Coverage Report

Created: 2026-01-09 07:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/git/reftable/table.c
Line
Count
Source
1
/*
2
 * Copyright 2020 Google LLC
3
 *
4
 * Use of this source code is governed by a BSD-style
5
 * license that can be found in the LICENSE file or at
6
 * https://developers.google.com/open-source/licenses/bsd
7
 */
8
9
#include "table.h"
10
11
#include "system.h"
12
#include "block.h"
13
#include "blocksource.h"
14
#include "constants.h"
15
#include "iter.h"
16
#include "record.h"
17
#include "reftable-error.h"
18
19
static struct reftable_table_offsets *
20
table_offsets_for(struct reftable_table *t, uint8_t typ)
21
0
{
22
0
  switch (typ) {
23
0
  case REFTABLE_BLOCK_TYPE_REF:
24
0
    return &t->ref_offsets;
25
0
  case REFTABLE_BLOCK_TYPE_LOG:
26
0
    return &t->log_offsets;
27
0
  case REFTABLE_BLOCK_TYPE_OBJ:
28
0
    return &t->obj_offsets;
29
0
  }
30
0
  abort();
31
0
}
32
33
enum reftable_hash reftable_table_hash_id(struct reftable_table *t)
34
0
{
35
0
  return t->hash_id;
36
0
}
37
38
const char *reftable_table_name(struct reftable_table *t)
39
0
{
40
0
  return t->name;
41
0
}
42
43
static int parse_footer(struct reftable_table *t, uint8_t *footer,
44
      uint8_t *header)
45
0
{
46
0
  uint8_t *f = footer;
47
0
  uint8_t first_block_typ;
48
0
  int err = 0;
49
0
  uint32_t computed_crc;
50
0
  uint32_t file_crc;
51
52
0
  if (memcmp(f, "REFT", 4)) {
53
0
    err = REFTABLE_FORMAT_ERROR;
54
0
    goto done;
55
0
  }
56
0
  f += 4;
57
58
0
  if (memcmp(footer, header, header_size(t->version))) {
59
0
    err = REFTABLE_FORMAT_ERROR;
60
0
    goto done;
61
0
  }
62
63
0
  f++;
64
0
  t->block_size = reftable_get_be24(f);
65
66
0
  f += 3;
67
0
  t->min_update_index = reftable_get_be64(f);
68
0
  f += 8;
69
0
  t->max_update_index = reftable_get_be64(f);
70
0
  f += 8;
71
72
0
  if (t->version == 1) {
73
0
    t->hash_id = REFTABLE_HASH_SHA1;
74
0
  } else {
75
0
    switch (reftable_get_be32(f)) {
76
0
    case REFTABLE_FORMAT_ID_SHA1:
77
0
      t->hash_id = REFTABLE_HASH_SHA1;
78
0
      break;
79
0
    case REFTABLE_FORMAT_ID_SHA256:
80
0
      t->hash_id = REFTABLE_HASH_SHA256;
81
0
      break;
82
0
    default:
83
0
      err = REFTABLE_FORMAT_ERROR;
84
0
      goto done;
85
0
    }
86
87
0
    f += 4;
88
0
  }
89
90
0
  t->ref_offsets.index_offset = reftable_get_be64(f);
91
0
  f += 8;
92
93
0
  t->obj_offsets.offset = reftable_get_be64(f);
94
0
  f += 8;
95
96
0
  t->object_id_len = t->obj_offsets.offset & ((1 << 5) - 1);
97
0
  t->obj_offsets.offset >>= 5;
98
99
0
  t->obj_offsets.index_offset = reftable_get_be64(f);
100
0
  f += 8;
101
0
  t->log_offsets.offset = reftable_get_be64(f);
102
0
  f += 8;
103
0
  t->log_offsets.index_offset = reftable_get_be64(f);
104
0
  f += 8;
105
106
0
  computed_crc = crc32(0, footer, f - footer);
107
0
  file_crc = reftable_get_be32(f);
108
0
  f += 4;
109
0
  if (computed_crc != file_crc) {
110
0
    err = REFTABLE_FORMAT_ERROR;
111
0
    goto done;
112
0
  }
113
114
0
  first_block_typ = header[header_size(t->version)];
115
0
  t->ref_offsets.is_present = (first_block_typ == REFTABLE_BLOCK_TYPE_REF);
116
0
  t->ref_offsets.offset = 0;
117
0
  t->log_offsets.is_present = (first_block_typ == REFTABLE_BLOCK_TYPE_LOG ||
118
0
             t->log_offsets.offset > 0);
119
0
  t->obj_offsets.is_present = t->obj_offsets.offset > 0;
120
0
  if (t->obj_offsets.is_present && !t->object_id_len) {
121
0
    err = REFTABLE_FORMAT_ERROR;
122
0
    goto done;
123
0
  }
124
125
0
  err = 0;
126
0
done:
127
0
  return err;
128
0
}
129
130
struct table_iter {
131
  struct reftable_table *table;
132
  uint8_t typ;
133
  uint64_t block_off;
134
  struct reftable_block block;
135
  struct block_iter bi;
136
  int is_finished;
137
};
138
139
static int table_iter_init(struct table_iter *ti, struct reftable_table *t)
140
0
{
141
0
  struct block_iter bi = BLOCK_ITER_INIT;
142
0
  memset(ti, 0, sizeof(*ti));
143
0
  reftable_table_incref(t);
144
0
  ti->table = t;
145
0
  ti->bi = bi;
146
0
  return 0;
147
0
}
148
149
static int table_iter_next_in_block(struct table_iter *ti,
150
            struct reftable_record *rec)
151
0
{
152
0
  int res = block_iter_next(&ti->bi, rec);
153
0
  if (res == 0 && reftable_record_type(rec) == REFTABLE_BLOCK_TYPE_REF) {
154
0
    rec->u.ref.update_index += ti->table->min_update_index;
155
0
  }
156
157
0
  return res;
158
0
}
159
160
static void table_iter_block_done(struct table_iter *ti)
161
0
{
162
0
  reftable_block_release(&ti->block);
163
0
  block_iter_reset(&ti->bi);
164
0
}
165
166
int table_init_block(struct reftable_table *t, struct reftable_block *block,
167
         uint64_t next_off, uint8_t want_typ)
168
0
{
169
0
  uint32_t header_off = next_off ? 0 : header_size(t->version);
170
0
  int err;
171
172
0
  if (next_off >= t->size)
173
0
    return 1;
174
175
0
  err = reftable_block_init(block, &t->source, next_off, header_off,
176
0
          t->block_size, hash_size(t->hash_id), want_typ);
177
0
  if (err)
178
0
    reftable_block_release(block);
179
0
  return err;
180
0
}
181
182
static void table_iter_close(struct table_iter *ti)
183
0
{
184
0
  table_iter_block_done(ti);
185
0
  block_iter_close(&ti->bi);
186
0
  reftable_table_decref(ti->table);
187
0
}
188
189
static int table_iter_next_block(struct table_iter *ti)
190
0
{
191
0
  uint64_t next_block_off = ti->block_off + ti->block.full_block_size;
192
0
  int err;
193
194
0
  err = table_init_block(ti->table, &ti->block, next_block_off, ti->typ);
195
0
  if (err > 0)
196
0
    ti->is_finished = 1;
197
0
  if (err)
198
0
    return err;
199
200
0
  ti->block_off = next_block_off;
201
0
  ti->is_finished = 0;
202
0
  block_iter_init(&ti->bi, &ti->block);
203
204
0
  return 0;
205
0
}
206
207
static int table_iter_next(struct table_iter *ti, struct reftable_record *rec)
208
0
{
209
0
  if (reftable_record_type(rec) != ti->typ)
210
0
    return REFTABLE_API_ERROR;
211
212
0
  while (1) {
213
0
    int err;
214
215
0
    if (ti->is_finished)
216
0
      return 1;
217
218
    /*
219
     * Check whether the current block still has more records. If
220
     * so, return it. If the iterator returns positive then the
221
     * current block has been exhausted.
222
     */
223
0
    err = table_iter_next_in_block(ti, rec);
224
0
    if (err <= 0)
225
0
      return err;
226
227
    /*
228
     * Otherwise, we need to continue to the next block in the
229
     * table and retry. If there are no more blocks then the
230
     * iterator is drained.
231
     */
232
0
    err = table_iter_next_block(ti);
233
0
    if (err) {
234
0
      ti->is_finished = 1;
235
0
      return err;
236
0
    }
237
0
  }
238
0
}
239
240
static int table_iter_seek_to(struct table_iter *ti, uint64_t off, uint8_t typ)
241
0
{
242
0
  int err;
243
244
0
  err = table_init_block(ti->table, &ti->block, off, typ);
245
0
  if (err != 0)
246
0
    return err;
247
248
0
  ti->typ = reftable_block_type(&ti->block);
249
0
  ti->block_off = off;
250
0
  block_iter_init(&ti->bi, &ti->block);
251
0
  ti->is_finished = 0;
252
0
  return 0;
253
0
}
254
255
static int table_iter_seek_start(struct table_iter *ti, uint8_t typ, int index)
256
0
{
257
0
  struct reftable_table_offsets *offs = table_offsets_for(ti->table, typ);
258
0
  uint64_t off = offs->offset;
259
0
  if (index) {
260
0
    off = offs->index_offset;
261
0
    if (off == 0) {
262
0
      return 1;
263
0
    }
264
0
    typ = REFTABLE_BLOCK_TYPE_INDEX;
265
0
  }
266
267
0
  return table_iter_seek_to(ti, off, typ);
268
0
}
269
270
static int table_iter_seek_linear(struct table_iter *ti,
271
          struct reftable_record *want)
272
0
{
273
0
  struct reftable_buf want_key = REFTABLE_BUF_INIT;
274
0
  struct reftable_buf got_key = REFTABLE_BUF_INIT;
275
0
  struct reftable_record rec;
276
0
  int err;
277
278
0
  err = reftable_record_init(&rec, reftable_record_type(want));
279
0
  if (err < 0)
280
0
    goto done;
281
282
0
  err = reftable_record_key(want, &want_key);
283
0
  if (err < 0)
284
0
    goto done;
285
286
  /*
287
   * First we need to locate the block that must contain our record. To
288
   * do so we scan through blocks linearly until we find the first block
289
   * whose first key is bigger than our wanted key. Once we have found
290
   * that block we know that the key must be contained in the preceding
291
   * block.
292
   *
293
   * This algorithm is somewhat unfortunate because it means that we
294
   * always have to seek one block too far and then back up. But as we
295
   * can only decode the _first_ key of a block but not its _last_ key we
296
   * have no other way to do this.
297
   */
298
0
  while (1) {
299
0
    struct table_iter next = *ti;
300
301
    /*
302
     * We must be careful to not modify underlying data of `ti`
303
     * because we may find that `next` does not contain our desired
304
     * block, but that `ti` does. In that case, we would discard
305
     * `next` and continue with `ti`.
306
     *
307
     * This also means that we cannot reuse allocated memory for
308
     * `next` here. While it would be great if we could, it should
309
     * in practice not be too bad given that we should only ever
310
     * end up doing linear seeks with at most three blocks. As soon
311
     * as we have more than three blocks we would have an index, so
312
     * we would not do a linear search there anymore.
313
     */
314
0
    memset(&next.block.block_data, 0, sizeof(next.block.block_data));
315
0
    next.block.zstream = NULL;
316
0
    next.block.uncompressed_data = NULL;
317
0
    next.block.uncompressed_cap = 0;
318
319
0
    err = table_iter_next_block(&next);
320
0
    if (err < 0)
321
0
      goto done;
322
0
    if (err > 0)
323
0
      break;
324
325
0
    err = reftable_block_first_key(&next.block, &got_key);
326
0
    if (err < 0)
327
0
      goto done;
328
329
0
    if (reftable_buf_cmp(&got_key, &want_key) > 0) {
330
0
      table_iter_block_done(&next);
331
0
      break;
332
0
    }
333
334
0
    table_iter_block_done(ti);
335
0
    *ti = next;
336
0
  }
337
338
  /*
339
   * We have located the block that must contain our record, so we seek
340
   * the wanted key inside of it. If the block does not contain our key
341
   * we know that the corresponding record does not exist.
342
   */
343
0
  block_iter_init(&ti->bi, &ti->block);
344
0
  err = block_iter_seek_key(&ti->bi, &want_key);
345
0
  if (err < 0)
346
0
    goto done;
347
0
  err = 0;
348
349
0
done:
350
0
  reftable_record_release(&rec);
351
0
  reftable_buf_release(&want_key);
352
0
  reftable_buf_release(&got_key);
353
0
  return err;
354
0
}
355
356
static int table_iter_seek_indexed(struct table_iter *ti,
357
           struct reftable_record *rec)
358
0
{
359
0
  struct reftable_record want_index = {
360
0
    .type = REFTABLE_BLOCK_TYPE_INDEX, .u.idx = { .last_key = REFTABLE_BUF_INIT }
361
0
  };
362
0
  struct reftable_record index_result = {
363
0
    .type = REFTABLE_BLOCK_TYPE_INDEX,
364
0
    .u.idx = { .last_key = REFTABLE_BUF_INIT },
365
0
  };
366
0
  int err;
367
368
0
  err = reftable_record_key(rec, &want_index.u.idx.last_key);
369
0
  if (err < 0)
370
0
    goto done;
371
372
  /*
373
   * The index may consist of multiple levels, where each level may have
374
   * multiple index blocks. We start by doing a linear search in the
375
   * highest layer that identifies the relevant index block as well as
376
   * the record inside that block that corresponds to our wanted key.
377
   */
378
0
  err = table_iter_seek_linear(ti, &want_index);
379
0
  if (err < 0)
380
0
    goto done;
381
382
  /*
383
   * Traverse down the levels until we find a non-index entry.
384
   */
385
0
  while (1) {
386
    /*
387
     * In case we seek a record that does not exist the index iter
388
     * will tell us that the iterator is over. This works because
389
     * the last index entry of the current level will contain the
390
     * last key it knows about. So in case our seeked key is larger
391
     * than the last indexed key we know that it won't exist.
392
     *
393
     * There is one subtlety in the layout of the index section
394
     * that makes this work as expected: the highest-level index is
395
     * at end of the section and will point backwards and thus we
396
     * start reading from the end of the index section, not the
397
     * beginning.
398
     *
399
     * If that wasn't the case and the order was reversed then the
400
     * linear seek would seek into the lower levels and traverse
401
     * all levels of the index only to find out that the key does
402
     * not exist.
403
     */
404
0
    err = table_iter_next(ti, &index_result);
405
0
    if (err != 0)
406
0
      goto done;
407
408
0
    err = table_iter_seek_to(ti, index_result.u.idx.offset, 0);
409
0
    if (err != 0)
410
0
      goto done;
411
412
0
    block_iter_init(&ti->bi, &ti->block);
413
414
0
    err = block_iter_seek_key(&ti->bi, &want_index.u.idx.last_key);
415
0
    if (err < 0)
416
0
      goto done;
417
418
0
    if (ti->typ == reftable_record_type(rec)) {
419
0
      err = 0;
420
0
      break;
421
0
    }
422
423
0
    if (ti->typ != REFTABLE_BLOCK_TYPE_INDEX) {
424
0
      err = REFTABLE_FORMAT_ERROR;
425
0
      goto done;
426
0
    }
427
0
  }
428
429
0
done:
430
0
  reftable_record_release(&want_index);
431
0
  reftable_record_release(&index_result);
432
0
  return err;
433
0
}
434
435
static int table_iter_seek(struct table_iter *ti,
436
         struct reftable_record *want)
437
0
{
438
0
  uint8_t typ = reftable_record_type(want);
439
0
  struct reftable_table_offsets *offs = table_offsets_for(ti->table, typ);
440
0
  int err;
441
442
0
  err = table_iter_seek_start(ti, reftable_record_type(want),
443
0
            !!offs->index_offset);
444
0
  if (err < 0)
445
0
    goto out;
446
447
0
  if (offs->index_offset)
448
0
    err = table_iter_seek_indexed(ti, want);
449
0
  else
450
0
    err = table_iter_seek_linear(ti, want);
451
0
  if (err)
452
0
    goto out;
453
454
0
out:
455
0
  return err;
456
0
}
457
458
static int table_iter_seek_void(void *ti, struct reftable_record *want)
459
0
{
460
0
  return table_iter_seek(ti, want);
461
0
}
462
463
static int table_iter_next_void(void *ti, struct reftable_record *rec)
464
0
{
465
0
  return table_iter_next(ti, rec);
466
0
}
467
468
static void table_iter_close_void(void *ti)
469
0
{
470
0
  table_iter_close(ti);
471
0
}
472
473
static struct reftable_iterator_vtable table_iter_vtable = {
474
  .seek = &table_iter_seek_void,
475
  .next = &table_iter_next_void,
476
  .close = &table_iter_close_void,
477
};
478
479
static void iterator_from_table_iter(struct reftable_iterator *it,
480
             struct table_iter *ti)
481
0
{
482
0
  assert(!it->ops);
483
0
  it->iter_arg = ti;
484
0
  it->ops = &table_iter_vtable;
485
0
}
486
487
int table_init_iter(struct reftable_table *t,
488
        struct reftable_iterator *it,
489
        uint8_t typ)
490
0
{
491
0
  struct reftable_table_offsets *offs = table_offsets_for(t, typ);
492
493
0
  if (offs->is_present) {
494
0
    struct table_iter *ti;
495
0
    REFTABLE_ALLOC_ARRAY(ti, 1);
496
0
    if (!ti)
497
0
      return REFTABLE_OUT_OF_MEMORY_ERROR;
498
499
0
    table_iter_init(ti, t);
500
0
    iterator_from_table_iter(it, ti);
501
0
  } else {
502
0
    iterator_set_empty(it);
503
0
  }
504
505
0
  return 0;
506
0
}
507
508
int reftable_table_init_ref_iterator(struct reftable_table *t,
509
             struct reftable_iterator *it)
510
0
{
511
0
  return table_init_iter(t, it, REFTABLE_BLOCK_TYPE_REF);
512
0
}
513
514
int reftable_table_init_log_iterator(struct reftable_table *t,
515
             struct reftable_iterator *it)
516
0
{
517
0
  return table_init_iter(t, it, REFTABLE_BLOCK_TYPE_LOG);
518
0
}
519
520
int reftable_table_new(struct reftable_table **out,
521
           struct reftable_block_source *source, char const *name)
522
0
{
523
0
  struct reftable_block_data footer = { 0 };
524
0
  struct reftable_block_data header = { 0 };
525
0
  struct reftable_table *t;
526
0
  uint64_t file_size = block_source_size(source);
527
0
  uint32_t read_size;
528
0
  ssize_t bytes_read;
529
0
  int err;
530
531
0
  REFTABLE_CALLOC_ARRAY(t, 1);
532
0
  if (!t) {
533
0
    err = REFTABLE_OUT_OF_MEMORY_ERROR;
534
0
    goto done;
535
0
  }
536
537
  /*
538
   * We need one extra byte to read the type of first block. We also
539
   * pretend to always be reading v2 of the format because it is larger.
540
   */
541
0
  read_size = header_size(2) + 1;
542
0
  if (read_size > file_size) {
543
0
    err = REFTABLE_FORMAT_ERROR;
544
0
    goto done;
545
0
  }
546
547
0
  bytes_read = block_source_read_data(source, &header, 0, read_size);
548
0
  if (bytes_read < 0 || (size_t)bytes_read != read_size) {
549
0
    err = REFTABLE_IO_ERROR;
550
0
    goto done;
551
0
  }
552
553
0
  if (memcmp(header.data, "REFT", 4)) {
554
0
    err = REFTABLE_FORMAT_ERROR;
555
0
    goto done;
556
0
  }
557
0
  t->version = header.data[4];
558
0
  if (t->version != 1 && t->version != 2) {
559
0
    err = REFTABLE_FORMAT_ERROR;
560
0
    goto done;
561
0
  }
562
563
0
  t->size = file_size - footer_size(t->version);
564
0
  t->source = *source;
565
0
  t->name = reftable_strdup(name);
566
0
  if (!t->name) {
567
0
    err = REFTABLE_OUT_OF_MEMORY_ERROR;
568
0
    goto done;
569
0
  }
570
0
  t->hash_id = 0;
571
0
  t->refcount = 1;
572
573
0
  bytes_read = block_source_read_data(source, &footer, t->size,
574
0
              footer_size(t->version));
575
0
  if (bytes_read < 0 || (size_t)bytes_read != footer_size(t->version)) {
576
0
    err = REFTABLE_IO_ERROR;
577
0
    goto done;
578
0
  }
579
580
0
  err = parse_footer(t, footer.data, header.data);
581
0
  if (err)
582
0
    goto done;
583
584
0
  *out = t;
585
586
0
done:
587
0
  block_source_release_data(&footer);
588
0
  block_source_release_data(&header);
589
0
  if (err) {
590
0
    if (t)
591
0
      reftable_free(t->name);
592
0
    reftable_free(t);
593
0
    block_source_close(source);
594
0
  }
595
0
  return err;
596
0
}
597
598
void reftable_table_incref(struct reftable_table *t)
599
0
{
600
0
  t->refcount++;
601
0
}
602
603
void reftable_table_decref(struct reftable_table *t)
604
0
{
605
0
  if (!t)
606
0
    return;
607
0
  if (--t->refcount)
608
0
    return;
609
0
  block_source_close(&t->source);
610
0
  REFTABLE_FREE_AND_NULL(t->name);
611
0
  reftable_free(t);
612
0
}
613
614
static int reftable_table_refs_for_indexed(struct reftable_table *t,
615
             struct reftable_iterator *it,
616
             uint8_t *oid)
617
0
{
618
0
  struct reftable_record want = {
619
0
    .type = REFTABLE_BLOCK_TYPE_OBJ,
620
0
    .u.obj = {
621
0
      .hash_prefix = oid,
622
0
      .hash_prefix_len = t->object_id_len,
623
0
    },
624
0
  };
625
0
  struct reftable_iterator oit = { NULL };
626
0
  struct reftable_record got = {
627
0
    .type = REFTABLE_BLOCK_TYPE_OBJ,
628
0
    .u.obj = { 0 },
629
0
  };
630
0
  int err = 0;
631
0
  struct indexed_table_ref_iter *itr = NULL;
632
633
  /* Look through the reverse index. */
634
0
  err = table_init_iter(t, &oit, REFTABLE_BLOCK_TYPE_OBJ);
635
0
  if (err < 0)
636
0
    goto done;
637
638
0
  err = iterator_seek(&oit, &want);
639
0
  if (err != 0)
640
0
    goto done;
641
642
  /* read out the reftable_obj_record */
643
0
  err = iterator_next(&oit, &got);
644
0
  if (err < 0)
645
0
    goto done;
646
647
0
  if (err > 0 || memcmp(want.u.obj.hash_prefix, got.u.obj.hash_prefix,
648
0
            t->object_id_len)) {
649
    /* didn't find it; return empty iterator */
650
0
    iterator_set_empty(it);
651
0
    err = 0;
652
0
    goto done;
653
0
  }
654
655
0
  err = indexed_table_ref_iter_new(&itr, t, oid, hash_size(t->hash_id),
656
0
           got.u.obj.offsets,
657
0
           got.u.obj.offset_len);
658
0
  if (err < 0)
659
0
    goto done;
660
0
  got.u.obj.offsets = NULL;
661
0
  iterator_from_indexed_table_ref_iter(it, itr);
662
663
0
done:
664
0
  reftable_iterator_destroy(&oit);
665
0
  reftable_record_release(&got);
666
0
  return err;
667
0
}
668
669
static int reftable_table_refs_for_unindexed(struct reftable_table *t,
670
               struct reftable_iterator *it,
671
               uint8_t *oid)
672
0
{
673
0
  struct table_iter *ti;
674
0
  struct filtering_ref_iterator *filter = NULL;
675
0
  struct filtering_ref_iterator empty = FILTERING_REF_ITERATOR_INIT;
676
0
  uint32_t oid_len = hash_size(t->hash_id);
677
0
  int err;
678
679
0
  REFTABLE_ALLOC_ARRAY(ti, 1);
680
0
  if (!ti) {
681
0
    err = REFTABLE_OUT_OF_MEMORY_ERROR;
682
0
    goto out;
683
0
  }
684
685
0
  table_iter_init(ti, t);
686
0
  err = table_iter_seek_start(ti, REFTABLE_BLOCK_TYPE_REF, 0);
687
0
  if (err < 0)
688
0
    goto out;
689
690
0
  filter = reftable_malloc(sizeof(*filter));
691
0
  if (!filter) {
692
0
    err = REFTABLE_OUT_OF_MEMORY_ERROR;
693
0
    goto out;
694
0
  }
695
0
  *filter = empty;
696
697
0
  err = reftable_buf_add(&filter->oid, oid, oid_len);
698
0
  if (err < 0)
699
0
    goto out;
700
701
0
  iterator_from_table_iter(&filter->it, ti);
702
703
0
  iterator_from_filtering_ref_iterator(it, filter);
704
705
0
  err = 0;
706
707
0
out:
708
0
  if (err < 0) {
709
0
    if (ti)
710
0
      table_iter_close(ti);
711
0
    reftable_free(ti);
712
0
  }
713
0
  return err;
714
0
}
715
716
int reftable_table_refs_for(struct reftable_table *t,
717
          struct reftable_iterator *it, uint8_t *oid)
718
0
{
719
0
  if (t->obj_offsets.is_present)
720
0
    return reftable_table_refs_for_indexed(t, it, oid);
721
0
  return reftable_table_refs_for_unindexed(t, it, oid);
722
0
}
723
724
uint64_t reftable_table_max_update_index(struct reftable_table *t)
725
0
{
726
0
  return t->max_update_index;
727
0
}
728
729
uint64_t reftable_table_min_update_index(struct reftable_table *t)
730
0
{
731
0
  return t->min_update_index;
732
0
}
733
734
int reftable_table_iterator_init(struct reftable_table_iterator *it,
735
         struct reftable_table *t)
736
0
{
737
0
  struct table_iter *ti;
738
0
  int err;
739
740
0
  REFTABLE_ALLOC_ARRAY(ti, 1);
741
0
  if (!ti)
742
0
    return REFTABLE_OUT_OF_MEMORY_ERROR;
743
744
0
  err = table_iter_init(ti, t);
745
0
  if (err < 0)
746
0
    goto out;
747
748
0
  it->iter_arg = ti;
749
0
  err = 0;
750
751
0
out:
752
0
  if (err < 0)
753
0
    reftable_free(ti);
754
0
  return err;
755
0
}
756
757
void reftable_table_iterator_release(struct reftable_table_iterator *it)
758
0
{
759
0
  if (!it->iter_arg)
760
0
    return;
761
0
  table_iter_close(it->iter_arg);
762
0
  reftable_free(it->iter_arg);
763
0
  it->iter_arg = NULL;
764
0
}
765
766
int reftable_table_iterator_next(struct reftable_table_iterator *it,
767
         const struct reftable_block **out)
768
0
{
769
0
  struct table_iter *ti = it->iter_arg;
770
0
  int err;
771
772
0
  err = table_iter_next_block(ti);
773
0
  if (err)
774
0
    return err;
775
776
0
  *out = &ti->block;
777
778
0
  return 0;
779
0
}