Coverage Report

Created: 2026-01-09 07:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/zlib/deflate.c
Line
Count
Source
1
/* deflate.c -- compress data using the deflation algorithm
2
 * Copyright (C) 1995-2025 Jean-loup Gailly and Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/*
7
 *  ALGORITHM
8
 *
9
 *      The "deflation" process depends on being able to identify portions
10
 *      of the input text which are identical to earlier input (within a
11
 *      sliding window trailing behind the input currently being processed).
12
 *
13
 *      The most straightforward technique turns out to be the fastest for
14
 *      most input files: try all possible matches and select the longest.
15
 *      The key feature of this algorithm is that insertions into the string
16
 *      dictionary are very simple and thus fast, and deletions are avoided
17
 *      completely. Insertions are performed at each input character, whereas
18
 *      string matches are performed only when the previous match ends. So it
19
 *      is preferable to spend more time in matches to allow very fast string
20
 *      insertions and avoid deletions. The matching algorithm for small
21
 *      strings is inspired from that of Rabin & Karp. A brute force approach
22
 *      is used to find longer strings when a small match has been found.
23
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
 *      (by Leonid Broukhis).
25
 *         A previous version of this file used a more sophisticated algorithm
26
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27
 *      time, but has a larger average cost, uses more memory and is patented.
28
 *      However the F&G algorithm may be faster for some highly redundant
29
 *      files if the parameter max_chain_length (described below) is too large.
30
 *
31
 *  ACKNOWLEDGEMENTS
32
 *
33
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
 *      I found it in 'freeze' written by Leonid Broukhis.
35
 *      Thanks to many people for bug reports and testing.
36
 *
37
 *  REFERENCES
38
 *
39
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
 *      Available at https://datatracker.ietf.org/doc/html/rfc1951
41
 *
42
 *      A description of the Rabin and Karp algorithm is given in the book
43
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
 *
45
 *      Fiala,E.R., and Greene,D.H.
46
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
 *
48
 */
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
   " deflate 1.3.1.2 Copyright 1995-2025 Jean-loup Gailly and Mark Adler ";
56
/*
57
  If you use the zlib library in a product, an acknowledgment is welcome
58
  in the documentation of your product. If for some reason you cannot
59
  include such an acknowledgment, I would appreciate that you keep this
60
  copyright string in the executable of your product.
61
 */
62
63
typedef enum {
64
    need_more,      /* block not completed, need more input or more output */
65
    block_done,     /* block flush performed */
66
    finish_started, /* finish started, need only more output at next deflate */
67
    finish_done     /* finish done, accept no more input or output */
68
} block_state;
69
70
typedef block_state (*compress_func)(deflate_state *s, int flush);
71
/* Compression function. Returns the block state after the call. */
72
73
local block_state deflate_stored(deflate_state *s, int flush);
74
local block_state deflate_fast(deflate_state *s, int flush);
75
#ifndef FASTEST
76
local block_state deflate_slow(deflate_state *s, int flush);
77
#endif
78
local block_state deflate_rle(deflate_state *s, int flush);
79
local block_state deflate_huff(deflate_state *s, int flush);
80
81
/* ===========================================================================
82
 * Local data
83
 */
84
85
0
#define NIL 0
86
/* Tail of hash chains */
87
88
#ifndef TOO_FAR
89
0
#  define TOO_FAR 4096
90
#endif
91
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93
/* Values for max_lazy_match, good_match and max_chain_length, depending on
94
 * the desired pack level (0..9). The values given below have been tuned to
95
 * exclude worst case performance for pathological files. Better values may be
96
 * found for specific files.
97
 */
98
typedef struct config_s {
99
   ush good_length; /* reduce lazy search above this match length */
100
   ush max_lazy;    /* do not perform lazy search above this match length */
101
   ush nice_length; /* quit search above this match length */
102
   ush max_chain;
103
   compress_func func;
104
} config;
105
106
#ifdef FASTEST
107
local const config configuration_table[2] = {
108
/*      good lazy nice chain */
109
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
110
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
111
#else
112
local const config configuration_table[10] = {
113
/*      good lazy nice chain */
114
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
115
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
116
/* 2 */ {4,    5, 16,    8, deflate_fast},
117
/* 3 */ {4,    6, 32,   32, deflate_fast},
118
119
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
120
/* 5 */ {8,   16, 32,   32, deflate_slow},
121
/* 6 */ {8,   16, 128, 128, deflate_slow},
122
/* 7 */ {8,   32, 128, 256, deflate_slow},
123
/* 8 */ {32, 128, 258, 1024, deflate_slow},
124
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125
#endif
126
127
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129
 * meaning.
130
 */
131
132
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133
0
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135
/* ===========================================================================
136
 * Update a hash value with the given input byte
137
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
138
 *    characters, so that a running hash key can be computed from the previous
139
 *    key instead of complete recalculation each time.
140
 */
141
0
#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144
/* ===========================================================================
145
 * Insert string str in the dictionary and set match_head to the previous head
146
 * of the hash chain (the most recent string with same hash key). Return
147
 * the previous length of the hash chain.
148
 * If this file is compiled with -DFASTEST, the compression level is forced
149
 * to 1, and no hash chains are maintained.
150
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
151
 *    characters and the first MIN_MATCH bytes of str are valid (except for
152
 *    the last MIN_MATCH-1 bytes of the input file).
153
 */
154
#ifdef FASTEST
155
#define INSERT_STRING(s, str, match_head) \
156
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157
    match_head = s->head[s->ins_h], \
158
    s->head[s->ins_h] = (Pos)(str))
159
#else
160
#define INSERT_STRING(s, str, match_head) \
161
0
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162
0
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163
0
    s->head[s->ins_h] = (Pos)(str))
164
#endif
165
166
/* ===========================================================================
167
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168
 * prev[] will be initialized on the fly.
169
 */
170
#define CLEAR_HASH(s) \
171
0
    do { \
172
0
        s->head[s->hash_size - 1] = NIL; \
173
0
        zmemzero((Bytef *)s->head, \
174
0
                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175
0
    } while (0)
176
177
/* ===========================================================================
178
 * Slide the hash table when sliding the window down (could be avoided with 32
179
 * bit values at the expense of memory usage). We slide even when level == 0 to
180
 * keep the hash table consistent if we switch back to level > 0 later.
181
 */
182
#if defined(__has_feature)
183
#  if __has_feature(memory_sanitizer)
184
     __attribute__((no_sanitize("memory")))
185
#  endif
186
#endif
187
0
local void slide_hash(deflate_state *s) {
188
0
    unsigned n, m;
189
0
    Posf *p;
190
0
    uInt wsize = s->w_size;
191
192
0
    n = s->hash_size;
193
0
    p = &s->head[n];
194
0
    do {
195
0
        m = *--p;
196
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
197
0
    } while (--n);
198
0
    n = wsize;
199
0
#ifndef FASTEST
200
0
    p = &s->prev[n];
201
0
    do {
202
0
        m = *--p;
203
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
204
        /* If n is not on any hash chain, prev[n] is garbage but
205
         * its value will never be used.
206
         */
207
0
    } while (--n);
208
0
#endif
209
0
}
210
211
/* ===========================================================================
212
 * Read a new buffer from the current input stream, update the adler32
213
 * and total number of bytes read.  All deflate() input goes through
214
 * this function so some applications may wish to modify it to avoid
215
 * allocating a large strm->next_in buffer and copying from it.
216
 * (See also flush_pending()).
217
 */
218
0
local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
219
0
    unsigned len = strm->avail_in;
220
221
0
    if (len > size) len = size;
222
0
    if (len == 0) return 0;
223
224
0
    strm->avail_in  -= len;
225
226
0
    zmemcpy(buf, strm->next_in, len);
227
0
    if (strm->state->wrap == 1) {
228
0
        strm->adler = adler32(strm->adler, buf, len);
229
0
    }
230
0
#ifdef GZIP
231
0
    else if (strm->state->wrap == 2) {
232
0
        strm->adler = crc32(strm->adler, buf, len);
233
0
    }
234
0
#endif
235
0
    strm->next_in  += len;
236
0
    strm->total_in += len;
237
238
0
    return len;
239
0
}
240
241
/* ===========================================================================
242
 * Fill the window when the lookahead becomes insufficient.
243
 * Updates strstart and lookahead.
244
 *
245
 * IN assertion: lookahead < MIN_LOOKAHEAD
246
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
247
 *    At least one byte has been read, or avail_in == 0; reads are
248
 *    performed for at least two bytes (required for the zip translate_eol
249
 *    option -- not supported here).
250
 */
251
0
local void fill_window(deflate_state *s) {
252
0
    unsigned n;
253
0
    unsigned more;    /* Amount of free space at the end of the window. */
254
0
    uInt wsize = s->w_size;
255
256
0
    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
257
258
0
    do {
259
0
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
260
261
        /* Deal with !@#$% 64K limit: */
262
0
        if (sizeof(int) <= 2) {
263
0
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
264
0
                more = wsize;
265
266
0
            } else if (more == (unsigned)(-1)) {
267
                /* Very unlikely, but possible on 16 bit machine if
268
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
269
                 */
270
0
                more--;
271
0
            }
272
0
        }
273
274
        /* If the window is almost full and there is insufficient lookahead,
275
         * move the upper half to the lower one to make room in the upper half.
276
         */
277
0
        if (s->strstart >= wsize + MAX_DIST(s)) {
278
279
0
            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
280
0
            s->match_start -= wsize;
281
0
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
282
0
            s->block_start -= (long) wsize;
283
0
            if (s->insert > s->strstart)
284
0
                s->insert = s->strstart;
285
0
            slide_hash(s);
286
0
            more += wsize;
287
0
        }
288
0
        if (s->strm->avail_in == 0) break;
289
290
        /* If there was no sliding:
291
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
292
         *    more == window_size - lookahead - strstart
293
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
294
         * => more >= window_size - 2*WSIZE + 2
295
         * In the BIG_MEM or MMAP case (not yet supported),
296
         *   window_size == input_size + MIN_LOOKAHEAD  &&
297
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
298
         * Otherwise, window_size == 2*WSIZE so more >= 2.
299
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
300
         */
301
0
        Assert(more >= 2, "more < 2");
302
303
0
        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
304
0
        s->lookahead += n;
305
306
        /* Initialize the hash value now that we have some input: */
307
0
        if (s->lookahead + s->insert >= MIN_MATCH) {
308
0
            uInt str = s->strstart - s->insert;
309
0
            s->ins_h = s->window[str];
310
0
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
311
#if MIN_MATCH != 3
312
            Call UPDATE_HASH() MIN_MATCH-3 more times
313
#endif
314
0
            while (s->insert) {
315
0
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
316
0
#ifndef FASTEST
317
0
                s->prev[str & s->w_mask] = s->head[s->ins_h];
318
0
#endif
319
0
                s->head[s->ins_h] = (Pos)str;
320
0
                str++;
321
0
                s->insert--;
322
0
                if (s->lookahead + s->insert < MIN_MATCH)
323
0
                    break;
324
0
            }
325
0
        }
326
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
327
         * but this is not important since only literal bytes will be emitted.
328
         */
329
330
0
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
331
332
    /* If the WIN_INIT bytes after the end of the current data have never been
333
     * written, then zero those bytes in order to avoid memory check reports of
334
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
335
     * the longest match routines.  Update the high water mark for the next
336
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
337
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
338
     */
339
0
    if (s->high_water < s->window_size) {
340
0
        ulg curr = s->strstart + (ulg)(s->lookahead);
341
0
        ulg init;
342
343
0
        if (s->high_water < curr) {
344
            /* Previous high water mark below current data -- zero WIN_INIT
345
             * bytes or up to end of window, whichever is less.
346
             */
347
0
            init = s->window_size - curr;
348
0
            if (init > WIN_INIT)
349
0
                init = WIN_INIT;
350
0
            zmemzero(s->window + curr, (unsigned)init);
351
0
            s->high_water = curr + init;
352
0
        }
353
0
        else if (s->high_water < (ulg)curr + WIN_INIT) {
354
            /* High water mark at or above current data, but below current data
355
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
356
             * to end of window, whichever is less.
357
             */
358
0
            init = (ulg)curr + WIN_INIT - s->high_water;
359
0
            if (init > s->window_size - s->high_water)
360
0
                init = s->window_size - s->high_water;
361
0
            zmemzero(s->window + s->high_water, (unsigned)init);
362
0
            s->high_water += init;
363
0
        }
364
0
    }
365
366
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
367
0
           "not enough room for search");
368
0
}
369
370
/* ========================================================================= */
371
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
372
0
                         int stream_size) {
373
0
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
374
0
                         Z_DEFAULT_STRATEGY, version, stream_size);
375
    /* To do: ignore strm->next_in if we use it as window */
376
0
}
377
378
/* ========================================================================= */
379
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
380
                          int windowBits, int memLevel, int strategy,
381
                          const char *version, int stream_size) {
382
    deflate_state *s;
383
    int wrap = 1;
384
    static const char my_version[] = ZLIB_VERSION;
385
386
    if (version == Z_NULL || version[0] != my_version[0] ||
387
        stream_size != sizeof(z_stream)) {
388
        return Z_VERSION_ERROR;
389
    }
390
    if (strm == Z_NULL) return Z_STREAM_ERROR;
391
392
    strm->msg = Z_NULL;
393
    if (strm->zalloc == (alloc_func)0) {
394
#ifdef Z_SOLO
395
        return Z_STREAM_ERROR;
396
#else
397
        strm->zalloc = zcalloc;
398
        strm->opaque = (voidpf)0;
399
#endif
400
    }
401
    if (strm->zfree == (free_func)0)
402
#ifdef Z_SOLO
403
        return Z_STREAM_ERROR;
404
#else
405
        strm->zfree = zcfree;
406
#endif
407
408
#ifdef FASTEST
409
    if (level != 0) level = 1;
410
#else
411
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
412
#endif
413
414
    if (windowBits < 0) { /* suppress zlib wrapper */
415
        wrap = 0;
416
        if (windowBits < -15)
417
            return Z_STREAM_ERROR;
418
        windowBits = -windowBits;
419
    }
420
#ifdef GZIP
421
    else if (windowBits > 15) {
422
        wrap = 2;       /* write gzip wrapper instead */
423
        windowBits -= 16;
424
    }
425
#endif
426
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
427
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
428
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
429
        return Z_STREAM_ERROR;
430
    }
431
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
432
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
433
    if (s == Z_NULL) return Z_MEM_ERROR;
434
    strm->state = (struct internal_state FAR *)s;
435
    s->strm = strm;
436
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
437
438
    s->wrap = wrap;
439
    s->gzhead = Z_NULL;
440
    s->w_bits = (uInt)windowBits;
441
    s->w_size = 1 << s->w_bits;
442
    s->w_mask = s->w_size - 1;
443
444
    s->hash_bits = (uInt)memLevel + 7;
445
    s->hash_size = 1 << s->hash_bits;
446
    s->hash_mask = s->hash_size - 1;
447
    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
448
449
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
450
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
451
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
452
453
    s->high_water = 0;      /* nothing written to s->window yet */
454
455
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
456
457
    /* We overlay pending_buf and sym_buf. This works since the average size
458
     * for length/distance pairs over any compressed block is assured to be 31
459
     * bits or less.
460
     *
461
     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
462
     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
463
     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
464
     * possible fixed-codes length/distance pair is then 31 bits total.
465
     *
466
     * sym_buf starts one-fourth of the way into pending_buf. So there are
467
     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
468
     * in sym_buf is three bytes -- two for the distance and one for the
469
     * literal/length. As each symbol is consumed, the pointer to the next
470
     * sym_buf value to read moves forward three bytes. From that symbol, up to
471
     * 31 bits are written to pending_buf. The closest the written pending_buf
472
     * bits gets to the next sym_buf symbol to read is just before the last
473
     * code is written. At that time, 31*(n - 2) bits have been written, just
474
     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
475
     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
476
     * symbols are written.) The closest the writing gets to what is unread is
477
     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
478
     * can range from 128 to 32768.
479
     *
480
     * Therefore, at a minimum, there are 142 bits of space between what is
481
     * written and what is read in the overlain buffers, so the symbols cannot
482
     * be overwritten by the compressed data. That space is actually 139 bits,
483
     * due to the three-bit fixed-code block header.
484
     *
485
     * That covers the case where either Z_FIXED is specified, forcing fixed
486
     * codes, or when the use of fixed codes is chosen, because that choice
487
     * results in a smaller compressed block than dynamic codes. That latter
488
     * condition then assures that the above analysis also covers all dynamic
489
     * blocks. A dynamic-code block will only be chosen to be emitted if it has
490
     * fewer bits than a fixed-code block would for the same set of symbols.
491
     * Therefore its average symbol length is assured to be less than 31. So
492
     * the compressed data for a dynamic block also cannot overwrite the
493
     * symbols from which it is being constructed.
494
     */
495
496
    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
497
    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
498
499
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
500
        s->pending_buf == Z_NULL) {
501
        s->status = FINISH_STATE;
502
        strm->msg = ERR_MSG(Z_MEM_ERROR);
503
        deflateEnd (strm);
504
        return Z_MEM_ERROR;
505
    }
506
#ifdef LIT_MEM
507
    s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
508
    s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
509
    s->sym_end = s->lit_bufsize - 1;
510
#else
511
    s->sym_buf = s->pending_buf + s->lit_bufsize;
512
    s->sym_end = (s->lit_bufsize - 1) * 3;
513
#endif
514
    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
515
     * on 16 bit machines and because stored blocks are restricted to
516
     * 64K-1 bytes.
517
     */
518
519
    s->level = level;
520
    s->strategy = strategy;
521
    s->method = (Byte)method;
522
523
    return deflateReset(strm);
524
}
525
526
/* =========================================================================
527
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
528
 */
529
0
local int deflateStateCheck(z_streamp strm) {
530
0
    deflate_state *s;
531
0
    if (strm == Z_NULL ||
532
0
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
533
0
        return 1;
534
0
    s = strm->state;
535
0
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
536
0
#ifdef GZIP
537
0
                                           s->status != GZIP_STATE &&
538
0
#endif
539
0
                                           s->status != EXTRA_STATE &&
540
0
                                           s->status != NAME_STATE &&
541
0
                                           s->status != COMMENT_STATE &&
542
0
                                           s->status != HCRC_STATE &&
543
0
                                           s->status != BUSY_STATE &&
544
0
                                           s->status != FINISH_STATE))
545
0
        return 1;
546
0
    return 0;
547
0
}
548
549
/* ========================================================================= */
550
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
551
0
                                 uInt  dictLength) {
552
0
    deflate_state *s;
553
0
    uInt str, n;
554
0
    int wrap;
555
0
    unsigned avail;
556
0
    z_const unsigned char *next;
557
558
0
    if (deflateStateCheck(strm) || dictionary == Z_NULL)
559
0
        return Z_STREAM_ERROR;
560
0
    s = strm->state;
561
0
    wrap = s->wrap;
562
0
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
563
0
        return Z_STREAM_ERROR;
564
565
    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
566
0
    if (wrap == 1)
567
0
        strm->adler = adler32(strm->adler, dictionary, dictLength);
568
0
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
569
570
    /* if dictionary would fill window, just replace the history */
571
0
    if (dictLength >= s->w_size) {
572
0
        if (wrap == 0) {            /* already empty otherwise */
573
0
            CLEAR_HASH(s);
574
0
            s->strstart = 0;
575
0
            s->block_start = 0L;
576
0
            s->insert = 0;
577
0
        }
578
0
        dictionary += dictLength - s->w_size;  /* use the tail */
579
0
        dictLength = s->w_size;
580
0
    }
581
582
    /* insert dictionary into window and hash */
583
0
    avail = strm->avail_in;
584
0
    next = strm->next_in;
585
0
    strm->avail_in = dictLength;
586
0
    strm->next_in = (z_const Bytef *)dictionary;
587
0
    fill_window(s);
588
0
    while (s->lookahead >= MIN_MATCH) {
589
0
        str = s->strstart;
590
0
        n = s->lookahead - (MIN_MATCH-1);
591
0
        do {
592
0
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
593
0
#ifndef FASTEST
594
0
            s->prev[str & s->w_mask] = s->head[s->ins_h];
595
0
#endif
596
0
            s->head[s->ins_h] = (Pos)str;
597
0
            str++;
598
0
        } while (--n);
599
0
        s->strstart = str;
600
0
        s->lookahead = MIN_MATCH-1;
601
0
        fill_window(s);
602
0
    }
603
0
    s->strstart += s->lookahead;
604
0
    s->block_start = (long)s->strstart;
605
0
    s->insert = s->lookahead;
606
0
    s->lookahead = 0;
607
0
    s->match_length = s->prev_length = MIN_MATCH-1;
608
0
    s->match_available = 0;
609
0
    strm->next_in = next;
610
0
    strm->avail_in = avail;
611
0
    s->wrap = wrap;
612
0
    return Z_OK;
613
0
}
614
615
/* ========================================================================= */
616
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
617
0
                                 uInt *dictLength) {
618
0
    deflate_state *s;
619
0
    uInt len;
620
621
0
    if (deflateStateCheck(strm))
622
0
        return Z_STREAM_ERROR;
623
0
    s = strm->state;
624
0
    len = s->strstart + s->lookahead;
625
0
    if (len > s->w_size)
626
0
        len = s->w_size;
627
0
    if (dictionary != Z_NULL && len)
628
0
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
629
0
    if (dictLength != Z_NULL)
630
0
        *dictLength = len;
631
0
    return Z_OK;
632
0
}
633
634
/* ========================================================================= */
635
0
int ZEXPORT deflateResetKeep(z_streamp strm) {
636
0
    deflate_state *s;
637
638
0
    if (deflateStateCheck(strm)) {
639
0
        return Z_STREAM_ERROR;
640
0
    }
641
642
0
    strm->total_in = strm->total_out = 0;
643
0
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
644
0
    strm->data_type = Z_UNKNOWN;
645
646
0
    s = (deflate_state *)strm->state;
647
0
    s->pending = 0;
648
0
    s->pending_out = s->pending_buf;
649
650
0
    if (s->wrap < 0) {
651
0
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
652
0
    }
653
0
    s->status =
654
0
#ifdef GZIP
655
0
        s->wrap == 2 ? GZIP_STATE :
656
0
#endif
657
0
        INIT_STATE;
658
0
    strm->adler =
659
0
#ifdef GZIP
660
0
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
661
0
#endif
662
0
        adler32(0L, Z_NULL, 0);
663
0
    s->last_flush = -2;
664
665
0
    _tr_init(s);
666
667
0
    return Z_OK;
668
0
}
669
670
/* ===========================================================================
671
 * Initialize the "longest match" routines for a new zlib stream
672
 */
673
0
local void lm_init(deflate_state *s) {
674
0
    s->window_size = (ulg)2L*s->w_size;
675
676
0
    CLEAR_HASH(s);
677
678
    /* Set the default configuration parameters:
679
     */
680
0
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
681
0
    s->good_match       = configuration_table[s->level].good_length;
682
0
    s->nice_match       = configuration_table[s->level].nice_length;
683
0
    s->max_chain_length = configuration_table[s->level].max_chain;
684
685
0
    s->strstart = 0;
686
0
    s->block_start = 0L;
687
0
    s->lookahead = 0;
688
0
    s->insert = 0;
689
0
    s->match_length = s->prev_length = MIN_MATCH-1;
690
0
    s->match_available = 0;
691
0
    s->ins_h = 0;
692
0
}
693
694
/* ========================================================================= */
695
0
int ZEXPORT deflateReset(z_streamp strm) {
696
0
    int ret;
697
698
0
    ret = deflateResetKeep(strm);
699
0
    if (ret == Z_OK)
700
0
        lm_init(strm->state);
701
0
    return ret;
702
0
}
703
704
/* ========================================================================= */
705
0
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
706
0
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
707
0
        return Z_STREAM_ERROR;
708
0
    strm->state->gzhead = head;
709
0
    return Z_OK;
710
0
}
711
712
/* ========================================================================= */
713
0
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
714
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
715
0
    if (pending != Z_NULL)
716
0
        *pending = strm->state->pending;
717
0
    if (bits != Z_NULL)
718
0
        *bits = strm->state->bi_valid;
719
0
    return Z_OK;
720
0
}
721
722
/* ========================================================================= */
723
0
int ZEXPORT deflateUsed(z_streamp strm, int *bits) {
724
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
725
0
    if (bits != Z_NULL)
726
0
        *bits = strm->state->bi_used;
727
0
    return Z_OK;
728
0
}
729
730
/* ========================================================================= */
731
0
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
732
0
    deflate_state *s;
733
0
    int put;
734
735
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
736
0
    s = strm->state;
737
#ifdef LIT_MEM
738
    if (bits < 0 || bits > 16 ||
739
        (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
740
        return Z_BUF_ERROR;
741
#else
742
0
    if (bits < 0 || bits > 16 ||
743
0
        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
744
0
        return Z_BUF_ERROR;
745
0
#endif
746
0
    do {
747
0
        put = Buf_size - s->bi_valid;
748
0
        if (put > bits)
749
0
            put = bits;
750
0
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
751
0
        s->bi_valid += put;
752
0
        _tr_flush_bits(s);
753
0
        value >>= put;
754
0
        bits -= put;
755
0
    } while (bits);
756
0
    return Z_OK;
757
0
}
758
759
/* ========================================================================= */
760
0
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
761
0
    deflate_state *s;
762
0
    compress_func func;
763
764
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
765
0
    s = strm->state;
766
767
#ifdef FASTEST
768
    if (level != 0) level = 1;
769
#else
770
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
771
0
#endif
772
0
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
773
0
        return Z_STREAM_ERROR;
774
0
    }
775
0
    func = configuration_table[s->level].func;
776
777
0
    if ((strategy != s->strategy || func != configuration_table[level].func) &&
778
0
        s->last_flush != -2) {
779
        /* Flush the last buffer: */
780
0
        int err = deflate(strm, Z_BLOCK);
781
0
        if (err == Z_STREAM_ERROR)
782
0
            return err;
783
0
        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
784
0
            return Z_BUF_ERROR;
785
0
    }
786
0
    if (s->level != level) {
787
0
        if (s->level == 0 && s->matches != 0) {
788
0
            if (s->matches == 1)
789
0
                slide_hash(s);
790
0
            else
791
0
                CLEAR_HASH(s);
792
0
            s->matches = 0;
793
0
        }
794
0
        s->level = level;
795
0
        s->max_lazy_match   = configuration_table[level].max_lazy;
796
0
        s->good_match       = configuration_table[level].good_length;
797
0
        s->nice_match       = configuration_table[level].nice_length;
798
0
        s->max_chain_length = configuration_table[level].max_chain;
799
0
    }
800
0
    s->strategy = strategy;
801
0
    return Z_OK;
802
0
}
803
804
/* ========================================================================= */
805
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
806
0
                        int nice_length, int max_chain) {
807
0
    deflate_state *s;
808
809
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
810
0
    s = strm->state;
811
0
    s->good_match = (uInt)good_length;
812
0
    s->max_lazy_match = (uInt)max_lazy;
813
0
    s->nice_match = nice_length;
814
0
    s->max_chain_length = (uInt)max_chain;
815
0
    return Z_OK;
816
0
}
817
818
/* =========================================================================
819
 * For the default windowBits of 15 and memLevel of 8, this function returns a
820
 * close to exact, as well as small, upper bound on the compressed size. This
821
 * is an expansion of ~0.03%, plus a small constant.
822
 *
823
 * For any setting other than those defaults for windowBits and memLevel, one
824
 * of two worst case bounds is returned. This is at most an expansion of ~4% or
825
 * ~13%, plus a small constant.
826
 *
827
 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
828
 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
829
 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
830
 * expansion results from five bytes of header for each stored block.
831
 *
832
 * The larger expansion of 13% results from a window size less than or equal to
833
 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
834
 * the data being compressed may have slid out of the sliding window, impeding
835
 * a stored block from being emitted. Then the only choice is a fixed or
836
 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
837
 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
838
 * which this can occur is 255 (memLevel == 2).
839
 *
840
 * Shifts are used to approximate divisions, for speed.
841
 */
842
0
z_size_t ZEXPORT deflateBound_z(z_streamp strm, z_size_t sourceLen) {
843
0
    deflate_state *s;
844
0
    z_size_t fixedlen, storelen, wraplen, bound;
845
846
    /* upper bound for fixed blocks with 9-bit literals and length 255
847
       (memLevel == 2, which is the lowest that may not use stored blocks) --
848
       ~13% overhead plus a small constant */
849
0
    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
850
0
               (sourceLen >> 9) + 4;
851
0
    if (fixedlen < sourceLen)
852
0
        fixedlen = (z_size_t)-1;
853
854
    /* upper bound for stored blocks with length 127 (memLevel == 1) --
855
       ~4% overhead plus a small constant */
856
0
    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
857
0
               (sourceLen >> 11) + 7;
858
0
    if (storelen < sourceLen)
859
0
        storelen = (z_size_t)-1;
860
861
    /* if can't get parameters, return larger bound plus a wrapper */
862
0
    if (deflateStateCheck(strm)) {
863
0
        bound = fixedlen > storelen ? fixedlen : storelen;
864
0
        return bound + 18 < bound ? (z_size_t)-1 : bound + 18;
865
0
    }
866
867
    /* compute wrapper length */
868
0
    s = strm->state;
869
0
    switch (s->wrap < 0 ? -s->wrap : s->wrap) {
870
0
    case 0:                                 /* raw deflate */
871
0
        wraplen = 0;
872
0
        break;
873
0
    case 1:                                 /* zlib wrapper */
874
0
        wraplen = 6 + (s->strstart ? 4 : 0);
875
0
        break;
876
0
#ifdef GZIP
877
0
    case 2:                                 /* gzip wrapper */
878
0
        wraplen = 18;
879
0
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
880
0
            Bytef *str;
881
0
            if (s->gzhead->extra != Z_NULL)
882
0
                wraplen += 2 + s->gzhead->extra_len;
883
0
            str = s->gzhead->name;
884
0
            if (str != Z_NULL)
885
0
                do {
886
0
                    wraplen++;
887
0
                } while (*str++);
888
0
            str = s->gzhead->comment;
889
0
            if (str != Z_NULL)
890
0
                do {
891
0
                    wraplen++;
892
0
                } while (*str++);
893
0
            if (s->gzhead->hcrc)
894
0
                wraplen += 2;
895
0
        }
896
0
        break;
897
0
#endif
898
0
    default:                                /* for compiler happiness */
899
0
        wraplen = 18;
900
0
    }
901
902
    /* if not default parameters, return one of the conservative bounds */
903
0
    if (s->w_bits != 15 || s->hash_bits != 8 + 7) {
904
0
        bound = s->w_bits <= s->hash_bits && s->level ? fixedlen :
905
0
                                                        storelen;
906
0
        return bound + wraplen < bound ? (z_size_t)-1 : bound + wraplen;
907
0
    }
908
909
    /* default settings: return tight bound for that case -- ~0.03% overhead
910
       plus a small constant */
911
0
    bound = sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
912
0
            (sourceLen >> 25) + 13 - 6 + wraplen;
913
0
    return bound < sourceLen ? (z_size_t)-1 : bound;
914
0
}
915
0
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
916
0
    z_size_t bound = deflateBound_z(strm, sourceLen);
917
0
    return (uLong)bound != bound ? (uLong)-1 : (uLong)bound;
918
0
}
919
920
/* =========================================================================
921
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
922
 * IN assertion: the stream state is correct and there is enough room in
923
 * pending_buf.
924
 */
925
0
local void putShortMSB(deflate_state *s, uInt b) {
926
0
    put_byte(s, (Byte)(b >> 8));
927
0
    put_byte(s, (Byte)(b & 0xff));
928
0
}
929
930
/* =========================================================================
931
 * Flush as much pending output as possible. All deflate() output, except for
932
 * some deflate_stored() output, goes through this function so some
933
 * applications may wish to modify it to avoid allocating a large
934
 * strm->next_out buffer and copying into it. (See also read_buf()).
935
 */
936
0
local void flush_pending(z_streamp strm) {
937
0
    unsigned len;
938
0
    deflate_state *s = strm->state;
939
940
0
    _tr_flush_bits(s);
941
0
    len = s->pending;
942
0
    if (len > strm->avail_out) len = strm->avail_out;
943
0
    if (len == 0) return;
944
945
0
    zmemcpy(strm->next_out, s->pending_out, len);
946
0
    strm->next_out  += len;
947
0
    s->pending_out  += len;
948
0
    strm->total_out += len;
949
0
    strm->avail_out -= len;
950
0
    s->pending      -= len;
951
0
    if (s->pending == 0) {
952
0
        s->pending_out = s->pending_buf;
953
0
    }
954
0
}
955
956
/* ===========================================================================
957
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
958
 */
959
#define HCRC_UPDATE(beg) \
960
0
    do { \
961
0
        if (s->gzhead->hcrc && s->pending > (beg)) \
962
0
            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
963
0
                                s->pending - (beg)); \
964
0
    } while (0)
965
966
/* ========================================================================= */
967
0
int ZEXPORT deflate(z_streamp strm, int flush) {
968
0
    int old_flush; /* value of flush param for previous deflate call */
969
0
    deflate_state *s;
970
971
0
    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
972
0
        return Z_STREAM_ERROR;
973
0
    }
974
0
    s = strm->state;
975
976
0
    if (strm->next_out == Z_NULL ||
977
0
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
978
0
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
979
0
        ERR_RETURN(strm, Z_STREAM_ERROR);
980
0
    }
981
0
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
982
983
0
    old_flush = s->last_flush;
984
0
    s->last_flush = flush;
985
986
    /* Flush as much pending output as possible */
987
0
    if (s->pending != 0) {
988
0
        flush_pending(strm);
989
0
        if (strm->avail_out == 0) {
990
            /* Since avail_out is 0, deflate will be called again with
991
             * more output space, but possibly with both pending and
992
             * avail_in equal to zero. There won't be anything to do,
993
             * but this is not an error situation so make sure we
994
             * return OK instead of BUF_ERROR at next call of deflate:
995
             */
996
0
            s->last_flush = -1;
997
0
            return Z_OK;
998
0
        }
999
1000
    /* Make sure there is something to do and avoid duplicate consecutive
1001
     * flushes. For repeated and useless calls with Z_FINISH, we keep
1002
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
1003
     */
1004
0
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
1005
0
               flush != Z_FINISH) {
1006
0
        ERR_RETURN(strm, Z_BUF_ERROR);
1007
0
    }
1008
1009
    /* User must not provide more input after the first FINISH: */
1010
0
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
1011
0
        ERR_RETURN(strm, Z_BUF_ERROR);
1012
0
    }
1013
1014
    /* Write the header */
1015
0
    if (s->status == INIT_STATE && s->wrap == 0)
1016
0
        s->status = BUSY_STATE;
1017
0
    if (s->status == INIT_STATE) {
1018
        /* zlib header */
1019
0
        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1020
0
        uInt level_flags;
1021
1022
0
        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1023
0
            level_flags = 0;
1024
0
        else if (s->level < 6)
1025
0
            level_flags = 1;
1026
0
        else if (s->level == 6)
1027
0
            level_flags = 2;
1028
0
        else
1029
0
            level_flags = 3;
1030
0
        header |= (level_flags << 6);
1031
0
        if (s->strstart != 0) header |= PRESET_DICT;
1032
0
        header += 31 - (header % 31);
1033
1034
0
        putShortMSB(s, header);
1035
1036
        /* Save the adler32 of the preset dictionary: */
1037
0
        if (s->strstart != 0) {
1038
0
            putShortMSB(s, (uInt)(strm->adler >> 16));
1039
0
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
1040
0
        }
1041
0
        strm->adler = adler32(0L, Z_NULL, 0);
1042
0
        s->status = BUSY_STATE;
1043
1044
        /* Compression must start with an empty pending buffer */
1045
0
        flush_pending(strm);
1046
0
        if (s->pending != 0) {
1047
0
            s->last_flush = -1;
1048
0
            return Z_OK;
1049
0
        }
1050
0
    }
1051
0
#ifdef GZIP
1052
0
    if (s->status == GZIP_STATE) {
1053
        /* gzip header */
1054
0
        strm->adler = crc32(0L, Z_NULL, 0);
1055
0
        put_byte(s, 31);
1056
0
        put_byte(s, 139);
1057
0
        put_byte(s, 8);
1058
0
        if (s->gzhead == Z_NULL) {
1059
0
            put_byte(s, 0);
1060
0
            put_byte(s, 0);
1061
0
            put_byte(s, 0);
1062
0
            put_byte(s, 0);
1063
0
            put_byte(s, 0);
1064
0
            put_byte(s, s->level == 9 ? 2 :
1065
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1066
0
                      4 : 0));
1067
0
            put_byte(s, OS_CODE);
1068
0
            s->status = BUSY_STATE;
1069
1070
            /* Compression must start with an empty pending buffer */
1071
0
            flush_pending(strm);
1072
0
            if (s->pending != 0) {
1073
0
                s->last_flush = -1;
1074
0
                return Z_OK;
1075
0
            }
1076
0
        }
1077
0
        else {
1078
0
            put_byte(s, (s->gzhead->text ? 1 : 0) +
1079
0
                     (s->gzhead->hcrc ? 2 : 0) +
1080
0
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
1081
0
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
1082
0
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
1083
0
                     );
1084
0
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
1085
0
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1086
0
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1087
0
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1088
0
            put_byte(s, s->level == 9 ? 2 :
1089
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1090
0
                      4 : 0));
1091
0
            put_byte(s, s->gzhead->os & 0xff);
1092
0
            if (s->gzhead->extra != Z_NULL) {
1093
0
                put_byte(s, s->gzhead->extra_len & 0xff);
1094
0
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1095
0
            }
1096
0
            if (s->gzhead->hcrc)
1097
0
                strm->adler = crc32(strm->adler, s->pending_buf,
1098
0
                                    s->pending);
1099
0
            s->gzindex = 0;
1100
0
            s->status = EXTRA_STATE;
1101
0
        }
1102
0
    }
1103
0
    if (s->status == EXTRA_STATE) {
1104
0
        if (s->gzhead->extra != Z_NULL) {
1105
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1106
0
            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1107
0
            while (s->pending + left > s->pending_buf_size) {
1108
0
                uInt copy = s->pending_buf_size - s->pending;
1109
0
                zmemcpy(s->pending_buf + s->pending,
1110
0
                        s->gzhead->extra + s->gzindex, copy);
1111
0
                s->pending = s->pending_buf_size;
1112
0
                HCRC_UPDATE(beg);
1113
0
                s->gzindex += copy;
1114
0
                flush_pending(strm);
1115
0
                if (s->pending != 0) {
1116
0
                    s->last_flush = -1;
1117
0
                    return Z_OK;
1118
0
                }
1119
0
                beg = 0;
1120
0
                left -= copy;
1121
0
            }
1122
0
            zmemcpy(s->pending_buf + s->pending,
1123
0
                    s->gzhead->extra + s->gzindex, left);
1124
0
            s->pending += left;
1125
0
            HCRC_UPDATE(beg);
1126
0
            s->gzindex = 0;
1127
0
        }
1128
0
        s->status = NAME_STATE;
1129
0
    }
1130
0
    if (s->status == NAME_STATE) {
1131
0
        if (s->gzhead->name != Z_NULL) {
1132
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1133
0
            int val;
1134
0
            do {
1135
0
                if (s->pending == s->pending_buf_size) {
1136
0
                    HCRC_UPDATE(beg);
1137
0
                    flush_pending(strm);
1138
0
                    if (s->pending != 0) {
1139
0
                        s->last_flush = -1;
1140
0
                        return Z_OK;
1141
0
                    }
1142
0
                    beg = 0;
1143
0
                }
1144
0
                val = s->gzhead->name[s->gzindex++];
1145
0
                put_byte(s, val);
1146
0
            } while (val != 0);
1147
0
            HCRC_UPDATE(beg);
1148
0
            s->gzindex = 0;
1149
0
        }
1150
0
        s->status = COMMENT_STATE;
1151
0
    }
1152
0
    if (s->status == COMMENT_STATE) {
1153
0
        if (s->gzhead->comment != Z_NULL) {
1154
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1155
0
            int val;
1156
0
            do {
1157
0
                if (s->pending == s->pending_buf_size) {
1158
0
                    HCRC_UPDATE(beg);
1159
0
                    flush_pending(strm);
1160
0
                    if (s->pending != 0) {
1161
0
                        s->last_flush = -1;
1162
0
                        return Z_OK;
1163
0
                    }
1164
0
                    beg = 0;
1165
0
                }
1166
0
                val = s->gzhead->comment[s->gzindex++];
1167
0
                put_byte(s, val);
1168
0
            } while (val != 0);
1169
0
            HCRC_UPDATE(beg);
1170
0
        }
1171
0
        s->status = HCRC_STATE;
1172
0
    }
1173
0
    if (s->status == HCRC_STATE) {
1174
0
        if (s->gzhead->hcrc) {
1175
0
            if (s->pending + 2 > s->pending_buf_size) {
1176
0
                flush_pending(strm);
1177
0
                if (s->pending != 0) {
1178
0
                    s->last_flush = -1;
1179
0
                    return Z_OK;
1180
0
                }
1181
0
            }
1182
0
            put_byte(s, (Byte)(strm->adler & 0xff));
1183
0
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1184
0
            strm->adler = crc32(0L, Z_NULL, 0);
1185
0
        }
1186
0
        s->status = BUSY_STATE;
1187
1188
        /* Compression must start with an empty pending buffer */
1189
0
        flush_pending(strm);
1190
0
        if (s->pending != 0) {
1191
0
            s->last_flush = -1;
1192
0
            return Z_OK;
1193
0
        }
1194
0
    }
1195
0
#endif
1196
1197
    /* Start a new block or continue the current one.
1198
     */
1199
0
    if (strm->avail_in != 0 || s->lookahead != 0 ||
1200
0
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1201
0
        block_state bstate;
1202
1203
0
        bstate = s->level == 0 ? deflate_stored(s, flush) :
1204
0
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1205
0
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1206
0
                 (*(configuration_table[s->level].func))(s, flush);
1207
1208
0
        if (bstate == finish_started || bstate == finish_done) {
1209
0
            s->status = FINISH_STATE;
1210
0
        }
1211
0
        if (bstate == need_more || bstate == finish_started) {
1212
0
            if (strm->avail_out == 0) {
1213
0
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1214
0
            }
1215
0
            return Z_OK;
1216
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1217
             * of deflate should use the same flush parameter to make sure
1218
             * that the flush is complete. So we don't have to output an
1219
             * empty block here, this will be done at next call. This also
1220
             * ensures that for a very small output buffer, we emit at most
1221
             * one empty block.
1222
             */
1223
0
        }
1224
0
        if (bstate == block_done) {
1225
0
            if (flush == Z_PARTIAL_FLUSH) {
1226
0
                _tr_align(s);
1227
0
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1228
0
                _tr_stored_block(s, (char*)0, 0L, 0);
1229
                /* For a full flush, this empty block will be recognized
1230
                 * as a special marker by inflate_sync().
1231
                 */
1232
0
                if (flush == Z_FULL_FLUSH) {
1233
0
                    CLEAR_HASH(s);             /* forget history */
1234
0
                    if (s->lookahead == 0) {
1235
0
                        s->strstart = 0;
1236
0
                        s->block_start = 0L;
1237
0
                        s->insert = 0;
1238
0
                    }
1239
0
                }
1240
0
            }
1241
0
            flush_pending(strm);
1242
0
            if (strm->avail_out == 0) {
1243
0
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1244
0
              return Z_OK;
1245
0
            }
1246
0
        }
1247
0
    }
1248
1249
0
    if (flush != Z_FINISH) return Z_OK;
1250
0
    if (s->wrap <= 0) return Z_STREAM_END;
1251
1252
    /* Write the trailer */
1253
0
#ifdef GZIP
1254
0
    if (s->wrap == 2) {
1255
0
        put_byte(s, (Byte)(strm->adler & 0xff));
1256
0
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1257
0
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1258
0
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1259
0
        put_byte(s, (Byte)(strm->total_in & 0xff));
1260
0
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1261
0
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1262
0
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1263
0
    }
1264
0
    else
1265
0
#endif
1266
0
    {
1267
0
        putShortMSB(s, (uInt)(strm->adler >> 16));
1268
0
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1269
0
    }
1270
0
    flush_pending(strm);
1271
    /* If avail_out is zero, the application will call deflate again
1272
     * to flush the rest.
1273
     */
1274
0
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1275
0
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1276
0
}
1277
1278
/* ========================================================================= */
1279
0
int ZEXPORT deflateEnd(z_streamp strm) {
1280
0
    int status;
1281
1282
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1283
1284
0
    status = strm->state->status;
1285
1286
    /* Deallocate in reverse order of allocations: */
1287
0
    TRY_FREE(strm, strm->state->pending_buf);
1288
0
    TRY_FREE(strm, strm->state->head);
1289
0
    TRY_FREE(strm, strm->state->prev);
1290
0
    TRY_FREE(strm, strm->state->window);
1291
1292
0
    ZFREE(strm, strm->state);
1293
0
    strm->state = Z_NULL;
1294
1295
0
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1296
0
}
1297
1298
/* =========================================================================
1299
 * Copy the source state to the destination state.
1300
 * To simplify the source, this is not supported for 16-bit MSDOS (which
1301
 * doesn't have enough memory anyway to duplicate compression states).
1302
 */
1303
0
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1304
#ifdef MAXSEG_64K
1305
    (void)dest;
1306
    (void)source;
1307
    return Z_STREAM_ERROR;
1308
#else
1309
0
    deflate_state *ds;
1310
0
    deflate_state *ss;
1311
1312
1313
0
    if (deflateStateCheck(source) || dest == Z_NULL) {
1314
0
        return Z_STREAM_ERROR;
1315
0
    }
1316
1317
0
    ss = source->state;
1318
1319
0
    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1320
1321
0
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1322
0
    if (ds == Z_NULL) return Z_MEM_ERROR;
1323
0
    dest->state = (struct internal_state FAR *) ds;
1324
0
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1325
0
    ds->strm = dest;
1326
1327
0
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1328
0
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1329
0
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1330
0
    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1331
1332
0
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1333
0
        ds->pending_buf == Z_NULL) {
1334
0
        deflateEnd (dest);
1335
0
        return Z_MEM_ERROR;
1336
0
    }
1337
    /* following zmemcpy do not work for 16-bit MSDOS */
1338
0
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1339
0
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1340
0
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1341
0
    zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1342
1343
0
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1344
#ifdef LIT_MEM
1345
    ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1346
    ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1347
#else
1348
0
    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1349
0
#endif
1350
1351
0
    ds->l_desc.dyn_tree = ds->dyn_ltree;
1352
0
    ds->d_desc.dyn_tree = ds->dyn_dtree;
1353
0
    ds->bl_desc.dyn_tree = ds->bl_tree;
1354
1355
0
    return Z_OK;
1356
0
#endif /* MAXSEG_64K */
1357
0
}
1358
1359
#ifndef FASTEST
1360
/* ===========================================================================
1361
 * Set match_start to the longest match starting at the given string and
1362
 * return its length. Matches shorter or equal to prev_length are discarded,
1363
 * in which case the result is equal to prev_length and match_start is
1364
 * garbage.
1365
 * IN assertions: cur_match is the head of the hash chain for the current
1366
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1367
 * OUT assertion: the match length is not greater than s->lookahead.
1368
 */
1369
0
local uInt longest_match(deflate_state *s, IPos cur_match) {
1370
0
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1371
0
    register Bytef *scan = s->window + s->strstart; /* current string */
1372
0
    register Bytef *match;                      /* matched string */
1373
0
    register int len;                           /* length of current match */
1374
0
    int best_len = (int)s->prev_length;         /* best match length so far */
1375
0
    int nice_match = s->nice_match;             /* stop if match long enough */
1376
0
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1377
0
        s->strstart - (IPos)MAX_DIST(s) : NIL;
1378
    /* Stop when cur_match becomes <= limit. To simplify the code,
1379
     * we prevent matches with the string of window index 0.
1380
     */
1381
0
    Posf *prev = s->prev;
1382
0
    uInt wmask = s->w_mask;
1383
1384
#ifdef UNALIGNED_OK
1385
    /* Compare two bytes at a time. Note: this is not always beneficial.
1386
     * Try with and without -DUNALIGNED_OK to check.
1387
     */
1388
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1389
    register ush scan_start = *(ushf*)scan;
1390
    register ush scan_end   = *(ushf*)(scan + best_len - 1);
1391
#else
1392
0
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1393
0
    register Byte scan_end1  = scan[best_len - 1];
1394
0
    register Byte scan_end   = scan[best_len];
1395
0
#endif
1396
1397
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1398
     * It is easy to get rid of this optimization if necessary.
1399
     */
1400
0
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1401
1402
    /* Do not waste too much time if we already have a good match: */
1403
0
    if (s->prev_length >= s->good_match) {
1404
0
        chain_length >>= 2;
1405
0
    }
1406
    /* Do not look for matches beyond the end of the input. This is necessary
1407
     * to make deflate deterministic.
1408
     */
1409
0
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1410
1411
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1412
0
           "need lookahead");
1413
1414
0
    do {
1415
0
        Assert(cur_match < s->strstart, "no future");
1416
0
        match = s->window + cur_match;
1417
1418
        /* Skip to next match if the match length cannot increase
1419
         * or if the match length is less than 2.  Note that the checks below
1420
         * for insufficient lookahead only occur occasionally for performance
1421
         * reasons.  Therefore uninitialized memory will be accessed, and
1422
         * conditional jumps will be made that depend on those values.
1423
         * However the length of the match is limited to the lookahead, so
1424
         * the output of deflate is not affected by the uninitialized values.
1425
         */
1426
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1427
        /* This code assumes sizeof(unsigned short) == 2. Do not use
1428
         * UNALIGNED_OK if your compiler uses a different size.
1429
         */
1430
        if (*(ushf*)(match + best_len - 1) != scan_end ||
1431
            *(ushf*)match != scan_start) continue;
1432
1433
        /* It is not necessary to compare scan[2] and match[2] since they are
1434
         * always equal when the other bytes match, given that the hash keys
1435
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1436
         * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1437
         * lookahead only every 4th comparison; the 128th check will be made
1438
         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1439
         * necessary to put more guard bytes at the end of the window, or
1440
         * to check more often for insufficient lookahead.
1441
         */
1442
        Assert(scan[2] == match[2], "scan[2]?");
1443
        scan++, match++;
1444
        do {
1445
        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1446
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1447
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1448
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1449
                 scan < strend);
1450
        /* The funny "do {}" generates better code on most compilers */
1451
1452
        /* Here, scan <= window + strstart + 257 */
1453
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1454
               "wild scan");
1455
        if (*scan == *match) scan++;
1456
1457
        len = (MAX_MATCH - 1) - (int)(strend - scan);
1458
        scan = strend - (MAX_MATCH-1);
1459
1460
#else /* UNALIGNED_OK */
1461
1462
0
        if (match[best_len]     != scan_end  ||
1463
0
            match[best_len - 1] != scan_end1 ||
1464
0
            *match              != *scan     ||
1465
0
            *++match            != scan[1])      continue;
1466
1467
        /* The check at best_len - 1 can be removed because it will be made
1468
         * again later. (This heuristic is not always a win.)
1469
         * It is not necessary to compare scan[2] and match[2] since they
1470
         * are always equal when the other bytes match, given that
1471
         * the hash keys are equal and that HASH_BITS >= 8.
1472
         */
1473
0
        scan += 2, match++;
1474
0
        Assert(*scan == *match, "match[2]?");
1475
1476
        /* We check for insufficient lookahead only every 8th comparison;
1477
         * the 256th check will be made at strstart + 258.
1478
         */
1479
0
        do {
1480
0
        } while (*++scan == *++match && *++scan == *++match &&
1481
0
                 *++scan == *++match && *++scan == *++match &&
1482
0
                 *++scan == *++match && *++scan == *++match &&
1483
0
                 *++scan == *++match && *++scan == *++match &&
1484
0
                 scan < strend);
1485
1486
0
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1487
0
               "wild scan");
1488
1489
0
        len = MAX_MATCH - (int)(strend - scan);
1490
0
        scan = strend - MAX_MATCH;
1491
1492
0
#endif /* UNALIGNED_OK */
1493
1494
0
        if (len > best_len) {
1495
0
            s->match_start = cur_match;
1496
0
            best_len = len;
1497
0
            if (len >= nice_match) break;
1498
#ifdef UNALIGNED_OK
1499
            scan_end = *(ushf*)(scan + best_len - 1);
1500
#else
1501
0
            scan_end1  = scan[best_len - 1];
1502
0
            scan_end   = scan[best_len];
1503
0
#endif
1504
0
        }
1505
0
    } while ((cur_match = prev[cur_match & wmask]) > limit
1506
0
             && --chain_length != 0);
1507
1508
0
    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1509
0
    return s->lookahead;
1510
0
}
1511
1512
#else /* FASTEST */
1513
1514
/* ---------------------------------------------------------------------------
1515
 * Optimized version for FASTEST only
1516
 */
1517
local uInt longest_match(deflate_state *s, IPos cur_match) {
1518
    register Bytef *scan = s->window + s->strstart; /* current string */
1519
    register Bytef *match;                       /* matched string */
1520
    register int len;                           /* length of current match */
1521
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1522
1523
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1524
     * It is easy to get rid of this optimization if necessary.
1525
     */
1526
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1527
1528
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1529
           "need lookahead");
1530
1531
    Assert(cur_match < s->strstart, "no future");
1532
1533
    match = s->window + cur_match;
1534
1535
    /* Return failure if the match length is less than 2:
1536
     */
1537
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1538
1539
    /* The check at best_len - 1 can be removed because it will be made
1540
     * again later. (This heuristic is not always a win.)
1541
     * It is not necessary to compare scan[2] and match[2] since they
1542
     * are always equal when the other bytes match, given that
1543
     * the hash keys are equal and that HASH_BITS >= 8.
1544
     */
1545
    scan += 2, match += 2;
1546
    Assert(*scan == *match, "match[2]?");
1547
1548
    /* We check for insufficient lookahead only every 8th comparison;
1549
     * the 256th check will be made at strstart + 258.
1550
     */
1551
    do {
1552
    } while (*++scan == *++match && *++scan == *++match &&
1553
             *++scan == *++match && *++scan == *++match &&
1554
             *++scan == *++match && *++scan == *++match &&
1555
             *++scan == *++match && *++scan == *++match &&
1556
             scan < strend);
1557
1558
    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1559
1560
    len = MAX_MATCH - (int)(strend - scan);
1561
1562
    if (len < MIN_MATCH) return MIN_MATCH - 1;
1563
1564
    s->match_start = cur_match;
1565
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1566
}
1567
1568
#endif /* FASTEST */
1569
1570
#ifdef ZLIB_DEBUG
1571
1572
#define EQUAL 0
1573
/* result of memcmp for equal strings */
1574
1575
/* ===========================================================================
1576
 * Check that the match at match_start is indeed a match.
1577
 */
1578
local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1579
    /* check that the match is indeed a match */
1580
    Bytef *back = s->window + (int)match, *here = s->window + start;
1581
    IPos len = length;
1582
    if (match == (IPos)-1) {
1583
        /* match starts one byte before the current window -- just compare the
1584
           subsequent length-1 bytes */
1585
        back++;
1586
        here++;
1587
        len--;
1588
    }
1589
    if (zmemcmp(back, here, len) != EQUAL) {
1590
        fprintf(stderr, " start %u, match %d, length %d\n",
1591
                start, (int)match, length);
1592
        do {
1593
            fprintf(stderr, "(%02x %02x)", *back++, *here++);
1594
        } while (--len != 0);
1595
        z_error("invalid match");
1596
    }
1597
    if (z_verbose > 1) {
1598
        fprintf(stderr,"\\[%d,%d]", start - match, length);
1599
        do { putc(s->window[start++], stderr); } while (--length != 0);
1600
    }
1601
}
1602
#else
1603
#  define check_match(s, start, match, length)
1604
#endif /* ZLIB_DEBUG */
1605
1606
/* ===========================================================================
1607
 * Flush the current block, with given end-of-file flag.
1608
 * IN assertion: strstart is set to the end of the current match.
1609
 */
1610
0
#define FLUSH_BLOCK_ONLY(s, last) { \
1611
0
   _tr_flush_block(s, (s->block_start >= 0L ? \
1612
0
                   (charf *)&s->window[(unsigned)s->block_start] : \
1613
0
                   (charf *)Z_NULL), \
1614
0
                (ulg)((long)s->strstart - s->block_start), \
1615
0
                (last)); \
1616
0
   s->block_start = s->strstart; \
1617
0
   flush_pending(s->strm); \
1618
0
   Tracev((stderr,"[FLUSH]")); \
1619
0
}
1620
1621
/* Same but force premature exit if necessary. */
1622
0
#define FLUSH_BLOCK(s, last) { \
1623
0
   FLUSH_BLOCK_ONLY(s, last); \
1624
0
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1625
0
}
1626
1627
/* Maximum stored block length in deflate format (not including header). */
1628
0
#define MAX_STORED 65535
1629
1630
/* Minimum of a and b. */
1631
0
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1632
1633
/* ===========================================================================
1634
 * Copy without compression as much as possible from the input stream, return
1635
 * the current block state.
1636
 *
1637
 * In case deflateParams() is used to later switch to a non-zero compression
1638
 * level, s->matches (otherwise unused when storing) keeps track of the number
1639
 * of hash table slides to perform. If s->matches is 1, then one hash table
1640
 * slide will be done when switching. If s->matches is 2, the maximum value
1641
 * allowed here, then the hash table will be cleared, since two or more slides
1642
 * is the same as a clear.
1643
 *
1644
 * deflate_stored() is written to minimize the number of times an input byte is
1645
 * copied. It is most efficient with large input and output buffers, which
1646
 * maximizes the opportunities to have a single copy from next_in to next_out.
1647
 */
1648
0
local block_state deflate_stored(deflate_state *s, int flush) {
1649
    /* Smallest worthy block size when not flushing or finishing. By default
1650
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1651
     * large input and output buffers, the stored block size will be larger.
1652
     */
1653
0
    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1654
1655
    /* Copy as many min_block or larger stored blocks directly to next_out as
1656
     * possible. If flushing, copy the remaining available input to next_out as
1657
     * stored blocks, if there is enough space.
1658
     */
1659
0
    int last = 0;
1660
0
    unsigned len, left, have;
1661
0
    unsigned used = s->strm->avail_in;
1662
0
    do {
1663
        /* Set len to the maximum size block that we can copy directly with the
1664
         * available input data and output space. Set left to how much of that
1665
         * would be copied from what's left in the window.
1666
         */
1667
0
        len = MAX_STORED;       /* maximum deflate stored block length */
1668
0
        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1669
0
        if (s->strm->avail_out < have)          /* need room for header */
1670
0
            break;
1671
            /* maximum stored block length that will fit in avail_out: */
1672
0
        have = s->strm->avail_out - have;
1673
0
        left = s->strstart - s->block_start;    /* bytes left in window */
1674
0
        if (len > (ulg)left + s->strm->avail_in)
1675
0
            len = left + s->strm->avail_in;     /* limit len to the input */
1676
0
        if (len > have)
1677
0
            len = have;                         /* limit len to the output */
1678
1679
        /* If the stored block would be less than min_block in length, or if
1680
         * unable to copy all of the available input when flushing, then try
1681
         * copying to the window and the pending buffer instead. Also don't
1682
         * write an empty block when flushing -- deflate() does that.
1683
         */
1684
0
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1685
0
                                flush == Z_NO_FLUSH ||
1686
0
                                len != left + s->strm->avail_in))
1687
0
            break;
1688
1689
        /* Make a dummy stored block in pending to get the header bytes,
1690
         * including any pending bits. This also updates the debugging counts.
1691
         */
1692
0
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1693
0
        _tr_stored_block(s, (char *)0, 0L, last);
1694
1695
        /* Replace the lengths in the dummy stored block with len. */
1696
0
        s->pending_buf[s->pending - 4] = (Bytef)len;
1697
0
        s->pending_buf[s->pending - 3] = (Bytef)(len >> 8);
1698
0
        s->pending_buf[s->pending - 2] = (Bytef)~len;
1699
0
        s->pending_buf[s->pending - 1] = (Bytef)(~len >> 8);
1700
1701
        /* Write the stored block header bytes. */
1702
0
        flush_pending(s->strm);
1703
1704
#ifdef ZLIB_DEBUG
1705
        /* Update debugging counts for the data about to be copied. */
1706
        s->compressed_len += len << 3;
1707
        s->bits_sent += len << 3;
1708
#endif
1709
1710
        /* Copy uncompressed bytes from the window to next_out. */
1711
0
        if (left) {
1712
0
            if (left > len)
1713
0
                left = len;
1714
0
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1715
0
            s->strm->next_out += left;
1716
0
            s->strm->avail_out -= left;
1717
0
            s->strm->total_out += left;
1718
0
            s->block_start += left;
1719
0
            len -= left;
1720
0
        }
1721
1722
        /* Copy uncompressed bytes directly from next_in to next_out, updating
1723
         * the check value.
1724
         */
1725
0
        if (len) {
1726
0
            read_buf(s->strm, s->strm->next_out, len);
1727
0
            s->strm->next_out += len;
1728
0
            s->strm->avail_out -= len;
1729
0
            s->strm->total_out += len;
1730
0
        }
1731
0
    } while (last == 0);
1732
1733
    /* Update the sliding window with the last s->w_size bytes of the copied
1734
     * data, or append all of the copied data to the existing window if less
1735
     * than s->w_size bytes were copied. Also update the number of bytes to
1736
     * insert in the hash tables, in the event that deflateParams() switches to
1737
     * a non-zero compression level.
1738
     */
1739
0
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1740
0
    if (used) {
1741
        /* If any input was used, then no unused input remains in the window,
1742
         * therefore s->block_start == s->strstart.
1743
         */
1744
0
        if (used >= s->w_size) {    /* supplant the previous history */
1745
0
            s->matches = 2;         /* clear hash */
1746
0
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1747
0
            s->strstart = s->w_size;
1748
0
            s->insert = s->strstart;
1749
0
        }
1750
0
        else {
1751
0
            if (s->window_size - s->strstart <= used) {
1752
                /* Slide the window down. */
1753
0
                s->strstart -= s->w_size;
1754
0
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1755
0
                if (s->matches < 2)
1756
0
                    s->matches++;   /* add a pending slide_hash() */
1757
0
                if (s->insert > s->strstart)
1758
0
                    s->insert = s->strstart;
1759
0
            }
1760
0
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1761
0
            s->strstart += used;
1762
0
            s->insert += MIN(used, s->w_size - s->insert);
1763
0
        }
1764
0
        s->block_start = s->strstart;
1765
0
    }
1766
0
    if (s->high_water < s->strstart)
1767
0
        s->high_water = s->strstart;
1768
1769
    /* If the last block was written to next_out, then done. */
1770
0
    if (last) {
1771
0
        s->bi_used = 8;
1772
0
        return finish_done;
1773
0
    }
1774
1775
    /* If flushing and all input has been consumed, then done. */
1776
0
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1777
0
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1778
0
        return block_done;
1779
1780
    /* Fill the window with any remaining input. */
1781
0
    have = s->window_size - s->strstart;
1782
0
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1783
        /* Slide the window down. */
1784
0
        s->block_start -= s->w_size;
1785
0
        s->strstart -= s->w_size;
1786
0
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1787
0
        if (s->matches < 2)
1788
0
            s->matches++;           /* add a pending slide_hash() */
1789
0
        have += s->w_size;          /* more space now */
1790
0
        if (s->insert > s->strstart)
1791
0
            s->insert = s->strstart;
1792
0
    }
1793
0
    if (have > s->strm->avail_in)
1794
0
        have = s->strm->avail_in;
1795
0
    if (have) {
1796
0
        read_buf(s->strm, s->window + s->strstart, have);
1797
0
        s->strstart += have;
1798
0
        s->insert += MIN(have, s->w_size - s->insert);
1799
0
    }
1800
0
    if (s->high_water < s->strstart)
1801
0
        s->high_water = s->strstart;
1802
1803
    /* There was not enough avail_out to write a complete worthy or flushed
1804
     * stored block to next_out. Write a stored block to pending instead, if we
1805
     * have enough input for a worthy block, or if flushing and there is enough
1806
     * room for the remaining input as a stored block in the pending buffer.
1807
     */
1808
0
    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1809
        /* maximum stored block length that will fit in pending: */
1810
0
    have = MIN(s->pending_buf_size - have, MAX_STORED);
1811
0
    min_block = MIN(have, s->w_size);
1812
0
    left = s->strstart - s->block_start;
1813
0
    if (left >= min_block ||
1814
0
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1815
0
         s->strm->avail_in == 0 && left <= have)) {
1816
0
        len = MIN(left, have);
1817
0
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1818
0
               len == left ? 1 : 0;
1819
0
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1820
0
        s->block_start += len;
1821
0
        flush_pending(s->strm);
1822
0
    }
1823
1824
    /* We've done all we can with the available input and output. */
1825
0
    if (last)
1826
0
        s->bi_used = 8;
1827
0
    return last ? finish_started : need_more;
1828
0
}
1829
1830
/* ===========================================================================
1831
 * Compress as much as possible from the input stream, return the current
1832
 * block state.
1833
 * This function does not perform lazy evaluation of matches and inserts
1834
 * new strings in the dictionary only for unmatched strings or for short
1835
 * matches. It is used only for the fast compression options.
1836
 */
1837
0
local block_state deflate_fast(deflate_state *s, int flush) {
1838
0
    IPos hash_head;       /* head of the hash chain */
1839
0
    int bflush;           /* set if current block must be flushed */
1840
1841
0
    for (;;) {
1842
        /* Make sure that we always have enough lookahead, except
1843
         * at the end of the input file. We need MAX_MATCH bytes
1844
         * for the next match, plus MIN_MATCH bytes to insert the
1845
         * string following the next match.
1846
         */
1847
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1848
0
            fill_window(s);
1849
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1850
0
                return need_more;
1851
0
            }
1852
0
            if (s->lookahead == 0) break; /* flush the current block */
1853
0
        }
1854
1855
        /* Insert the string window[strstart .. strstart + 2] in the
1856
         * dictionary, and set hash_head to the head of the hash chain:
1857
         */
1858
0
        hash_head = NIL;
1859
0
        if (s->lookahead >= MIN_MATCH) {
1860
0
            INSERT_STRING(s, s->strstart, hash_head);
1861
0
        }
1862
1863
        /* Find the longest match, discarding those <= prev_length.
1864
         * At this point we have always match_length < MIN_MATCH
1865
         */
1866
0
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1867
            /* To simplify the code, we prevent matches with the string
1868
             * of window index 0 (in particular we have to avoid a match
1869
             * of the string with itself at the start of the input file).
1870
             */
1871
0
            s->match_length = longest_match (s, hash_head);
1872
            /* longest_match() sets match_start */
1873
0
        }
1874
0
        if (s->match_length >= MIN_MATCH) {
1875
0
            check_match(s, s->strstart, s->match_start, s->match_length);
1876
1877
0
            _tr_tally_dist(s, s->strstart - s->match_start,
1878
0
                           s->match_length - MIN_MATCH, bflush);
1879
1880
0
            s->lookahead -= s->match_length;
1881
1882
            /* Insert new strings in the hash table only if the match length
1883
             * is not too large. This saves time but degrades compression.
1884
             */
1885
0
#ifndef FASTEST
1886
0
            if (s->match_length <= s->max_insert_length &&
1887
0
                s->lookahead >= MIN_MATCH) {
1888
0
                s->match_length--; /* string at strstart already in table */
1889
0
                do {
1890
0
                    s->strstart++;
1891
0
                    INSERT_STRING(s, s->strstart, hash_head);
1892
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1893
                     * always MIN_MATCH bytes ahead.
1894
                     */
1895
0
                } while (--s->match_length != 0);
1896
0
                s->strstart++;
1897
0
            } else
1898
0
#endif
1899
0
            {
1900
0
                s->strstart += s->match_length;
1901
0
                s->match_length = 0;
1902
0
                s->ins_h = s->window[s->strstart];
1903
0
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1904
#if MIN_MATCH != 3
1905
                Call UPDATE_HASH() MIN_MATCH-3 more times
1906
#endif
1907
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1908
                 * matter since it will be recomputed at next deflate call.
1909
                 */
1910
0
            }
1911
0
        } else {
1912
            /* No match, output a literal byte */
1913
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
1914
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
1915
0
            s->lookahead--;
1916
0
            s->strstart++;
1917
0
        }
1918
0
        if (bflush) FLUSH_BLOCK(s, 0);
1919
0
    }
1920
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1921
0
    if (flush == Z_FINISH) {
1922
0
        FLUSH_BLOCK(s, 1);
1923
0
        return finish_done;
1924
0
    }
1925
0
    if (s->sym_next)
1926
0
        FLUSH_BLOCK(s, 0);
1927
0
    return block_done;
1928
0
}
1929
1930
#ifndef FASTEST
1931
/* ===========================================================================
1932
 * Same as above, but achieves better compression. We use a lazy
1933
 * evaluation for matches: a match is finally adopted only if there is
1934
 * no better match at the next window position.
1935
 */
1936
0
local block_state deflate_slow(deflate_state *s, int flush) {
1937
0
    IPos hash_head;          /* head of hash chain */
1938
0
    int bflush;              /* set if current block must be flushed */
1939
1940
    /* Process the input block. */
1941
0
    for (;;) {
1942
        /* Make sure that we always have enough lookahead, except
1943
         * at the end of the input file. We need MAX_MATCH bytes
1944
         * for the next match, plus MIN_MATCH bytes to insert the
1945
         * string following the next match.
1946
         */
1947
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1948
0
            fill_window(s);
1949
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1950
0
                return need_more;
1951
0
            }
1952
0
            if (s->lookahead == 0) break; /* flush the current block */
1953
0
        }
1954
1955
        /* Insert the string window[strstart .. strstart + 2] in the
1956
         * dictionary, and set hash_head to the head of the hash chain:
1957
         */
1958
0
        hash_head = NIL;
1959
0
        if (s->lookahead >= MIN_MATCH) {
1960
0
            INSERT_STRING(s, s->strstart, hash_head);
1961
0
        }
1962
1963
        /* Find the longest match, discarding those <= prev_length.
1964
         */
1965
0
        s->prev_length = s->match_length, s->prev_match = s->match_start;
1966
0
        s->match_length = MIN_MATCH-1;
1967
1968
0
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1969
0
            s->strstart - hash_head <= MAX_DIST(s)) {
1970
            /* To simplify the code, we prevent matches with the string
1971
             * of window index 0 (in particular we have to avoid a match
1972
             * of the string with itself at the start of the input file).
1973
             */
1974
0
            s->match_length = longest_match (s, hash_head);
1975
            /* longest_match() sets match_start */
1976
1977
0
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1978
0
#if TOO_FAR <= 32767
1979
0
                || (s->match_length == MIN_MATCH &&
1980
0
                    s->strstart - s->match_start > TOO_FAR)
1981
0
#endif
1982
0
                )) {
1983
1984
                /* If prev_match is also MIN_MATCH, match_start is garbage
1985
                 * but we will ignore the current match anyway.
1986
                 */
1987
0
                s->match_length = MIN_MATCH-1;
1988
0
            }
1989
0
        }
1990
        /* If there was a match at the previous step and the current
1991
         * match is not better, output the previous match:
1992
         */
1993
0
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1994
0
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1995
            /* Do not insert strings in hash table beyond this. */
1996
1997
0
            check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1998
1999
0
            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2000
0
                           s->prev_length - MIN_MATCH, bflush);
2001
2002
            /* Insert in hash table all strings up to the end of the match.
2003
             * strstart - 1 and strstart are already inserted. If there is not
2004
             * enough lookahead, the last two strings are not inserted in
2005
             * the hash table.
2006
             */
2007
0
            s->lookahead -= s->prev_length - 1;
2008
0
            s->prev_length -= 2;
2009
0
            do {
2010
0
                if (++s->strstart <= max_insert) {
2011
0
                    INSERT_STRING(s, s->strstart, hash_head);
2012
0
                }
2013
0
            } while (--s->prev_length != 0);
2014
0
            s->match_available = 0;
2015
0
            s->match_length = MIN_MATCH-1;
2016
0
            s->strstart++;
2017
2018
0
            if (bflush) FLUSH_BLOCK(s, 0);
2019
2020
0
        } else if (s->match_available) {
2021
            /* If there was no match at the previous position, output a
2022
             * single literal. If there was a match but the current match
2023
             * is longer, truncate the previous match to a single literal.
2024
             */
2025
0
            Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2026
0
            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2027
0
            if (bflush) {
2028
0
                FLUSH_BLOCK_ONLY(s, 0);
2029
0
            }
2030
0
            s->strstart++;
2031
0
            s->lookahead--;
2032
0
            if (s->strm->avail_out == 0) return need_more;
2033
0
        } else {
2034
            /* There is no previous match to compare with, wait for
2035
             * the next step to decide.
2036
             */
2037
0
            s->match_available = 1;
2038
0
            s->strstart++;
2039
0
            s->lookahead--;
2040
0
        }
2041
0
    }
2042
0
    Assert (flush != Z_NO_FLUSH, "no flush?");
2043
0
    if (s->match_available) {
2044
0
        Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2045
0
        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2046
0
        s->match_available = 0;
2047
0
    }
2048
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2049
0
    if (flush == Z_FINISH) {
2050
0
        FLUSH_BLOCK(s, 1);
2051
0
        return finish_done;
2052
0
    }
2053
0
    if (s->sym_next)
2054
0
        FLUSH_BLOCK(s, 0);
2055
0
    return block_done;
2056
0
}
2057
#endif /* FASTEST */
2058
2059
/* ===========================================================================
2060
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2061
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2062
 * deflate switches away from Z_RLE.)
2063
 */
2064
0
local block_state deflate_rle(deflate_state *s, int flush) {
2065
0
    int bflush;             /* set if current block must be flushed */
2066
0
    uInt prev;              /* byte at distance one to match */
2067
0
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2068
2069
0
    for (;;) {
2070
        /* Make sure that we always have enough lookahead, except
2071
         * at the end of the input file. We need MAX_MATCH bytes
2072
         * for the longest run, plus one for the unrolled loop.
2073
         */
2074
0
        if (s->lookahead <= MAX_MATCH) {
2075
0
            fill_window(s);
2076
0
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2077
0
                return need_more;
2078
0
            }
2079
0
            if (s->lookahead == 0) break; /* flush the current block */
2080
0
        }
2081
2082
        /* See how many times the previous byte repeats */
2083
0
        s->match_length = 0;
2084
0
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2085
0
            scan = s->window + s->strstart - 1;
2086
0
            prev = *scan;
2087
0
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2088
0
                strend = s->window + s->strstart + MAX_MATCH;
2089
0
                do {
2090
0
                } while (prev == *++scan && prev == *++scan &&
2091
0
                         prev == *++scan && prev == *++scan &&
2092
0
                         prev == *++scan && prev == *++scan &&
2093
0
                         prev == *++scan && prev == *++scan &&
2094
0
                         scan < strend);
2095
0
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2096
0
                if (s->match_length > s->lookahead)
2097
0
                    s->match_length = s->lookahead;
2098
0
            }
2099
0
            Assert(scan <= s->window + (uInt)(s->window_size - 1),
2100
0
                   "wild scan");
2101
0
        }
2102
2103
        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2104
0
        if (s->match_length >= MIN_MATCH) {
2105
0
            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2106
2107
0
            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2108
2109
0
            s->lookahead -= s->match_length;
2110
0
            s->strstart += s->match_length;
2111
0
            s->match_length = 0;
2112
0
        } else {
2113
            /* No match, output a literal byte */
2114
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
2115
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
2116
0
            s->lookahead--;
2117
0
            s->strstart++;
2118
0
        }
2119
0
        if (bflush) FLUSH_BLOCK(s, 0);
2120
0
    }
2121
0
    s->insert = 0;
2122
0
    if (flush == Z_FINISH) {
2123
0
        FLUSH_BLOCK(s, 1);
2124
0
        return finish_done;
2125
0
    }
2126
0
    if (s->sym_next)
2127
0
        FLUSH_BLOCK(s, 0);
2128
0
    return block_done;
2129
0
}
2130
2131
/* ===========================================================================
2132
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2133
 * (It will be regenerated if this run of deflate switches away from Huffman.)
2134
 */
2135
0
local block_state deflate_huff(deflate_state *s, int flush) {
2136
0
    int bflush;             /* set if current block must be flushed */
2137
2138
0
    for (;;) {
2139
        /* Make sure that we have a literal to write. */
2140
0
        if (s->lookahead == 0) {
2141
0
            fill_window(s);
2142
0
            if (s->lookahead == 0) {
2143
0
                if (flush == Z_NO_FLUSH)
2144
0
                    return need_more;
2145
0
                break;      /* flush the current block */
2146
0
            }
2147
0
        }
2148
2149
        /* Output a literal byte */
2150
0
        s->match_length = 0;
2151
0
        Tracevv((stderr,"%c", s->window[s->strstart]));
2152
0
        _tr_tally_lit(s, s->window[s->strstart], bflush);
2153
0
        s->lookahead--;
2154
0
        s->strstart++;
2155
0
        if (bflush) FLUSH_BLOCK(s, 0);
2156
0
    }
2157
0
    s->insert = 0;
2158
0
    if (flush == Z_FINISH) {
2159
0
        FLUSH_BLOCK(s, 1);
2160
0
        return finish_done;
2161
0
    }
2162
0
    if (s->sym_next)
2163
0
        FLUSH_BLOCK(s, 0);
2164
0
    return block_done;
2165
0
}