such line)? |
466 | | */ |
467 | | int post_indent; |
468 | | }; |
469 | | |
470 | | struct split_score { |
471 | | /* The effective indent of this split (smaller is preferred). */ |
472 | | int effective_indent; |
473 | | |
474 | | /* Penalty for this split (smaller is preferred). */ |
475 | | int penalty; |
476 | | }; |
477 | | |
478 | | /* |
479 | | * Fill m with information about a hypothetical split of xdf above line split. |
480 | | */ |
481 | | static void measure_split(const xdfile_t *xdf, long split, |
482 | | struct split_measurement *m) |
483 | 0 | { |
484 | 0 | long i; |
485 | |
|
486 | 0 | if (split >= (long)xdf->nrec) { |
487 | 0 | m->end_of_file = 1; |
488 | 0 | m->indent = -1; |
489 | 0 | } else { |
490 | 0 | m->end_of_file = 0; |
491 | 0 | m->indent = get_indent(&xdf->recs[split]); |
492 | 0 | } |
493 | |
|
494 | 0 | m->pre_blank = 0; |
495 | 0 | m->pre_indent = -1; |
496 | 0 | for (i = split - 1; i >= 0; i--) { |
497 | 0 | m->pre_indent = get_indent(&xdf->recs[i]); |
498 | 0 | if (m->pre_indent != -1) |
499 | 0 | break; |
500 | 0 | m->pre_blank += 1; |
501 | 0 | if (m->pre_blank == MAX_BLANKS) { |
502 | 0 | m->pre_indent = 0; |
503 | 0 | break; |
504 | 0 | } |
505 | 0 | } |
506 | |
|
507 | 0 | m->post_blank = 0; |
508 | 0 | m->post_indent = -1; |
509 | 0 | for (i = split + 1; i < (long)xdf->nrec; i++) { |
510 | 0 | m->post_indent = get_indent(&xdf->recs[i]); |
511 | 0 | if (m->post_indent != -1) |
512 | 0 | break; |
513 | 0 | m->post_blank += 1; |
514 | 0 | if (m->post_blank == MAX_BLANKS) { |
515 | 0 | m->post_indent = 0; |
516 | 0 | break; |
517 | 0 | } |
518 | 0 | } |
519 | 0 | } |
520 | | |
521 | | /* |
522 | | * The empirically-determined weight factors used by score_split() below. |
523 | | * Larger values means that the position is a less favorable place to split. |
524 | | * |
525 | | * Note that scores are only ever compared against each other, so multiplying |
526 | | * all of these weight/penalty values by the same factor wouldn't change the |
527 | | * heuristic's behavior. Still, we need to set that arbitrary scale *somehow*. |
528 | | * In practice, these numbers are chosen to be large enough that they can be |
529 | | * adjusted relative to each other with sufficient precision despite using |
530 | | * integer math. |
531 | | */ |
532 | | |
533 | | /* Penalty if there are no non-blank lines before the split */ |
534 | 0 | #define START_OF_FILE_PENALTY 1 |
535 | | |
536 | | /* Penalty if there are no non-blank lines after the split */ |
537 | 0 | #define END_OF_FILE_PENALTY 21 |
538 | | |
539 | | /* Multiplier for the number of blank lines around the split */ |
540 | 0 | #define TOTAL_BLANK_WEIGHT (-30) |
541 | | |
542 | | /* Multiplier for the number of blank lines after the split */ |
543 | 0 | #define POST_BLANK_WEIGHT 6 |
544 | | |
545 | | /* |
546 | | * Penalties applied if the line is indented more than its predecessor |
547 | | */ |
548 | 0 | #define RELATIVE_INDENT_PENALTY (-4) |
549 | 0 | #define RELATIVE_INDENT_WITH_BLANK_PENALTY 10 |
550 | | |
551 | | /* |
552 | | * Penalties applied if the line is indented less than both its predecessor and |
553 | | * its successor |
554 | | */ |
555 | 0 | #define RELATIVE_OUTDENT_PENALTY 24 |
556 | 0 | #define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17 |
557 | | |
558 | | /* |
559 | | * Penalties applied if the line is indented less than its predecessor but not |
560 | | * less than its successor |
561 | | */ |
562 | 0 | #define RELATIVE_DEDENT_PENALTY 23 |
563 | 0 | #define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17 |
564 | | |
565 | | /* |
566 | | * We only consider whether the sum of the effective indents for splits are |
567 | | * less than (-1), equal to (0), or greater than (+1) each other. The resulting |
568 | | * value is multiplied by the following weight and combined with the penalty to |
569 | | * determine the better of two scores. |
570 | | */ |
571 | 0 | #define INDENT_WEIGHT 60 |
572 | | |
573 | | /* |
574 | | * How far do we slide a hunk at most? |
575 | | */ |
576 | 0 | #define INDENT_HEURISTIC_MAX_SLIDING 100 |
577 | | |
578 | | /* |
579 | | * Compute a badness score for the hypothetical split whose measurements are |
580 | | * stored in m. The weight factors were determined empirically using the tools |
581 | | * and corpus described in |
582 | | * |
583 | | * https://github.com/mhagger/diff-slider-tools |
584 | | * |
585 | | * Also see that project if you want to improve the weights based on, for |
586 | | * example, a larger or more diverse corpus. |
587 | | */ |
588 | | static void score_add_split(const struct split_measurement *m, struct split_score *s) |
589 | 0 | { |
590 | | /* |
591 | | * A place to accumulate penalty factors (positive makes this index more |
592 | | * favored): |
593 | | */ |
594 | 0 | int post_blank, total_blank, indent, any_blanks; |
595 | |
|
596 | 0 | if (m->pre_indent == -1 && m->pre_blank == 0) |
597 | 0 | s->penalty += START_OF_FILE_PENALTY; |
598 | |
|
599 | 0 | if (m->end_of_file) |
600 | 0 | s->penalty += END_OF_FILE_PENALTY; |
601 | | |
602 | | /* |
603 | | * Set post_blank to the number of blank lines following the split, |
604 | | * including the line immediately after the split: |
605 | | */ |
606 | 0 | post_blank = (m->indent == -1) ? 1 + m->post_blank : 0; |
607 | 0 | total_blank = m->pre_blank + post_blank; |
608 | | |
609 | | /* Penalties based on nearby blank lines: */ |
610 | 0 | s->penalty += TOTAL_BLANK_WEIGHT * total_blank; |
611 | 0 | s->penalty += POST_BLANK_WEIGHT * post_blank; |
612 | |
|
613 | 0 | if (m->indent != -1) |
614 | 0 | indent = m->indent; |
615 | 0 | else |
616 | 0 | indent = m->post_indent; |
617 | |
|
618 | 0 | any_blanks = (total_blank != 0); |
619 | | |
620 | | /* Note that the effective indent is -1 at the end of the file: */ |
621 | 0 | s->effective_indent += indent; |
622 | |
|
623 | 0 | if (indent == -1) { |
624 | | /* No additional adjustments needed. */ |
625 | 0 | } else if (m->pre_indent == -1) { |
626 | | /* No additional adjustments needed. */ |
627 | 0 | } else if (indent > m->pre_indent) { |
628 | | /* |
629 | | * The line is indented more than its predecessor. |
630 | | */ |
631 | 0 | s->penalty += any_blanks ? |
632 | 0 | RELATIVE_INDENT_WITH_BLANK_PENALTY : |
633 | 0 | RELATIVE_INDENT_PENALTY; |
634 | 0 | } else if (indent == m->pre_indent) { |
635 | | /* |
636 | | * The line has the same indentation level as its predecessor. |
637 | | * No additional adjustments needed. |
638 | | */ |
639 | 0 | } else { |
640 | | /* |
641 | | * The line is indented less than its predecessor. It could be |
642 | | * the block terminator of the previous block, but it could |
643 | | * also be the start of a new block (e.g., an "else" block, or |
644 | | * maybe the previous block didn't have a block terminator). |
645 | | * Try to distinguish those cases based on what comes next: |
646 | | */ |
647 | 0 | if (m->post_indent != -1 && m->post_indent > indent) { |
648 | | /* |
649 | | * The following line is indented more. So it is likely |
650 | | * that this line is the start of a block. |
651 | | */ |
652 | 0 | s->penalty += any_blanks ? |
653 | 0 | RELATIVE_OUTDENT_WITH_BLANK_PENALTY : |
654 | 0 | RELATIVE_OUTDENT_PENALTY; |
655 | 0 | } else { |
656 | | /* |
657 | | * That was probably the end of a block. |
658 | | */ |
659 | 0 | s->penalty += any_blanks ? |
660 | 0 | RELATIVE_DEDENT_WITH_BLANK_PENALTY : |
661 | 0 | RELATIVE_DEDENT_PENALTY; |
662 | 0 | } |
663 | 0 | } |
664 | 0 | } |
665 | | |
666 | | static int score_cmp(struct split_score *s1, struct split_score *s2) |
667 | 0 | { |
668 | | /* -1 if s1.effective_indent < s2->effective_indent, etc. */ |
669 | 0 | int cmp_indents = ((s1->effective_indent > s2->effective_indent) - |
670 | 0 | (s1->effective_indent < s2->effective_indent)); |
671 | |
|
672 | 0 | return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty); |
673 | 0 | } |
674 | | |
675 | | /* |
676 | | * Represent a group of changed lines in an xdfile_t (i.e., a contiguous group |
677 | | * of lines that was inserted or deleted from the corresponding version of the |
678 | | * file). We consider there to be such a group at the beginning of the file, at |
679 | | * the end of the file, and between any two unchanged lines, though most such |
680 | | * groups will usually be empty. |
681 | | * |
682 | | * If the first line in a group is equal to the line following the group, then |
683 | | * the group can be slid down. Similarly, if the last line in a group is equal |
684 | | * to the line preceding the group, then the group can be slid up. See |
685 | | * group_slide_down() and group_slide_up(). |
686 | | * |
687 | | * Note that loops that are testing for changed lines in xdf->rchg do not need |
688 | | * index bounding since the array is prepared with a zero at position -1 and N. |
689 | | */ |
690 | | struct xdlgroup { |
691 | | /* |
692 | | * The index of the first changed line in the group, or the index of |
693 | | * the unchanged line above which the (empty) group is located. |
694 | | */ |
695 | | long start; |
696 | | |
697 | | /* |
698 | | * The index of the first unchanged line after the group. For an empty |
699 | | * group, end is equal to start. |
700 | | */ |
701 | | long end; |
702 | | }; |
703 | | |
704 | | /* |
705 | | * Initialize g to point at the first group in xdf. |
706 | | */ |
707 | | static void group_init(xdfile_t *xdf, struct xdlgroup *g) |
708 | 0 | { |
709 | 0 | g->start = g->end = 0; |
710 | 0 | while (xdf->changed[g->end]) |
711 | 0 | g->end++; |
712 | 0 | } |
713 | | |
714 | | /* |
715 | | * Move g to describe the next (possibly empty) group in xdf and return 0. If g |
716 | | * is already at the end of the file, do nothing and return -1. |
717 | | */ |
718 | | static inline int group_next(xdfile_t *xdf, struct xdlgroup *g) |
719 | 0 | { |
720 | 0 | if (g->end == (long)xdf->nrec) |
721 | 0 | return -1; |
722 | | |
723 | 0 | g->start = g->end + 1; |
724 | 0 | for (g->end = g->start; xdf->changed[g->end]; g->end++) |
725 | 0 | ; |
726 | |
|
727 | 0 | return 0; |
728 | 0 | } |
729 | | |
730 | | /* |
731 | | * Move g to describe the previous (possibly empty) group in xdf and return 0. |
732 | | * If g is already at the beginning of the file, do nothing and return -1. |
733 | | */ |
734 | | static inline int group_previous(xdfile_t *xdf, struct xdlgroup *g) |
735 | 0 | { |
736 | 0 | if (g->start == 0) |
737 | 0 | return -1; |
738 | | |
739 | 0 | g->end = g->start - 1; |
740 | 0 | for (g->start = g->end; xdf->changed[g->start - 1]; g->start--) |
741 | 0 | ; |
742 | |
|
743 | 0 | return 0; |
744 | 0 | } |
745 | | |
746 | | /* |
747 | | * If g can be slid toward the end of the file, do so, and if it bumps into a |
748 | | * following group, expand this group to include it. Return 0 on success or -1 |
749 | | * if g cannot be slid down. |
750 | | */ |
751 | | static int group_slide_down(xdfile_t *xdf, struct xdlgroup *g) |
752 | 0 | { |
753 | 0 | if (g->end < (long)xdf->nrec && |
754 | 0 | recs_match(&xdf->recs[g->start], &xdf->recs[g->end])) { |
755 | 0 | xdf->changed[g->start++] = false; |
756 | 0 | xdf->changed[g->end++] = true; |
757 | |
|
758 | 0 | while (xdf->changed[g->end]) |
759 | 0 | g->end++; |
760 | |
|
761 | 0 | return 0; |
762 | 0 | } else { |
763 | 0 | return -1; |
764 | 0 | } |
765 | 0 | } |
766 | | |
767 | | /* |
768 | | * If g can be slid toward the beginning of the file, do so, and if it bumps |
769 | | * into a previous group, expand this group to include it. Return 0 on success |
770 | | * or -1 if g cannot be slid up. |
771 | | */ |
772 | | static int group_slide_up(xdfile_t *xdf, struct xdlgroup *g) |
773 | 0 | { |
774 | 0 | if (g->start > 0 && |
775 | 0 | recs_match(&xdf->recs[g->start - 1], &xdf->recs[g->end - 1])) { |
776 | 0 | xdf->changed[--g->start] = true; |
777 | 0 | xdf->changed[--g->end] = false; |
778 | |
|
779 | 0 | while (xdf->changed[g->start - 1]) |
780 | 0 | g->start--; |
781 | |
|
782 | 0 | return 0; |
783 | 0 | } else { |
784 | 0 | return -1; |
785 | 0 | } |
786 | 0 | } |
787 | | |
788 | | /* |
789 | | * Move back and forward change groups for a consistent and pretty diff output. |
790 | | * This also helps in finding joinable change groups and reducing the diff |
791 | | * size. |
792 | | */ |
793 | 0 | int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) { |
794 | 0 | struct xdlgroup g, go; |
795 | 0 | long earliest_end, end_matching_other; |
796 | 0 | long groupsize; |
797 | |
|
798 | 0 | group_init(xdf, &g); |
799 | 0 | group_init(xdfo, &go); |
800 | |
|
801 | 0 | while (1) { |
802 | | /* |
803 | | * If the group is empty in the to-be-compacted file, skip it: |
804 | | */ |
805 | 0 | if (g.end == g.start) |
806 | 0 | goto next; |
807 | | |
808 | | /* |
809 | | * Now shift the change up and then down as far as possible in |
810 | | * each direction. If it bumps into any other changes, merge |
811 | | * them. |
812 | | */ |
813 | 0 | do { |
814 | 0 | groupsize = g.end - g.start; |
815 | | |
816 | | /* |
817 | | * Keep track of the last "end" index that causes this |
818 | | * group to align with a group of changed lines in the |
819 | | * other file. -1 indicates that we haven't found such |
820 | | * a match yet: |
821 | | */ |
822 | 0 | end_matching_other = -1; |
823 | | |
824 | | /* Shift the group backward as much as possible: */ |
825 | 0 | while (!group_slide_up(xdf, &g)) |
826 | 0 | if (group_previous(xdfo, &go)) |
827 | 0 | BUG("group sync broken sliding up"); |
828 | | |
829 | | /* |
830 | | * This is this highest that this group can be shifted. |
831 | | * Record its end index: |
832 | | */ |
833 | 0 | earliest_end = g.end; |
834 | |
|
835 | 0 | if (go.end > go.start) |
836 | 0 | end_matching_other = g.end; |
837 | | |
838 | | /* Now shift the group forward as far as possible: */ |
839 | 0 | while (1) { |
840 | 0 | if (group_slide_down(xdf, &g)) |
841 | 0 | break; |
842 | 0 | if (group_next(xdfo, &go)) |
843 | 0 | BUG("group sync broken sliding down"); |
844 | | |
845 | 0 | if (go.end > go.start) |
846 | 0 | end_matching_other = g.end; |
847 | 0 | } |
848 | 0 | } while (groupsize != g.end - g.start); |
849 | | |
850 | | /* |
851 | | * If the group can be shifted, then we can possibly use this |
852 | | * freedom to produce a more intuitive diff. |
853 | | * |
854 | | * The group is currently shifted as far down as possible, so |
855 | | * the heuristics below only have to handle upwards shifts. |
856 | | */ |
857 | | |
858 | 0 | if (g.end == earliest_end) { |
859 | | /* no shifting was possible */ |
860 | 0 | } else if (end_matching_other != -1) { |
861 | | /* |
862 | | * Move the possibly merged group of changes back to |
863 | | * line up with the last group of changes from the |
864 | | * other file that it can align with. |
865 | | */ |
866 | 0 | while (go.end == go.start) { |
867 | 0 | if (group_slide_up(xdf, &g)) |
868 | 0 | BUG("match disappeared"); |
869 | 0 | if (group_previous(xdfo, &go)) |
870 | 0 | BUG("group sync broken sliding to match"); |
871 | 0 | } |
872 | 0 | } else if (flags & XDF_INDENT_HEURISTIC) { |
873 | | /* |
874 | | * Indent heuristic: a group of pure add/delete lines |
875 | | * implies two splits, one between the end of the |
876 | | * "before" context and the start of the group, and |
877 | | * another between the end of the group and the |
878 | | * beginning of the "after" context. Some splits are |
879 | | * aesthetically better and some are worse. We compute |
880 | | * a badness "score" for each split, and add the scores |
881 | | * for the two splits to define a "score" for each |
882 | | * position that the group can be shifted to. Then we |
883 | | * pick the shift with the lowest score. |
884 | | */ |
885 | 0 | long shift, best_shift = -1; |
886 | 0 | struct split_score best_score; |
887 | |
|
888 | 0 | shift = earliest_end; |
889 | 0 | if (g.end - groupsize - 1 > shift) |
890 | 0 | shift = g.end - groupsize - 1; |
891 | 0 | if (g.end - INDENT_HEURISTIC_MAX_SLIDING > shift) |
892 | 0 | shift = g.end - INDENT_HEURISTIC_MAX_SLIDING; |
893 | 0 | for (; shift <= g.end; shift++) { |
894 | 0 | struct split_measurement m; |
895 | 0 | struct split_score score = {0, 0}; |
896 | |
|
897 | 0 | measure_split(xdf, shift, &m); |
898 | 0 | score_add_split(&m, &score); |
899 | 0 | measure_split(xdf, shift - groupsize, &m); |
900 | 0 | score_add_split(&m, &score); |
901 | 0 | if (best_shift == -1 || |
902 | 0 | score_cmp(&score, &best_score) <= 0) { |
903 | 0 | best_score.effective_indent = score.effective_indent; |
904 | 0 | best_score.penalty = score.penalty; |
905 | 0 | best_shift = shift; |
906 | 0 | } |
907 | 0 | } |
908 | |
|
909 | 0 | while (g.end > best_shift) { |
910 | 0 | if (group_slide_up(xdf, &g)) |
911 | 0 | BUG("best shift unreached"); |
912 | 0 | if (group_previous(xdfo, &go)) |
913 | 0 | BUG("group sync broken sliding to blank line"); |
914 | 0 | } |
915 | 0 | } |
916 | | |
917 | 0 | next: |
918 | | /* Move past the just-processed group: */ |
919 | 0 | if (group_next(xdf, &g)) |
920 | 0 | break; |
921 | 0 | if (group_next(xdfo, &go)) |
922 | 0 | BUG("group sync broken moving to next group"); |
923 | 0 | } |
924 | | |
925 | 0 | if (!group_next(xdfo, &go)) |
926 | 0 | BUG("group sync broken at end of file"); |
927 | | |
928 | 0 | return 0; |
929 | 0 | } |
930 | | |
931 | | |
932 | 0 | int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) { |
933 | 0 | xdchange_t *cscr = NULL, *xch; |
934 | 0 | bool *changed1 = xe->xdf1.changed, *changed2 = xe->xdf2.changed; |
935 | 0 | long i1, i2, l1, l2; |
936 | | |
937 | | /* |
938 | | * Trivial. Collects "groups" of changes and creates an edit script. |
939 | | */ |
940 | 0 | for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--) |
941 | 0 | if (changed1[i1 - 1] || changed2[i2 - 1]) { |
942 | 0 | for (l1 = i1; changed1[i1 - 1]; i1--); |
943 | 0 | for (l2 = i2; changed2[i2 - 1]; i2--); |
944 | |
|
945 | 0 | if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) { |
946 | 0 | xdl_free_script(cscr); |
947 | 0 | return -1; |
948 | 0 | } |
949 | 0 | cscr = xch; |
950 | 0 | } |
951 | | |
952 | 0 | *xscr = cscr; |
953 | |
|
954 | 0 | return 0; |
955 | 0 | } |
956 | | |
957 | | |
958 | 0 | void xdl_free_script(xdchange_t *xscr) { |
959 | 0 | xdchange_t *xch; |
960 | |
|
961 | 0 | while ((xch = xscr) != NULL) { |
962 | 0 | xscr = xscr->next; |
963 | 0 | xdl_free(xch); |
964 | 0 | } |
965 | 0 | } |
966 | | |
967 | | static int xdl_call_hunk_func(xdfenv_t *xe UNUSED, xdchange_t *xscr, xdemitcb_t *ecb, |
968 | | xdemitconf_t const *xecfg) |
969 | 0 | { |
970 | 0 | xdchange_t *xch, *xche; |
971 | |
|
972 | 0 | for (xch = xscr; xch; xch = xche->next) { |
973 | 0 | xche = xdl_get_hunk(&xch, xecfg); |
974 | 0 | if (!xch) |
975 | 0 | break; |
976 | 0 | if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1, |
977 | 0 | xch->i2, xche->i2 + xche->chg2 - xch->i2, |
978 | 0 | ecb->priv) < 0) |
979 | 0 | return -1; |
980 | 0 | } |
981 | 0 | return 0; |
982 | 0 | } |
983 | | |
984 | | static void xdl_mark_ignorable_lines(xdchange_t *xscr, xdfenv_t *xe, long flags) |
985 | 0 | { |
986 | 0 | xdchange_t *xch; |
987 | |
|
988 | 0 | for (xch = xscr; xch; xch = xch->next) { |
989 | 0 | int ignore = 1; |
990 | 0 | xrecord_t *rec; |
991 | 0 | long i; |
992 | |
|
993 | 0 | rec = &xe->xdf1.recs[xch->i1]; |
994 | 0 | for (i = 0; i < xch->chg1 && ignore; i++) |
995 | 0 | ignore = xdl_blankline((const char *)rec[i].ptr, (long)rec[i].size, flags); |
996 | |
|
997 | 0 | rec = &xe->xdf2.recs[xch->i2]; |
998 | 0 | for (i = 0; i < xch->chg2 && ignore; i++) |
999 | 0 | ignore = xdl_blankline((const char *)rec[i].ptr, (long)rec[i].size, flags); |
1000 | |
|
1001 | 0 | xch->ignore = ignore; |
1002 | 0 | } |
1003 | 0 | } |
1004 | | |
1005 | 0 | static int record_matches_regex(xrecord_t *rec, xpparam_t const *xpp) { |
1006 | 0 | regmatch_t regmatch; |
1007 | 0 | size_t i; |
1008 | |
|
1009 | 0 | for (i = 0; i < xpp->ignore_regex_nr; i++) |
1010 | 0 | if (!regexec_buf(xpp->ignore_regex[i], (const char *)rec->ptr, rec->size, 1, |
1011 | 0 | ®match, 0)) |
1012 | 0 | return 1; |
1013 | | |
1014 | 0 | return 0; |
1015 | 0 | } |
1016 | | |
1017 | | static void xdl_mark_ignorable_regex(xdchange_t *xscr, const xdfenv_t *xe, |
1018 | | xpparam_t const *xpp) |
1019 | 0 | { |
1020 | 0 | xdchange_t *xch; |
1021 | |
|
1022 | 0 | for (xch = xscr; xch; xch = xch->next) { |
1023 | 0 | xrecord_t *rec; |
1024 | 0 | int ignore = 1; |
1025 | 0 | long i; |
1026 | | |
1027 | | /* |
1028 | | * Do not override --ignore-blank-lines. |
1029 | | */ |
1030 | 0 | if (xch->ignore) |
1031 | 0 | continue; |
1032 | | |
1033 | 0 | rec = &xe->xdf1.recs[xch->i1]; |
1034 | 0 | for (i = 0; i < xch->chg1 && ignore; i++) |
1035 | 0 | ignore = record_matches_regex(&rec[i], xpp); |
1036 | |
|
1037 | 0 | rec = &xe->xdf2.recs[xch->i2]; |
1038 | 0 | for (i = 0; i < xch->chg2 && ignore; i++) |
1039 | 0 | ignore = record_matches_regex(&rec[i], xpp); |
1040 | |
|
1041 | 0 | xch->ignore = ignore; |
1042 | 0 | } |
1043 | 0 | } |
1044 | | |
1045 | | int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp, |
1046 | 0 | xdemitconf_t const *xecfg, xdemitcb_t *ecb) { |
1047 | 0 | xdchange_t *xscr; |
1048 | 0 | xdfenv_t xe; |
1049 | 0 | emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff; |
1050 | |
|
1051 | 0 | if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) { |
1052 | |
|
1053 | 0 | return -1; |
1054 | 0 | } |
1055 | 0 | if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 || |
1056 | 0 | xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 || |
1057 | 0 | xdl_build_script(&xe, &xscr) < 0) { |
1058 | |
|
1059 | 0 | xdl_free_env(&xe); |
1060 | 0 | return -1; |
1061 | 0 | } |
1062 | 0 | if (xscr) { |
1063 | 0 | if (xpp->flags & XDF_IGNORE_BLANK_LINES) |
1064 | 0 | xdl_mark_ignorable_lines(xscr, &xe, xpp->flags); |
1065 | |
|
1066 | 0 | if (xpp->ignore_regex) |
1067 | 0 | xdl_mark_ignorable_regex(xscr, &xe, xpp); |
1068 | |
|
1069 | 0 | if (ef(&xe, xscr, ecb, xecfg) < 0) { |
1070 | |
|
1071 | 0 | xdl_free_script(xscr); |
1072 | 0 | xdl_free_env(&xe); |
1073 | 0 | return -1; |
1074 | 0 | } |
1075 | 0 | xdl_free_script(xscr); |
1076 | 0 | } |
1077 | 0 | xdl_free_env(&xe); |
1078 | |
|
1079 | 0 | return 0; |
1080 | 0 | } |