Line | Count | Source |
1 | | #define USE_THE_REPOSITORY_VARIABLE |
2 | | #define DISABLE_SIGN_COMPARE_WARNINGS |
3 | | |
4 | | #include "git-compat-util.h" |
5 | | #include "config.h" |
6 | | #include "environment.h" |
7 | | #include "hex.h" |
8 | | #include "notes.h" |
9 | | #include "object-file.h" |
10 | | #include "object-name.h" |
11 | | #include "odb.h" |
12 | | #include "utf8.h" |
13 | | #include "strbuf.h" |
14 | | #include "tree-walk.h" |
15 | | #include "string-list.h" |
16 | | #include "refs.h" |
17 | | |
18 | | /* |
19 | | * Use a non-balancing simple 16-tree structure with struct int_node as |
20 | | * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a |
21 | | * 16-array of pointers to its children. |
22 | | * The bottom 2 bits of each pointer is used to identify the pointer type |
23 | | * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL) |
24 | | * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node * |
25 | | * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node * |
26 | | * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node * |
27 | | * |
28 | | * The root node is a statically allocated struct int_node. |
29 | | */ |
30 | | struct int_node { |
31 | | void *a[16]; |
32 | | }; |
33 | | |
34 | | /* |
35 | | * Leaf nodes come in two variants, note entries and subtree entries, |
36 | | * distinguished by the LSb of the leaf node pointer (see above). |
37 | | * As a note entry, the key is the SHA1 of the referenced object, and the |
38 | | * value is the SHA1 of the note object. |
39 | | * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the |
40 | | * referenced object, using the last byte of the key to store the length of |
41 | | * the prefix. The value is the SHA1 of the tree object containing the notes |
42 | | * subtree. |
43 | | */ |
44 | | struct leaf_node { |
45 | | struct object_id key_oid; |
46 | | struct object_id val_oid; |
47 | | }; |
48 | | |
49 | | /* |
50 | | * A notes tree may contain entries that are not notes, and that do not follow |
51 | | * the naming conventions of notes. There are typically none/few of these, but |
52 | | * we still need to keep track of them. Keep a simple linked list sorted alpha- |
53 | | * betically on the non-note path. The list is populated when parsing tree |
54 | | * objects in load_subtree(), and the non-notes are correctly written back into |
55 | | * the tree objects produced by write_notes_tree(). |
56 | | */ |
57 | | struct non_note { |
58 | | struct non_note *next; /* grounded (last->next == NULL) */ |
59 | | char *path; |
60 | | unsigned int mode; |
61 | | struct object_id oid; |
62 | | }; |
63 | | |
64 | 0 | #define PTR_TYPE_NULL 0 |
65 | 0 | #define PTR_TYPE_INTERNAL 1 |
66 | 0 | #define PTR_TYPE_NOTE 2 |
67 | 0 | #define PTR_TYPE_SUBTREE 3 |
68 | | |
69 | 0 | #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3) |
70 | 0 | #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3)) |
71 | 0 | #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type))) |
72 | | |
73 | 0 | #define GET_NIBBLE(n, sha1) ((((sha1)[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f) |
74 | | |
75 | 0 | #define KEY_INDEX (the_hash_algo->rawsz - 1) |
76 | | #define FANOUT_PATH_SEPARATORS (the_hash_algo->rawsz - 1) |
77 | 0 | #define FANOUT_PATH_SEPARATORS_MAX ((GIT_MAX_HEXSZ / 2) - 1) |
78 | | #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \ |
79 | 0 | (memcmp(key_sha1, subtree_sha1, subtree_sha1[KEY_INDEX])) |
80 | | |
81 | | struct notes_tree default_notes_tree; |
82 | | |
83 | | static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP; |
84 | | static struct notes_tree **display_notes_trees; |
85 | | |
86 | | static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, |
87 | | struct int_node *node, unsigned int n); |
88 | | |
89 | | /* |
90 | | * Search the tree until the appropriate location for the given key is found: |
91 | | * 1. Start at the root node, with n = 0 |
92 | | * 2. If a[0] at the current level is a matching subtree entry, unpack that |
93 | | * subtree entry and remove it; restart search at the current level. |
94 | | * 3. Use the nth nibble of the key as an index into a: |
95 | | * - If a[n] is an int_node, recurse from #2 into that node and increment n |
96 | | * - If a matching subtree entry, unpack that subtree entry (and remove it); |
97 | | * restart search at the current level. |
98 | | * - Otherwise, we have found one of the following: |
99 | | * - a subtree entry which does not match the key |
100 | | * - a note entry which may or may not match the key |
101 | | * - an unused leaf node (NULL) |
102 | | * In any case, set *tree and *n, and return pointer to the tree location. |
103 | | */ |
104 | | static void **note_tree_search(struct notes_tree *t, struct int_node **tree, |
105 | | unsigned char *n, const unsigned char *key_sha1) |
106 | 0 | { |
107 | 0 | struct leaf_node *l; |
108 | 0 | unsigned char i; |
109 | 0 | void *p = (*tree)->a[0]; |
110 | |
|
111 | 0 | if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) { |
112 | 0 | l = (struct leaf_node *) CLR_PTR_TYPE(p); |
113 | 0 | if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) { |
114 | | /* unpack tree and resume search */ |
115 | 0 | (*tree)->a[0] = NULL; |
116 | 0 | load_subtree(t, l, *tree, *n); |
117 | 0 | free(l); |
118 | 0 | return note_tree_search(t, tree, n, key_sha1); |
119 | 0 | } |
120 | 0 | } |
121 | | |
122 | 0 | i = GET_NIBBLE(*n, key_sha1); |
123 | 0 | p = (*tree)->a[i]; |
124 | 0 | switch (GET_PTR_TYPE(p)) { |
125 | 0 | case PTR_TYPE_INTERNAL: |
126 | 0 | *tree = CLR_PTR_TYPE(p); |
127 | 0 | (*n)++; |
128 | 0 | return note_tree_search(t, tree, n, key_sha1); |
129 | 0 | case PTR_TYPE_SUBTREE: |
130 | 0 | l = (struct leaf_node *) CLR_PTR_TYPE(p); |
131 | 0 | if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) { |
132 | | /* unpack tree and resume search */ |
133 | 0 | (*tree)->a[i] = NULL; |
134 | 0 | load_subtree(t, l, *tree, *n); |
135 | 0 | free(l); |
136 | 0 | return note_tree_search(t, tree, n, key_sha1); |
137 | 0 | } |
138 | | /* fall through */ |
139 | 0 | default: |
140 | 0 | return &((*tree)->a[i]); |
141 | 0 | } |
142 | 0 | } |
143 | | |
144 | | /* |
145 | | * To find a leaf_node: |
146 | | * Search to the tree location appropriate for the given key: |
147 | | * If a note entry with matching key, return the note entry, else return NULL. |
148 | | */ |
149 | | static struct leaf_node *note_tree_find(struct notes_tree *t, |
150 | | struct int_node *tree, unsigned char n, |
151 | | const unsigned char *key_sha1) |
152 | 0 | { |
153 | 0 | void **p = note_tree_search(t, &tree, &n, key_sha1); |
154 | 0 | if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) { |
155 | 0 | struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
156 | 0 | if (hasheq(key_sha1, l->key_oid.hash, the_repository->hash_algo)) |
157 | 0 | return l; |
158 | 0 | } |
159 | 0 | return NULL; |
160 | 0 | } |
161 | | |
162 | | /* |
163 | | * How to consolidate an int_node: |
164 | | * If there are > 1 non-NULL entries, give up and return non-zero. |
165 | | * Otherwise replace the int_node at the given index in the given parent node |
166 | | * with the only NOTE entry (or a NULL entry if no entries) from the given |
167 | | * tree, and return 0. |
168 | | */ |
169 | | static int note_tree_consolidate(struct int_node *tree, |
170 | | struct int_node *parent, unsigned char index) |
171 | 0 | { |
172 | 0 | unsigned int i; |
173 | 0 | void *p = NULL; |
174 | |
|
175 | 0 | assert(tree && parent); |
176 | 0 | assert(CLR_PTR_TYPE(parent->a[index]) == tree); |
177 | |
|
178 | 0 | for (i = 0; i < 16; i++) { |
179 | 0 | if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) { |
180 | 0 | if (p) /* more than one entry */ |
181 | 0 | return -2; |
182 | 0 | p = tree->a[i]; |
183 | 0 | } |
184 | 0 | } |
185 | | |
186 | 0 | if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE)) |
187 | 0 | return -2; |
188 | | /* replace tree with p in parent[index] */ |
189 | 0 | parent->a[index] = p; |
190 | 0 | free(tree); |
191 | 0 | return 0; |
192 | 0 | } |
193 | | |
194 | | /* |
195 | | * To remove a leaf_node: |
196 | | * Search to the tree location appropriate for the given leaf_node's key: |
197 | | * - If location does not hold a matching entry, abort and do nothing. |
198 | | * - Copy the matching entry's value into the given entry. |
199 | | * - Replace the matching leaf_node with a NULL entry (and free the leaf_node). |
200 | | * - Consolidate int_nodes repeatedly, while walking up the tree towards root. |
201 | | */ |
202 | | static void note_tree_remove(struct notes_tree *t, |
203 | | struct int_node *tree, unsigned char n, |
204 | | struct leaf_node *entry) |
205 | 0 | { |
206 | 0 | struct leaf_node *l; |
207 | 0 | struct int_node *parent_stack[GIT_MAX_RAWSZ]; |
208 | 0 | unsigned char i, j; |
209 | 0 | void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash); |
210 | |
|
211 | 0 | assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ |
212 | 0 | if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE) |
213 | 0 | return; /* type mismatch, nothing to remove */ |
214 | 0 | l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
215 | 0 | if (!oideq(&l->key_oid, &entry->key_oid)) |
216 | 0 | return; /* key mismatch, nothing to remove */ |
217 | | |
218 | | /* we have found a matching entry */ |
219 | 0 | oidcpy(&entry->val_oid, &l->val_oid); |
220 | 0 | free(l); |
221 | 0 | *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL); |
222 | | |
223 | | /* consolidate this tree level, and parent levels, if possible */ |
224 | 0 | if (!n) |
225 | 0 | return; /* cannot consolidate top level */ |
226 | | /* first, build stack of ancestors between root and current node */ |
227 | 0 | parent_stack[0] = t->root; |
228 | 0 | for (i = 0; i < n; i++) { |
229 | 0 | j = GET_NIBBLE(i, entry->key_oid.hash); |
230 | 0 | parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]); |
231 | 0 | } |
232 | 0 | assert(i == n && parent_stack[i] == tree); |
233 | | /* next, unwind stack until note_tree_consolidate() is done */ |
234 | 0 | while (i > 0 && |
235 | 0 | !note_tree_consolidate(parent_stack[i], parent_stack[i - 1], |
236 | 0 | GET_NIBBLE(i - 1, entry->key_oid.hash))) |
237 | 0 | i--; |
238 | 0 | } |
239 | | |
240 | | /* |
241 | | * To insert a leaf_node: |
242 | | * Search to the tree location appropriate for the given leaf_node's key: |
243 | | * - If location is unused (NULL), store the tweaked pointer directly there |
244 | | * - If location holds a note entry that matches the note-to-be-inserted, then |
245 | | * combine the two notes (by calling the given combine_notes function). |
246 | | * - If location holds a note entry that matches the subtree-to-be-inserted, |
247 | | * then unpack the subtree-to-be-inserted into the location. |
248 | | * - If location holds a matching subtree entry, unpack the subtree at that |
249 | | * location, and restart the insert operation from that level. |
250 | | * - Else, create a new int_node, holding both the node-at-location and the |
251 | | * node-to-be-inserted, and store the new int_node into the location. |
252 | | */ |
253 | | static int note_tree_insert(struct notes_tree *t, struct int_node *tree, |
254 | | unsigned char n, struct leaf_node *entry, unsigned char type, |
255 | | combine_notes_fn combine_notes) |
256 | 0 | { |
257 | 0 | struct int_node *new_node; |
258 | 0 | struct leaf_node *l; |
259 | 0 | void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash); |
260 | 0 | int ret = 0; |
261 | |
|
262 | 0 | assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */ |
263 | 0 | l = (struct leaf_node *) CLR_PTR_TYPE(*p); |
264 | 0 | switch (GET_PTR_TYPE(*p)) { |
265 | 0 | case PTR_TYPE_NULL: |
266 | 0 | assert(!*p); |
267 | 0 | if (is_null_oid(&entry->val_oid)) |
268 | 0 | free(entry); |
269 | 0 | else |
270 | 0 | *p = SET_PTR_TYPE(entry, type); |
271 | 0 | return 0; |
272 | 0 | case PTR_TYPE_NOTE: |
273 | 0 | switch (type) { |
274 | 0 | case PTR_TYPE_NOTE: |
275 | 0 | if (oideq(&l->key_oid, &entry->key_oid)) { |
276 | | /* skip concatenation if l == entry */ |
277 | 0 | if (oideq(&l->val_oid, &entry->val_oid)) { |
278 | 0 | free(entry); |
279 | 0 | return 0; |
280 | 0 | } |
281 | | |
282 | 0 | ret = combine_notes(&l->val_oid, |
283 | 0 | &entry->val_oid); |
284 | 0 | if (!ret && is_null_oid(&l->val_oid)) |
285 | 0 | note_tree_remove(t, tree, n, entry); |
286 | 0 | free(entry); |
287 | 0 | return ret; |
288 | 0 | } |
289 | 0 | break; |
290 | 0 | case PTR_TYPE_SUBTREE: |
291 | 0 | if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash, |
292 | 0 | entry->key_oid.hash)) { |
293 | | /* unpack 'entry' */ |
294 | 0 | load_subtree(t, entry, tree, n); |
295 | 0 | free(entry); |
296 | 0 | return 0; |
297 | 0 | } |
298 | 0 | break; |
299 | 0 | } |
300 | 0 | break; |
301 | 0 | case PTR_TYPE_SUBTREE: |
302 | 0 | if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) { |
303 | | /* unpack 'l' and restart insert */ |
304 | 0 | *p = NULL; |
305 | 0 | load_subtree(t, l, tree, n); |
306 | 0 | free(l); |
307 | 0 | return note_tree_insert(t, tree, n, entry, type, |
308 | 0 | combine_notes); |
309 | 0 | } |
310 | 0 | break; |
311 | 0 | } |
312 | | |
313 | | /* non-matching leaf_node */ |
314 | 0 | assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE || |
315 | 0 | GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE); |
316 | 0 | if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */ |
317 | 0 | free(entry); |
318 | 0 | return 0; |
319 | 0 | } |
320 | 0 | new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node)); |
321 | 0 | ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p), |
322 | 0 | combine_notes); |
323 | 0 | if (ret) |
324 | 0 | return ret; |
325 | 0 | *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL); |
326 | 0 | return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes); |
327 | 0 | } |
328 | | |
329 | | /* Free the entire notes data contained in the given tree */ |
330 | | static void note_tree_free(struct int_node *tree) |
331 | 0 | { |
332 | 0 | unsigned int i; |
333 | 0 | for (i = 0; i < 16; i++) { |
334 | 0 | void *p = tree->a[i]; |
335 | 0 | switch (GET_PTR_TYPE(p)) { |
336 | 0 | case PTR_TYPE_INTERNAL: |
337 | 0 | note_tree_free(CLR_PTR_TYPE(p)); |
338 | | /* fall through */ |
339 | 0 | case PTR_TYPE_NOTE: |
340 | 0 | case PTR_TYPE_SUBTREE: |
341 | 0 | free(CLR_PTR_TYPE(p)); |
342 | 0 | } |
343 | 0 | } |
344 | 0 | } |
345 | | |
346 | | static int non_note_cmp(const struct non_note *a, const struct non_note *b) |
347 | 0 | { |
348 | 0 | return strcmp(a->path, b->path); |
349 | 0 | } |
350 | | |
351 | | /* note: takes ownership of path string */ |
352 | | static void add_non_note(struct notes_tree *t, char *path, |
353 | | unsigned int mode, const unsigned char *sha1) |
354 | 0 | { |
355 | 0 | struct non_note *p = t->prev_non_note, *n; |
356 | 0 | n = (struct non_note *) xmalloc(sizeof(struct non_note)); |
357 | 0 | n->next = NULL; |
358 | 0 | n->path = path; |
359 | 0 | n->mode = mode; |
360 | 0 | oidread(&n->oid, sha1, the_repository->hash_algo); |
361 | 0 | t->prev_non_note = n; |
362 | |
|
363 | 0 | if (!t->first_non_note) { |
364 | 0 | t->first_non_note = n; |
365 | 0 | return; |
366 | 0 | } |
367 | | |
368 | 0 | if (non_note_cmp(p, n) < 0) |
369 | 0 | ; /* do nothing */ |
370 | 0 | else if (non_note_cmp(t->first_non_note, n) <= 0) |
371 | 0 | p = t->first_non_note; |
372 | 0 | else { |
373 | | /* n sorts before t->first_non_note */ |
374 | 0 | n->next = t->first_non_note; |
375 | 0 | t->first_non_note = n; |
376 | 0 | return; |
377 | 0 | } |
378 | | |
379 | | /* n sorts equal or after p */ |
380 | 0 | while (p->next && non_note_cmp(p->next, n) <= 0) |
381 | 0 | p = p->next; |
382 | |
|
383 | 0 | if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */ |
384 | 0 | assert(strcmp(p->path, n->path) == 0); |
385 | 0 | p->mode = n->mode; |
386 | 0 | oidcpy(&p->oid, &n->oid); |
387 | 0 | free(n); |
388 | 0 | t->prev_non_note = p; |
389 | 0 | return; |
390 | 0 | } |
391 | | |
392 | | /* n sorts between p and p->next */ |
393 | 0 | n->next = p->next; |
394 | 0 | p->next = n; |
395 | 0 | } |
396 | | |
397 | | static void load_subtree(struct notes_tree *t, struct leaf_node *subtree, |
398 | | struct int_node *node, unsigned int n) |
399 | 0 | { |
400 | 0 | struct object_id object_oid; |
401 | 0 | size_t prefix_len; |
402 | 0 | void *buf; |
403 | 0 | struct tree_desc desc; |
404 | 0 | struct name_entry entry; |
405 | 0 | const unsigned hashsz = the_hash_algo->rawsz; |
406 | |
|
407 | 0 | buf = fill_tree_descriptor(the_repository, &desc, &subtree->val_oid); |
408 | 0 | if (!buf) |
409 | 0 | die("Could not read %s for notes-index", |
410 | 0 | oid_to_hex(&subtree->val_oid)); |
411 | | |
412 | 0 | prefix_len = subtree->key_oid.hash[KEY_INDEX]; |
413 | 0 | if (prefix_len >= hashsz) |
414 | 0 | BUG("prefix_len (%"PRIuMAX") is out of range", (uintmax_t)prefix_len); |
415 | 0 | if (prefix_len * 2 < n) |
416 | 0 | BUG("prefix_len (%"PRIuMAX") is too small", (uintmax_t)prefix_len); |
417 | 0 | memcpy(object_oid.hash, subtree->key_oid.hash, prefix_len); |
418 | 0 | while (tree_entry(&desc, &entry)) { |
419 | 0 | unsigned char type; |
420 | 0 | struct leaf_node *l; |
421 | 0 | size_t path_len = strlen(entry.path); |
422 | |
|
423 | 0 | if (path_len == 2 * (hashsz - prefix_len)) { |
424 | | /* This is potentially the remainder of the SHA-1 */ |
425 | |
|
426 | 0 | if (!S_ISREG(entry.mode)) |
427 | | /* notes must be blobs */ |
428 | 0 | goto handle_non_note; |
429 | | |
430 | 0 | if (hex_to_bytes(object_oid.hash + prefix_len, entry.path, |
431 | 0 | hashsz - prefix_len)) |
432 | 0 | goto handle_non_note; /* entry.path is not a SHA1 */ |
433 | | |
434 | 0 | memset(object_oid.hash + hashsz, 0, GIT_MAX_RAWSZ - hashsz); |
435 | |
|
436 | 0 | type = PTR_TYPE_NOTE; |
437 | 0 | } else if (path_len == 2) { |
438 | | /* This is potentially an internal node */ |
439 | 0 | size_t len = prefix_len; |
440 | |
|
441 | 0 | if (!S_ISDIR(entry.mode)) |
442 | | /* internal nodes must be trees */ |
443 | 0 | goto handle_non_note; |
444 | | |
445 | 0 | if (hex_to_bytes(object_oid.hash + len++, entry.path, 1)) |
446 | 0 | goto handle_non_note; /* entry.path is not a SHA1 */ |
447 | | |
448 | | /* |
449 | | * Pad the rest of the SHA-1 with zeros, |
450 | | * except for the last byte, where we write |
451 | | * the length: |
452 | | */ |
453 | 0 | memset(object_oid.hash + len, 0, hashsz - len - 1); |
454 | 0 | object_oid.hash[KEY_INDEX] = (unsigned char)len; |
455 | |
|
456 | 0 | type = PTR_TYPE_SUBTREE; |
457 | 0 | } else { |
458 | | /* This can't be part of a note */ |
459 | 0 | goto handle_non_note; |
460 | 0 | } |
461 | | |
462 | 0 | CALLOC_ARRAY(l, 1); |
463 | 0 | oidcpy(&l->key_oid, &object_oid); |
464 | 0 | oidcpy(&l->val_oid, &entry.oid); |
465 | 0 | oid_set_algo(&l->key_oid, the_hash_algo); |
466 | 0 | oid_set_algo(&l->val_oid, the_hash_algo); |
467 | 0 | if (note_tree_insert(t, node, n, l, type, |
468 | 0 | combine_notes_concatenate)) |
469 | 0 | die("Failed to load %s %s into notes tree " |
470 | 0 | "from %s", |
471 | 0 | type == PTR_TYPE_NOTE ? "note" : "subtree", |
472 | 0 | oid_to_hex(&object_oid), t->ref); |
473 | | |
474 | 0 | continue; |
475 | | |
476 | 0 | handle_non_note: |
477 | | /* |
478 | | * Determine full path for this non-note entry. The |
479 | | * filename is already found in entry.path, but the |
480 | | * directory part of the path must be deduced from the |
481 | | * subtree containing this entry based on our |
482 | | * knowledge that the overall notes tree follows a |
483 | | * strict byte-based progressive fanout structure |
484 | | * (i.e. using 2/38, 2/2/36, etc. fanouts). |
485 | | */ |
486 | 0 | { |
487 | 0 | struct strbuf non_note_path = STRBUF_INIT; |
488 | 0 | const char *q = oid_to_hex(&subtree->key_oid); |
489 | 0 | size_t i; |
490 | 0 | for (i = 0; i < prefix_len; i++) { |
491 | 0 | strbuf_addch(&non_note_path, *q++); |
492 | 0 | strbuf_addch(&non_note_path, *q++); |
493 | 0 | strbuf_addch(&non_note_path, '/'); |
494 | 0 | } |
495 | 0 | strbuf_addstr(&non_note_path, entry.path); |
496 | 0 | oid_set_algo(&entry.oid, the_hash_algo); |
497 | 0 | add_non_note(t, strbuf_detach(&non_note_path, NULL), |
498 | 0 | entry.mode, entry.oid.hash); |
499 | 0 | } |
500 | 0 | } |
501 | 0 | free(buf); |
502 | 0 | } |
503 | | |
504 | | /* |
505 | | * Determine optimal on-disk fanout for this part of the notes tree |
506 | | * |
507 | | * Given a (sub)tree and the level in the internal tree structure, determine |
508 | | * whether or not the given existing fanout should be expanded for this |
509 | | * (sub)tree. |
510 | | * |
511 | | * Values of the 'fanout' variable: |
512 | | * - 0: No fanout (all notes are stored directly in the root notes tree) |
513 | | * - 1: 2/38 fanout |
514 | | * - 2: 2/2/36 fanout |
515 | | * - 3: 2/2/2/34 fanout |
516 | | * etc. |
517 | | */ |
518 | | static unsigned char determine_fanout(struct int_node *tree, unsigned char n, |
519 | | unsigned char fanout) |
520 | 0 | { |
521 | | /* |
522 | | * The following is a simple heuristic that works well in practice: |
523 | | * For each even-numbered 16-tree level (remember that each on-disk |
524 | | * fanout level corresponds to _two_ 16-tree levels), peek at all 16 |
525 | | * entries at that tree level. If all of them are either int_nodes or |
526 | | * subtree entries, then there are likely plenty of notes below this |
527 | | * level, so we return an incremented fanout. |
528 | | */ |
529 | 0 | unsigned int i; |
530 | 0 | if ((n % 2) || (n > 2 * fanout)) |
531 | 0 | return fanout; |
532 | 0 | for (i = 0; i < 16; i++) { |
533 | 0 | switch (GET_PTR_TYPE(tree->a[i])) { |
534 | 0 | case PTR_TYPE_SUBTREE: |
535 | 0 | case PTR_TYPE_INTERNAL: |
536 | 0 | continue; |
537 | 0 | default: |
538 | 0 | return fanout; |
539 | 0 | } |
540 | 0 | } |
541 | 0 | return fanout + 1; |
542 | 0 | } |
543 | | |
544 | | /* hex oid + '/' between each pair of hex digits + NUL */ |
545 | 0 | #define FANOUT_PATH_MAX GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS_MAX + 1 |
546 | | |
547 | | static void construct_path_with_fanout(const unsigned char *hash, |
548 | | unsigned char fanout, char *path) |
549 | 0 | { |
550 | 0 | unsigned int i = 0, j = 0; |
551 | 0 | const char *hex_hash = hash_to_hex(hash); |
552 | 0 | assert(fanout < the_hash_algo->rawsz); |
553 | 0 | while (fanout) { |
554 | 0 | path[i++] = hex_hash[j++]; |
555 | 0 | path[i++] = hex_hash[j++]; |
556 | 0 | path[i++] = '/'; |
557 | 0 | fanout--; |
558 | 0 | } |
559 | 0 | xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_hash + j); |
560 | 0 | } |
561 | | |
562 | | static int for_each_note_helper(struct notes_tree *t, struct int_node *tree, |
563 | | unsigned char n, unsigned char fanout, int flags, |
564 | | each_note_fn fn, void *cb_data) |
565 | 0 | { |
566 | 0 | unsigned int i; |
567 | 0 | void *p; |
568 | 0 | int ret = 0; |
569 | 0 | struct leaf_node *l; |
570 | 0 | static char path[FANOUT_PATH_MAX]; |
571 | |
|
572 | 0 | fanout = determine_fanout(tree, n, fanout); |
573 | 0 | for (i = 0; i < 16; i++) { |
574 | 0 | redo: |
575 | 0 | p = tree->a[i]; |
576 | 0 | switch (GET_PTR_TYPE(p)) { |
577 | 0 | case PTR_TYPE_INTERNAL: |
578 | | /* recurse into int_node */ |
579 | 0 | ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1, |
580 | 0 | fanout, flags, fn, cb_data); |
581 | 0 | break; |
582 | 0 | case PTR_TYPE_SUBTREE: |
583 | 0 | l = (struct leaf_node *) CLR_PTR_TYPE(p); |
584 | | /* |
585 | | * Subtree entries in the note tree represent parts of |
586 | | * the note tree that have not yet been explored. There |
587 | | * is a direct relationship between subtree entries at |
588 | | * level 'n' in the tree, and the 'fanout' variable: |
589 | | * Subtree entries at level 'n < 2 * fanout' should be |
590 | | * preserved, since they correspond exactly to a fanout |
591 | | * directory in the on-disk structure. However, subtree |
592 | | * entries at level 'n >= 2 * fanout' should NOT be |
593 | | * preserved, but rather consolidated into the above |
594 | | * notes tree level. We achieve this by unconditionally |
595 | | * unpacking subtree entries that exist below the |
596 | | * threshold level at 'n = 2 * fanout'. |
597 | | */ |
598 | 0 | if (n < 2 * fanout && |
599 | 0 | flags & FOR_EACH_NOTE_YIELD_SUBTREES) { |
600 | | /* invoke callback with subtree */ |
601 | 0 | unsigned int path_len = |
602 | 0 | l->key_oid.hash[KEY_INDEX] * 2 + fanout; |
603 | 0 | assert(path_len < FANOUT_PATH_MAX - 1); |
604 | 0 | construct_path_with_fanout(l->key_oid.hash, |
605 | 0 | fanout, |
606 | 0 | path); |
607 | | /* Create trailing slash, if needed */ |
608 | 0 | if (path[path_len - 1] != '/') |
609 | 0 | path[path_len++] = '/'; |
610 | 0 | path[path_len] = '\0'; |
611 | 0 | ret = fn(&l->key_oid, &l->val_oid, |
612 | 0 | path, |
613 | 0 | cb_data); |
614 | 0 | } |
615 | 0 | if (n >= 2 * fanout || |
616 | 0 | !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) { |
617 | | /* unpack subtree and resume traversal */ |
618 | 0 | tree->a[i] = NULL; |
619 | 0 | load_subtree(t, l, tree, n); |
620 | 0 | free(l); |
621 | 0 | goto redo; |
622 | 0 | } |
623 | 0 | break; |
624 | 0 | case PTR_TYPE_NOTE: |
625 | 0 | l = (struct leaf_node *) CLR_PTR_TYPE(p); |
626 | 0 | construct_path_with_fanout(l->key_oid.hash, fanout, |
627 | 0 | path); |
628 | 0 | ret = fn(&l->key_oid, &l->val_oid, path, |
629 | 0 | cb_data); |
630 | 0 | break; |
631 | 0 | } |
632 | 0 | if (ret) |
633 | 0 | return ret; |
634 | 0 | } |
635 | 0 | return 0; |
636 | 0 | } |
637 | | |
638 | | struct tree_write_stack { |
639 | | struct tree_write_stack *next; |
640 | | struct strbuf buf; |
641 | | char path[2]; /* path to subtree in next, if any */ |
642 | | }; |
643 | | |
644 | | static inline int matches_tree_write_stack(struct tree_write_stack *tws, |
645 | | const char *full_path) |
646 | 0 | { |
647 | 0 | return full_path[0] == tws->path[0] && |
648 | 0 | full_path[1] == tws->path[1] && |
649 | 0 | full_path[2] == '/'; |
650 | 0 | } |
651 | | |
652 | | static void write_tree_entry(struct strbuf *buf, unsigned int mode, |
653 | | const char *path, unsigned int path_len, const |
654 | | unsigned char *hash) |
655 | 0 | { |
656 | 0 | strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0'); |
657 | 0 | strbuf_add(buf, hash, the_hash_algo->rawsz); |
658 | 0 | } |
659 | | |
660 | | static void tree_write_stack_init_subtree(struct tree_write_stack *tws, |
661 | | const char *path) |
662 | 0 | { |
663 | 0 | struct tree_write_stack *n; |
664 | 0 | assert(!tws->next); |
665 | 0 | assert(tws->path[0] == '\0' && tws->path[1] == '\0'); |
666 | 0 | n = (struct tree_write_stack *) |
667 | 0 | xmalloc(sizeof(struct tree_write_stack)); |
668 | 0 | n->next = NULL; |
669 | 0 | strbuf_init(&n->buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries per tree */ |
670 | 0 | n->path[0] = n->path[1] = '\0'; |
671 | 0 | tws->next = n; |
672 | 0 | tws->path[0] = path[0]; |
673 | 0 | tws->path[1] = path[1]; |
674 | 0 | } |
675 | | |
676 | | static int tree_write_stack_finish_subtree(struct tree_write_stack *tws) |
677 | 0 | { |
678 | 0 | int ret; |
679 | 0 | struct tree_write_stack *n = tws->next; |
680 | 0 | struct object_id s; |
681 | 0 | if (n) { |
682 | 0 | ret = tree_write_stack_finish_subtree(n); |
683 | 0 | if (ret) |
684 | 0 | return ret; |
685 | 0 | ret = odb_write_object(the_repository->objects, n->buf.buf, |
686 | 0 | n->buf.len, OBJ_TREE, &s); |
687 | 0 | if (ret) |
688 | 0 | return ret; |
689 | 0 | strbuf_release(&n->buf); |
690 | 0 | free(n); |
691 | 0 | tws->next = NULL; |
692 | 0 | write_tree_entry(&tws->buf, 040000, tws->path, 2, s.hash); |
693 | 0 | tws->path[0] = tws->path[1] = '\0'; |
694 | 0 | } |
695 | 0 | return 0; |
696 | 0 | } |
697 | | |
698 | | static int write_each_note_helper(struct tree_write_stack *tws, |
699 | | const char *path, unsigned int mode, |
700 | | const struct object_id *oid) |
701 | 0 | { |
702 | 0 | size_t path_len = strlen(path); |
703 | 0 | unsigned int n = 0; |
704 | 0 | int ret; |
705 | | |
706 | | /* Determine common part of tree write stack */ |
707 | 0 | while (tws && 3 * n < path_len && |
708 | 0 | matches_tree_write_stack(tws, path + 3 * n)) { |
709 | 0 | n++; |
710 | 0 | tws = tws->next; |
711 | 0 | } |
712 | | |
713 | | /* tws point to last matching tree_write_stack entry */ |
714 | 0 | ret = tree_write_stack_finish_subtree(tws); |
715 | 0 | if (ret) |
716 | 0 | return ret; |
717 | | |
718 | | /* Start subtrees needed to satisfy path */ |
719 | 0 | while (3 * n + 2 < path_len && path[3 * n + 2] == '/') { |
720 | 0 | tree_write_stack_init_subtree(tws, path + 3 * n); |
721 | 0 | n++; |
722 | 0 | tws = tws->next; |
723 | 0 | } |
724 | | |
725 | | /* There should be no more directory components in the given path */ |
726 | 0 | assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL); |
727 | | |
728 | | /* Finally add given entry to the current tree object */ |
729 | 0 | write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n), |
730 | 0 | oid->hash); |
731 | |
|
732 | 0 | return 0; |
733 | 0 | } |
734 | | |
735 | | struct write_each_note_data { |
736 | | struct tree_write_stack *root; |
737 | | struct non_note **nn_list; |
738 | | struct non_note *nn_prev; |
739 | | }; |
740 | | |
741 | | static int write_each_non_note_until(const char *note_path, |
742 | | struct write_each_note_data *d) |
743 | 0 | { |
744 | 0 | struct non_note *p = d->nn_prev; |
745 | 0 | struct non_note *n = p ? p->next : *d->nn_list; |
746 | 0 | int cmp = 0, ret; |
747 | 0 | while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) { |
748 | 0 | if (note_path && cmp == 0) |
749 | 0 | ; /* do nothing, prefer note to non-note */ |
750 | 0 | else { |
751 | 0 | ret = write_each_note_helper(d->root, n->path, n->mode, |
752 | 0 | &n->oid); |
753 | 0 | if (ret) |
754 | 0 | return ret; |
755 | 0 | } |
756 | 0 | p = n; |
757 | 0 | n = n->next; |
758 | 0 | } |
759 | 0 | d->nn_prev = p; |
760 | 0 | return 0; |
761 | 0 | } |
762 | | |
763 | | static int write_each_note(const struct object_id *object_oid UNUSED, |
764 | | const struct object_id *note_oid, char *note_path, |
765 | | void *cb_data) |
766 | 0 | { |
767 | 0 | struct write_each_note_data *d = |
768 | 0 | (struct write_each_note_data *) cb_data; |
769 | 0 | size_t note_path_len = strlen(note_path); |
770 | 0 | unsigned int mode = 0100644; |
771 | |
|
772 | 0 | if (note_path[note_path_len - 1] == '/') { |
773 | | /* subtree entry */ |
774 | 0 | note_path_len--; |
775 | 0 | note_path[note_path_len] = '\0'; |
776 | 0 | mode = 040000; |
777 | 0 | } |
778 | 0 | assert(note_path_len <= GIT_MAX_HEXSZ + FANOUT_PATH_SEPARATORS); |
779 | | |
780 | | /* Weave non-note entries into note entries */ |
781 | 0 | return write_each_non_note_until(note_path, d) || |
782 | 0 | write_each_note_helper(d->root, note_path, mode, note_oid); |
783 | 0 | } |
784 | | |
785 | | struct note_delete_list { |
786 | | struct note_delete_list *next; |
787 | | const unsigned char *sha1; |
788 | | }; |
789 | | |
790 | | static int prune_notes_helper(const struct object_id *object_oid, |
791 | | const struct object_id *note_oid UNUSED, |
792 | | char *note_path UNUSED, |
793 | | void *cb_data) |
794 | 0 | { |
795 | 0 | struct note_delete_list **l = (struct note_delete_list **) cb_data; |
796 | 0 | struct note_delete_list *n; |
797 | |
|
798 | 0 | if (odb_has_object(the_repository->objects, object_oid, |
799 | 0 | HAS_OBJECT_RECHECK_PACKED | HAS_OBJECT_FETCH_PROMISOR)) |
800 | 0 | return 0; /* nothing to do for this note */ |
801 | | |
802 | | /* failed to find object => prune this note */ |
803 | 0 | n = (struct note_delete_list *) xmalloc(sizeof(*n)); |
804 | 0 | n->next = *l; |
805 | 0 | n->sha1 = object_oid->hash; |
806 | 0 | *l = n; |
807 | 0 | return 0; |
808 | 0 | } |
809 | | |
810 | | int combine_notes_concatenate(struct object_id *cur_oid, |
811 | | const struct object_id *new_oid) |
812 | 0 | { |
813 | 0 | char *cur_msg = NULL, *new_msg = NULL, *buf; |
814 | 0 | unsigned long cur_len, new_len, buf_len; |
815 | 0 | enum object_type cur_type, new_type; |
816 | 0 | int ret; |
817 | | |
818 | | /* read in both note blob objects */ |
819 | 0 | if (!is_null_oid(new_oid)) |
820 | 0 | new_msg = odb_read_object(the_repository->objects, new_oid, |
821 | 0 | &new_type, &new_len); |
822 | 0 | if (!new_msg || !new_len || new_type != OBJ_BLOB) { |
823 | 0 | free(new_msg); |
824 | 0 | return 0; |
825 | 0 | } |
826 | 0 | if (!is_null_oid(cur_oid)) |
827 | 0 | cur_msg = odb_read_object(the_repository->objects, cur_oid, |
828 | 0 | &cur_type, &cur_len); |
829 | 0 | if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) { |
830 | 0 | free(cur_msg); |
831 | 0 | free(new_msg); |
832 | 0 | oidcpy(cur_oid, new_oid); |
833 | 0 | return 0; |
834 | 0 | } |
835 | | |
836 | | /* we will separate the notes by two newlines anyway */ |
837 | 0 | if (cur_msg[cur_len - 1] == '\n') |
838 | 0 | cur_len--; |
839 | | |
840 | | /* concatenate cur_msg and new_msg into buf */ |
841 | 0 | buf_len = cur_len + 2 + new_len; |
842 | 0 | buf = (char *) xmalloc(buf_len); |
843 | 0 | memcpy(buf, cur_msg, cur_len); |
844 | 0 | buf[cur_len] = '\n'; |
845 | 0 | buf[cur_len + 1] = '\n'; |
846 | 0 | memcpy(buf + cur_len + 2, new_msg, new_len); |
847 | 0 | free(cur_msg); |
848 | 0 | free(new_msg); |
849 | | |
850 | | /* create a new blob object from buf */ |
851 | 0 | ret = odb_write_object(the_repository->objects, buf, |
852 | 0 | buf_len, OBJ_BLOB, cur_oid); |
853 | 0 | free(buf); |
854 | 0 | return ret; |
855 | 0 | } |
856 | | |
857 | | int combine_notes_overwrite(struct object_id *cur_oid, |
858 | | const struct object_id *new_oid) |
859 | 0 | { |
860 | 0 | oidcpy(cur_oid, new_oid); |
861 | 0 | return 0; |
862 | 0 | } |
863 | | |
864 | | int combine_notes_ignore(struct object_id *cur_oid UNUSED, |
865 | | const struct object_id *new_oid UNUSED) |
866 | 0 | { |
867 | 0 | return 0; |
868 | 0 | } |
869 | | |
870 | | /* |
871 | | * Add the lines from the named object to list, with trailing |
872 | | * newlines removed. |
873 | | */ |
874 | | static int string_list_add_note_lines(struct string_list *list, |
875 | | const struct object_id *oid) |
876 | 0 | { |
877 | 0 | char *data; |
878 | 0 | unsigned long len; |
879 | 0 | enum object_type t; |
880 | |
|
881 | 0 | if (is_null_oid(oid)) |
882 | 0 | return 0; |
883 | | |
884 | | /* read_sha1_file NUL-terminates */ |
885 | 0 | data = odb_read_object(the_repository->objects, oid, &t, &len); |
886 | 0 | if (t != OBJ_BLOB || !data || !len) { |
887 | 0 | free(data); |
888 | 0 | return t != OBJ_BLOB || !data; |
889 | 0 | } |
890 | | |
891 | | /* |
892 | | * If the last line of the file is EOL-terminated, this will |
893 | | * add an empty string to the list. But it will be removed |
894 | | * later, along with any empty strings that came from empty |
895 | | * lines within the file. |
896 | | */ |
897 | 0 | string_list_split(list, data, "\n", -1); |
898 | 0 | free(data); |
899 | 0 | return 0; |
900 | 0 | } |
901 | | |
902 | | static int string_list_join_lines_helper(struct string_list_item *item, |
903 | | void *cb_data) |
904 | 0 | { |
905 | 0 | struct strbuf *buf = cb_data; |
906 | 0 | strbuf_addstr(buf, item->string); |
907 | 0 | strbuf_addch(buf, '\n'); |
908 | 0 | return 0; |
909 | 0 | } |
910 | | |
911 | | int combine_notes_cat_sort_uniq(struct object_id *cur_oid, |
912 | | const struct object_id *new_oid) |
913 | 0 | { |
914 | 0 | struct string_list sort_uniq_list = STRING_LIST_INIT_DUP; |
915 | 0 | struct strbuf buf = STRBUF_INIT; |
916 | 0 | int ret = 1; |
917 | | |
918 | | /* read both note blob objects into unique_lines */ |
919 | 0 | if (string_list_add_note_lines(&sort_uniq_list, cur_oid)) |
920 | 0 | goto out; |
921 | 0 | if (string_list_add_note_lines(&sort_uniq_list, new_oid)) |
922 | 0 | goto out; |
923 | 0 | string_list_remove_empty_items(&sort_uniq_list, 0); |
924 | 0 | string_list_sort(&sort_uniq_list); |
925 | 0 | string_list_remove_duplicates(&sort_uniq_list, 0); |
926 | | |
927 | | /* create a new blob object from sort_uniq_list */ |
928 | 0 | if (for_each_string_list(&sort_uniq_list, |
929 | 0 | string_list_join_lines_helper, &buf)) |
930 | 0 | goto out; |
931 | | |
932 | 0 | ret = odb_write_object(the_repository->objects, buf.buf, |
933 | 0 | buf.len, OBJ_BLOB, cur_oid); |
934 | |
|
935 | 0 | out: |
936 | 0 | strbuf_release(&buf); |
937 | 0 | string_list_clear(&sort_uniq_list, 0); |
938 | 0 | return ret; |
939 | 0 | } |
940 | | |
941 | | static int string_list_add_one_ref(const struct reference *ref, void *cb) |
942 | 0 | { |
943 | 0 | struct string_list *refs = cb; |
944 | 0 | if (!unsorted_string_list_has_string(refs, ref->name)) |
945 | 0 | string_list_append(refs, ref->name); |
946 | 0 | return 0; |
947 | 0 | } |
948 | | |
949 | | /* |
950 | | * The list argument must have strdup_strings set on it. |
951 | | */ |
952 | | void string_list_add_refs_by_glob(struct string_list *list, const char *glob) |
953 | 0 | { |
954 | 0 | assert(list->strdup_strings); |
955 | 0 | if (has_glob_specials(glob)) { |
956 | 0 | refs_for_each_glob_ref(get_main_ref_store(the_repository), |
957 | 0 | string_list_add_one_ref, glob, list); |
958 | 0 | } else { |
959 | 0 | struct object_id oid; |
960 | 0 | if (repo_get_oid(the_repository, glob, &oid)) |
961 | 0 | warning("notes ref %s is invalid", glob); |
962 | 0 | if (!unsorted_string_list_has_string(list, glob)) |
963 | 0 | string_list_append(list, glob); |
964 | 0 | } |
965 | 0 | } |
966 | | |
967 | | void string_list_add_refs_from_colon_sep(struct string_list *list, |
968 | | const char *globs) |
969 | 0 | { |
970 | 0 | struct string_list split = STRING_LIST_INIT_NODUP; |
971 | 0 | char *globs_copy = xstrdup(globs); |
972 | 0 | int i; |
973 | |
|
974 | 0 | string_list_split_in_place_f(&split, globs_copy, ":", -1, |
975 | 0 | STRING_LIST_SPLIT_NONEMPTY); |
976 | |
|
977 | 0 | for (i = 0; i < split.nr; i++) |
978 | 0 | string_list_add_refs_by_glob(list, split.items[i].string); |
979 | |
|
980 | 0 | string_list_clear(&split, 0); |
981 | 0 | free(globs_copy); |
982 | 0 | } |
983 | | |
984 | | static int notes_display_config(const char *k, const char *v, |
985 | | const struct config_context *ctx UNUSED, |
986 | | void *cb) |
987 | 0 | { |
988 | 0 | int *load_refs = cb; |
989 | |
|
990 | 0 | if (*load_refs && !strcmp(k, "notes.displayref")) { |
991 | 0 | if (!v) |
992 | 0 | return config_error_nonbool(k); |
993 | 0 | string_list_add_refs_by_glob(&display_notes_refs, v); |
994 | 0 | } |
995 | | |
996 | 0 | return 0; |
997 | 0 | } |
998 | | |
999 | | char *default_notes_ref(struct repository *repo) |
1000 | 0 | { |
1001 | 0 | char *notes_ref = NULL; |
1002 | |
|
1003 | 0 | if (!notes_ref) |
1004 | 0 | notes_ref = xstrdup_or_null(getenv(GIT_NOTES_REF_ENVIRONMENT)); |
1005 | 0 | if (!notes_ref) |
1006 | 0 | repo_config_get_string(repo, "core.notesref", ¬es_ref); |
1007 | 0 | if (!notes_ref) |
1008 | 0 | notes_ref = xstrdup(GIT_NOTES_DEFAULT_REF); |
1009 | 0 | return notes_ref; |
1010 | 0 | } |
1011 | | |
1012 | | void init_notes(struct notes_tree *t, const char *notes_ref, |
1013 | | combine_notes_fn combine_notes, int flags) |
1014 | 0 | { |
1015 | 0 | struct object_id oid, object_oid; |
1016 | 0 | unsigned short mode; |
1017 | 0 | struct leaf_node root_tree; |
1018 | 0 | char *to_free = NULL; |
1019 | |
|
1020 | 0 | if (!t) |
1021 | 0 | t = &default_notes_tree; |
1022 | 0 | assert(!t->initialized); |
1023 | |
|
1024 | 0 | if (!notes_ref) |
1025 | 0 | notes_ref = to_free = default_notes_ref(the_repository); |
1026 | 0 | update_ref_namespace(NAMESPACE_NOTES, xstrdup(notes_ref)); |
1027 | |
|
1028 | 0 | if (!combine_notes) |
1029 | 0 | combine_notes = combine_notes_concatenate; |
1030 | |
|
1031 | 0 | t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node)); |
1032 | 0 | t->first_non_note = NULL; |
1033 | 0 | t->prev_non_note = NULL; |
1034 | 0 | t->ref = xstrdup(notes_ref); |
1035 | 0 | t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL; |
1036 | 0 | t->combine_notes = combine_notes; |
1037 | 0 | t->initialized = 1; |
1038 | 0 | t->dirty = 0; |
1039 | |
|
1040 | 0 | if (flags & NOTES_INIT_EMPTY || |
1041 | 0 | repo_get_oid_treeish(the_repository, notes_ref, &object_oid)) |
1042 | 0 | goto out; |
1043 | 0 | if (flags & NOTES_INIT_WRITABLE && refs_read_ref(get_main_ref_store(the_repository), notes_ref, &object_oid)) |
1044 | 0 | die("Cannot use notes ref %s", notes_ref); |
1045 | 0 | if (get_tree_entry(the_repository, &object_oid, "", &oid, &mode)) |
1046 | 0 | die("Failed to read notes tree referenced by %s (%s)", |
1047 | 0 | notes_ref, oid_to_hex(&object_oid)); |
1048 | | |
1049 | 0 | oidclr(&root_tree.key_oid, the_repository->hash_algo); |
1050 | 0 | oidcpy(&root_tree.val_oid, &oid); |
1051 | 0 | load_subtree(t, &root_tree, t->root, 0); |
1052 | |
|
1053 | 0 | out: |
1054 | 0 | free(to_free); |
1055 | 0 | } |
1056 | | |
1057 | | struct notes_tree **load_notes_trees(struct string_list *refs, int flags) |
1058 | 0 | { |
1059 | 0 | struct string_list_item *item; |
1060 | 0 | int counter = 0; |
1061 | 0 | struct notes_tree **trees; |
1062 | 0 | ALLOC_ARRAY(trees, refs->nr + 1); |
1063 | 0 | for_each_string_list_item(item, refs) { |
1064 | 0 | struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree)); |
1065 | 0 | init_notes(t, item->string, combine_notes_ignore, flags); |
1066 | 0 | trees[counter++] = t; |
1067 | 0 | } |
1068 | 0 | trees[counter] = NULL; |
1069 | 0 | return trees; |
1070 | 0 | } |
1071 | | |
1072 | | void init_display_notes(struct display_notes_opt *opt) |
1073 | 0 | { |
1074 | 0 | memset(opt, 0, sizeof(*opt)); |
1075 | 0 | opt->use_default_notes = -1; |
1076 | 0 | string_list_init_dup(&opt->extra_notes_refs); |
1077 | 0 | } |
1078 | | |
1079 | | void release_display_notes(struct display_notes_opt *opt) |
1080 | 0 | { |
1081 | 0 | string_list_clear(&opt->extra_notes_refs, 0); |
1082 | 0 | } |
1083 | | |
1084 | | void enable_default_display_notes(struct display_notes_opt *opt, int *show_notes) |
1085 | 0 | { |
1086 | 0 | opt->use_default_notes = 1; |
1087 | 0 | *show_notes = 1; |
1088 | 0 | } |
1089 | | |
1090 | | void enable_ref_display_notes(struct display_notes_opt *opt, int *show_notes, |
1091 | 0 | const char *ref) { |
1092 | 0 | struct strbuf buf = STRBUF_INIT; |
1093 | 0 | strbuf_addstr(&buf, ref); |
1094 | 0 | expand_notes_ref(&buf); |
1095 | 0 | string_list_append_nodup(&opt->extra_notes_refs, |
1096 | 0 | strbuf_detach(&buf, NULL)); |
1097 | 0 | *show_notes = 1; |
1098 | 0 | } |
1099 | | |
1100 | | void disable_display_notes(struct display_notes_opt *opt, int *show_notes) |
1101 | 0 | { |
1102 | 0 | opt->use_default_notes = -1; |
1103 | 0 | string_list_clear(&opt->extra_notes_refs, 0); |
1104 | 0 | *show_notes = 0; |
1105 | 0 | } |
1106 | | |
1107 | | void load_display_notes(struct display_notes_opt *opt) |
1108 | 0 | { |
1109 | 0 | char *display_ref_env; |
1110 | 0 | int load_config_refs = 0; |
1111 | 0 | display_notes_refs.strdup_strings = 1; |
1112 | |
|
1113 | 0 | assert(!display_notes_trees); |
1114 | |
|
1115 | 0 | if (!opt || opt->use_default_notes > 0 || |
1116 | 0 | (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) { |
1117 | 0 | string_list_append_nodup(&display_notes_refs, default_notes_ref(the_repository)); |
1118 | 0 | display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT); |
1119 | 0 | if (display_ref_env) { |
1120 | 0 | string_list_add_refs_from_colon_sep(&display_notes_refs, |
1121 | 0 | display_ref_env); |
1122 | 0 | load_config_refs = 0; |
1123 | 0 | } else |
1124 | 0 | load_config_refs = 1; |
1125 | 0 | } |
1126 | |
|
1127 | 0 | repo_config(the_repository, notes_display_config, &load_config_refs); |
1128 | |
|
1129 | 0 | if (opt) { |
1130 | 0 | struct string_list_item *item; |
1131 | 0 | for_each_string_list_item(item, &opt->extra_notes_refs) |
1132 | 0 | string_list_add_refs_by_glob(&display_notes_refs, |
1133 | 0 | item->string); |
1134 | 0 | } |
1135 | |
|
1136 | 0 | display_notes_trees = load_notes_trees(&display_notes_refs, 0); |
1137 | 0 | string_list_clear(&display_notes_refs, 0); |
1138 | 0 | } |
1139 | | |
1140 | | int add_note(struct notes_tree *t, const struct object_id *object_oid, |
1141 | | const struct object_id *note_oid, combine_notes_fn combine_notes) |
1142 | 0 | { |
1143 | 0 | struct leaf_node *l; |
1144 | |
|
1145 | 0 | if (!t) |
1146 | 0 | t = &default_notes_tree; |
1147 | 0 | assert(t->initialized); |
1148 | 0 | t->dirty = 1; |
1149 | 0 | if (!combine_notes) |
1150 | 0 | combine_notes = t->combine_notes; |
1151 | 0 | l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node)); |
1152 | 0 | oidcpy(&l->key_oid, object_oid); |
1153 | 0 | oidcpy(&l->val_oid, note_oid); |
1154 | 0 | return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes); |
1155 | 0 | } |
1156 | | |
1157 | | int remove_note(struct notes_tree *t, const unsigned char *object_sha1) |
1158 | 0 | { |
1159 | 0 | struct leaf_node l; |
1160 | |
|
1161 | 0 | if (!t) |
1162 | 0 | t = &default_notes_tree; |
1163 | 0 | assert(t->initialized); |
1164 | 0 | oidread(&l.key_oid, object_sha1, the_repository->hash_algo); |
1165 | 0 | oidclr(&l.val_oid, the_repository->hash_algo); |
1166 | 0 | note_tree_remove(t, t->root, 0, &l); |
1167 | 0 | if (is_null_oid(&l.val_oid)) /* no note was removed */ |
1168 | 0 | return 1; |
1169 | 0 | t->dirty = 1; |
1170 | 0 | return 0; |
1171 | 0 | } |
1172 | | |
1173 | | const struct object_id *get_note(struct notes_tree *t, |
1174 | | const struct object_id *oid) |
1175 | 0 | { |
1176 | 0 | struct leaf_node *found; |
1177 | |
|
1178 | 0 | if (!t) |
1179 | 0 | t = &default_notes_tree; |
1180 | 0 | assert(t->initialized); |
1181 | 0 | found = note_tree_find(t, t->root, 0, oid->hash); |
1182 | 0 | return found ? &found->val_oid : NULL; |
1183 | 0 | } |
1184 | | |
1185 | | int for_each_note(struct notes_tree *t, int flags, each_note_fn fn, |
1186 | | void *cb_data) |
1187 | 0 | { |
1188 | 0 | if (!t) |
1189 | 0 | t = &default_notes_tree; |
1190 | 0 | assert(t->initialized); |
1191 | 0 | return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data); |
1192 | 0 | } |
1193 | | |
1194 | | int write_notes_tree(struct notes_tree *t, struct object_id *result) |
1195 | 0 | { |
1196 | 0 | struct tree_write_stack root; |
1197 | 0 | struct write_each_note_data cb_data; |
1198 | 0 | int ret; |
1199 | 0 | int flags; |
1200 | |
|
1201 | 0 | if (!t) |
1202 | 0 | t = &default_notes_tree; |
1203 | 0 | assert(t->initialized); |
1204 | | |
1205 | | /* Prepare for traversal of current notes tree */ |
1206 | 0 | root.next = NULL; /* last forward entry in list is grounded */ |
1207 | 0 | strbuf_init(&root.buf, 256 * (32 + the_hash_algo->hexsz)); /* assume 256 entries */ |
1208 | 0 | root.path[0] = root.path[1] = '\0'; |
1209 | 0 | cb_data.root = &root; |
1210 | 0 | cb_data.nn_list = &(t->first_non_note); |
1211 | 0 | cb_data.nn_prev = NULL; |
1212 | | |
1213 | | /* Write tree objects representing current notes tree */ |
1214 | 0 | flags = FOR_EACH_NOTE_DONT_UNPACK_SUBTREES | |
1215 | 0 | FOR_EACH_NOTE_YIELD_SUBTREES; |
1216 | 0 | ret = for_each_note(t, flags, write_each_note, &cb_data) || |
1217 | 0 | write_each_non_note_until(NULL, &cb_data) || |
1218 | 0 | tree_write_stack_finish_subtree(&root) || |
1219 | 0 | odb_write_object(the_repository->objects, root.buf.buf, |
1220 | 0 | root.buf.len, OBJ_TREE, result); |
1221 | 0 | strbuf_release(&root.buf); |
1222 | 0 | return ret; |
1223 | 0 | } |
1224 | | |
1225 | | void prune_notes(struct notes_tree *t, int flags) |
1226 | 0 | { |
1227 | 0 | struct note_delete_list *l = NULL; |
1228 | |
|
1229 | 0 | if (!t) |
1230 | 0 | t = &default_notes_tree; |
1231 | 0 | assert(t->initialized); |
1232 | |
|
1233 | 0 | for_each_note(t, 0, prune_notes_helper, &l); |
1234 | |
|
1235 | 0 | while (l) { |
1236 | 0 | struct note_delete_list *next; |
1237 | |
|
1238 | 0 | if (flags & NOTES_PRUNE_VERBOSE) |
1239 | 0 | printf("%s\n", hash_to_hex(l->sha1)); |
1240 | 0 | if (!(flags & NOTES_PRUNE_DRYRUN)) |
1241 | 0 | remove_note(t, l->sha1); |
1242 | |
|
1243 | 0 | next = l->next; |
1244 | 0 | free(l); |
1245 | 0 | l = next; |
1246 | 0 | } |
1247 | 0 | } |
1248 | | |
1249 | | void free_notes(struct notes_tree *t) |
1250 | 0 | { |
1251 | 0 | if (!t) |
1252 | 0 | t = &default_notes_tree; |
1253 | 0 | if (t->root) |
1254 | 0 | note_tree_free(t->root); |
1255 | 0 | free(t->root); |
1256 | 0 | while (t->first_non_note) { |
1257 | 0 | t->prev_non_note = t->first_non_note->next; |
1258 | 0 | free(t->first_non_note->path); |
1259 | 0 | free(t->first_non_note); |
1260 | 0 | t->first_non_note = t->prev_non_note; |
1261 | 0 | } |
1262 | 0 | free(t->ref); |
1263 | 0 | memset(t, 0, sizeof(struct notes_tree)); |
1264 | 0 | } |
1265 | | |
1266 | | /* |
1267 | | * Fill the given strbuf with the notes associated with the given object. |
1268 | | * |
1269 | | * If the given notes_tree structure is not initialized, it will be auto- |
1270 | | * initialized to the default value (see documentation for init_notes() above). |
1271 | | * If the given notes_tree is NULL, the internal/default notes_tree will be |
1272 | | * used instead. |
1273 | | * |
1274 | | * (raw != 0) gives the %N userformat; otherwise, the note message is given |
1275 | | * for human consumption. |
1276 | | */ |
1277 | | static void format_note(struct notes_tree *t, const struct object_id *object_oid, |
1278 | | struct strbuf *sb, const char *output_encoding, int raw) |
1279 | 0 | { |
1280 | 0 | static const char utf8[] = "utf-8"; |
1281 | 0 | const struct object_id *oid; |
1282 | 0 | char *msg, *msg_p; |
1283 | 0 | unsigned long linelen, msglen; |
1284 | 0 | enum object_type type; |
1285 | |
|
1286 | 0 | if (!t) |
1287 | 0 | t = &default_notes_tree; |
1288 | 0 | if (!t->initialized) |
1289 | 0 | init_notes(t, NULL, NULL, 0); |
1290 | |
|
1291 | 0 | oid = get_note(t, object_oid); |
1292 | 0 | if (!oid) |
1293 | 0 | return; |
1294 | | |
1295 | 0 | if (!(msg = odb_read_object(the_repository->objects, oid, &type, &msglen)) || |
1296 | 0 | type != OBJ_BLOB) { |
1297 | 0 | free(msg); |
1298 | 0 | return; |
1299 | 0 | } |
1300 | | |
1301 | 0 | if (output_encoding && *output_encoding && |
1302 | 0 | !is_encoding_utf8(output_encoding)) { |
1303 | 0 | char *reencoded = reencode_string(msg, output_encoding, utf8); |
1304 | 0 | if (reencoded) { |
1305 | 0 | free(msg); |
1306 | 0 | msg = reencoded; |
1307 | 0 | msglen = strlen(msg); |
1308 | 0 | } |
1309 | 0 | } |
1310 | | |
1311 | | /* we will end the annotation by a newline anyway */ |
1312 | 0 | if (msglen && msg[msglen - 1] == '\n') |
1313 | 0 | msglen--; |
1314 | |
|
1315 | 0 | if (!raw) { |
1316 | 0 | const char *ref = t->ref; |
1317 | 0 | if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) { |
1318 | 0 | strbuf_addstr(sb, "\nNotes:\n"); |
1319 | 0 | } else { |
1320 | 0 | skip_prefix(ref, "refs/", &ref); |
1321 | 0 | skip_prefix(ref, "notes/", &ref); |
1322 | 0 | strbuf_addf(sb, "\nNotes (%s):\n", ref); |
1323 | 0 | } |
1324 | 0 | } |
1325 | |
|
1326 | 0 | for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) { |
1327 | 0 | linelen = strchrnul(msg_p, '\n') - msg_p; |
1328 | |
|
1329 | 0 | if (!raw) |
1330 | 0 | strbuf_addstr(sb, " "); |
1331 | 0 | strbuf_add(sb, msg_p, linelen); |
1332 | 0 | strbuf_addch(sb, '\n'); |
1333 | 0 | } |
1334 | |
|
1335 | 0 | free(msg); |
1336 | 0 | } |
1337 | | |
1338 | | void format_display_notes(const struct object_id *object_oid, |
1339 | | struct strbuf *sb, const char *output_encoding, int raw) |
1340 | 0 | { |
1341 | 0 | int i; |
1342 | 0 | assert(display_notes_trees); |
1343 | 0 | for (i = 0; display_notes_trees[i]; i++) |
1344 | 0 | format_note(display_notes_trees[i], object_oid, sb, |
1345 | 0 | output_encoding, raw); |
1346 | 0 | } |
1347 | | |
1348 | | int copy_note(struct notes_tree *t, |
1349 | | const struct object_id *from_obj, const struct object_id *to_obj, |
1350 | | int force, combine_notes_fn combine_notes) |
1351 | 0 | { |
1352 | 0 | const struct object_id *note = get_note(t, from_obj); |
1353 | 0 | const struct object_id *existing_note = get_note(t, to_obj); |
1354 | |
|
1355 | 0 | if (!force && existing_note) |
1356 | 0 | return 1; |
1357 | | |
1358 | 0 | if (note) |
1359 | 0 | return add_note(t, to_obj, note, combine_notes); |
1360 | 0 | else if (existing_note) |
1361 | 0 | return add_note(t, to_obj, null_oid(the_hash_algo), combine_notes); |
1362 | | |
1363 | 0 | return 0; |
1364 | 0 | } |
1365 | | |
1366 | | void expand_notes_ref(struct strbuf *sb) |
1367 | 0 | { |
1368 | 0 | if (starts_with(sb->buf, "refs/notes/")) |
1369 | 0 | return; /* we're happy */ |
1370 | 0 | else if (starts_with(sb->buf, "notes/")) |
1371 | 0 | strbuf_insertstr(sb, 0, "refs/"); |
1372 | 0 | else |
1373 | 0 | strbuf_insertstr(sb, 0, "refs/notes/"); |
1374 | 0 | } |
1375 | | |
1376 | | void expand_loose_notes_ref(struct strbuf *sb) |
1377 | 0 | { |
1378 | 0 | struct object_id object; |
1379 | |
|
1380 | 0 | if (repo_get_oid(the_repository, sb->buf, &object)) { |
1381 | | /* fallback to expand_notes_ref */ |
1382 | 0 | expand_notes_ref(sb); |
1383 | 0 | } |
1384 | 0 | } |