Line | Count | Source |
1 | | /* crc32.c -- compute the CRC-32 of a data stream |
2 | | * Copyright (C) 1995-2022 Mark Adler |
3 | | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | | * |
5 | | * This interleaved implementation of a CRC makes use of pipelined multiple |
6 | | * arithmetic-logic units, commonly found in modern CPU cores. It is due to |
7 | | * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution. |
8 | | */ |
9 | | |
10 | | /* @(#) $Id$ */ |
11 | | |
12 | | /* |
13 | | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
14 | | protection on the static variables used to control the first-use generation |
15 | | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
16 | | first call get_crc_table() to initialize the tables before allowing more than |
17 | | one thread to use crc32(). |
18 | | |
19 | | MAKECRCH can be #defined to write out crc32.h. A main() routine is also |
20 | | produced, so that this one source file can be compiled to an executable. |
21 | | */ |
22 | | |
23 | | #ifdef MAKECRCH |
24 | | # include <stdio.h> |
25 | | # ifndef DYNAMIC_CRC_TABLE |
26 | | # define DYNAMIC_CRC_TABLE |
27 | | # endif |
28 | | #endif |
29 | | #ifdef DYNAMIC_CRC_TABLE |
30 | | # define Z_ONCE |
31 | | #endif |
32 | | |
33 | | #include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */ |
34 | | |
35 | | #ifdef HAVE_S390X_VX |
36 | | # include "contrib/crc32vx/crc32_vx_hooks.h" |
37 | | #endif |
38 | | |
39 | | /* |
40 | | A CRC of a message is computed on N braids of words in the message, where |
41 | | each word consists of W bytes (4 or 8). If N is 3, for example, then three |
42 | | running sparse CRCs are calculated respectively on each braid, at these |
43 | | indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ... |
44 | | This is done starting at a word boundary, and continues until as many blocks |
45 | | of N * W bytes as are available have been processed. The results are combined |
46 | | into a single CRC at the end. For this code, N must be in the range 1..6 and |
47 | | W must be 4 or 8. The upper limit on N can be increased if desired by adding |
48 | | more #if blocks, extending the patterns apparent in the code. In addition, |
49 | | crc32.h would need to be regenerated, if the maximum N value is increased. |
50 | | |
51 | | N and W are chosen empirically by benchmarking the execution time on a given |
52 | | processor. The choices for N and W below were based on testing on Intel Kaby |
53 | | Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64 |
54 | | Octeon II processors. The Intel, AMD, and ARM processors were all fastest |
55 | | with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4. |
56 | | They were all tested with either gcc or clang, all using the -O3 optimization |
57 | | level. Your mileage may vary. |
58 | | */ |
59 | | |
60 | | /* Define N */ |
61 | | #ifdef Z_TESTN |
62 | | # define N Z_TESTN |
63 | | #else |
64 | 0 | # define N 5 |
65 | | #endif |
66 | | #if N < 1 || N > 6 |
67 | | # error N must be in 1..6 |
68 | | #endif |
69 | | |
70 | | /* |
71 | | z_crc_t must be at least 32 bits. z_word_t must be at least as long as |
72 | | z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and |
73 | | that bytes are eight bits. |
74 | | */ |
75 | | |
76 | | /* |
77 | | Define W and the associated z_word_t type. If W is not defined, then a |
78 | | braided calculation is not used, and the associated tables and code are not |
79 | | compiled. |
80 | | */ |
81 | | #ifdef Z_TESTW |
82 | | # if Z_TESTW-1 != -1 |
83 | | # define W Z_TESTW |
84 | | # endif |
85 | | #else |
86 | | # ifdef MAKECRCH |
87 | | # define W 8 /* required for MAKECRCH */ |
88 | | # else |
89 | | # if defined(__x86_64__) || defined(__aarch64__) |
90 | 0 | # define W 8 |
91 | | # else |
92 | | # define W 4 |
93 | | # endif |
94 | | # endif |
95 | | #endif |
96 | | #ifdef W |
97 | | # if W == 8 && defined(Z_U8) |
98 | | typedef Z_U8 z_word_t; |
99 | | # elif defined(Z_U4) |
100 | | # undef W |
101 | | # define W 4 |
102 | | typedef Z_U4 z_word_t; |
103 | | # else |
104 | | # undef W |
105 | | # endif |
106 | | #endif |
107 | | |
108 | | /* If available, use the ARM processor CRC32 instruction. */ |
109 | | #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8 |
110 | | # define ARMCRC32 |
111 | | #endif |
112 | | |
113 | | #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE)) |
114 | | /* |
115 | | Swap the bytes in a z_word_t to convert between little and big endian. Any |
116 | | self-respecting compiler will optimize this to a single machine byte-swap |
117 | | instruction, if one is available. This assumes that word_t is either 32 bits |
118 | | or 64 bits. |
119 | | */ |
120 | 0 | local z_word_t byte_swap(z_word_t word) { |
121 | 0 | # if W == 8 |
122 | 0 | return |
123 | 0 | (word & 0xff00000000000000) >> 56 | |
124 | 0 | (word & 0xff000000000000) >> 40 | |
125 | 0 | (word & 0xff0000000000) >> 24 | |
126 | 0 | (word & 0xff00000000) >> 8 | |
127 | 0 | (word & 0xff000000) << 8 | |
128 | 0 | (word & 0xff0000) << 24 | |
129 | 0 | (word & 0xff00) << 40 | |
130 | 0 | (word & 0xff) << 56; |
131 | | # else /* W == 4 */ |
132 | | return |
133 | | (word & 0xff000000) >> 24 | |
134 | | (word & 0xff0000) >> 8 | |
135 | | (word & 0xff00) << 8 | |
136 | | (word & 0xff) << 24; |
137 | | # endif |
138 | 0 | } |
139 | | #endif |
140 | | |
141 | | #ifdef DYNAMIC_CRC_TABLE |
142 | | /* ========================================================================= |
143 | | * Table of powers of x for combining CRC-32s, filled in by make_crc_table() |
144 | | * below. |
145 | | */ |
146 | | local z_crc_t FAR x2n_table[32]; |
147 | | #else |
148 | | /* ========================================================================= |
149 | | * Tables for byte-wise and braided CRC-32 calculations, and a table of powers |
150 | | * of x for combining CRC-32s, all made by make_crc_table(). |
151 | | */ |
152 | | # include "crc32.h" |
153 | | #endif |
154 | | |
155 | | /* CRC polynomial. */ |
156 | 0 | #define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */ |
157 | | |
158 | | /* |
159 | | Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial, |
160 | | reflected. For speed, this requires that a not be zero. |
161 | | */ |
162 | 0 | local uLong multmodp(uLong a, uLong b) { |
163 | 0 | uLong m, p; |
164 | |
|
165 | 0 | m = (uLong)1 << 31; |
166 | 0 | p = 0; |
167 | 0 | for (;;) { |
168 | 0 | if (a & m) { |
169 | 0 | p ^= b; |
170 | 0 | if ((a & (m - 1)) == 0) |
171 | 0 | break; |
172 | 0 | } |
173 | 0 | m >>= 1; |
174 | 0 | b = b & 1 ? (b >> 1) ^ POLY : b >> 1; |
175 | 0 | } |
176 | 0 | return p; |
177 | 0 | } |
178 | | |
179 | | /* |
180 | | Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been |
181 | | initialized. n must not be negative. |
182 | | */ |
183 | 0 | local uLong x2nmodp(z_off64_t n, unsigned k) { |
184 | 0 | uLong p; |
185 | |
|
186 | 0 | p = (uLong)1 << 31; /* x^0 == 1 */ |
187 | 0 | while (n) { |
188 | 0 | if (n & 1) |
189 | 0 | p = multmodp(x2n_table[k & 31], p); |
190 | 0 | n >>= 1; |
191 | 0 | k++; |
192 | 0 | } |
193 | 0 | return p; |
194 | 0 | } |
195 | | |
196 | | #ifdef DYNAMIC_CRC_TABLE |
197 | | /* ========================================================================= |
198 | | * Build the tables for byte-wise and braided CRC-32 calculations, and a table |
199 | | * of powers of x for combining CRC-32s. |
200 | | */ |
201 | | local z_crc_t FAR crc_table[256]; |
202 | | #ifdef W |
203 | | local z_word_t FAR crc_big_table[256]; |
204 | | local z_crc_t FAR crc_braid_table[W][256]; |
205 | | local z_word_t FAR crc_braid_big_table[W][256]; |
206 | | local void braid(z_crc_t [][256], z_word_t [][256], int, int); |
207 | | #endif |
208 | | #ifdef MAKECRCH |
209 | | local void write_table(FILE *, const z_crc_t FAR *, int); |
210 | | local void write_table32hi(FILE *, const z_word_t FAR *, int); |
211 | | local void write_table64(FILE *, const z_word_t FAR *, int); |
212 | | #endif /* MAKECRCH */ |
213 | | |
214 | | /* State for once(). */ |
215 | | local z_once_t made = Z_ONCE_INIT; |
216 | | |
217 | | /* |
218 | | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
219 | | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
220 | | |
221 | | Polynomials over GF(2) are represented in binary, one bit per coefficient, |
222 | | with the lowest powers in the most significant bit. Then adding polynomials |
223 | | is just exclusive-or, and multiplying a polynomial by x is a right shift by |
224 | | one. If we call the above polynomial p, and represent a byte as the |
225 | | polynomial q, also with the lowest power in the most significant bit (so the |
226 | | byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p, |
227 | | where a mod b means the remainder after dividing a by b. |
228 | | |
229 | | This calculation is done using the shift-register method of multiplying and |
230 | | taking the remainder. The register is initialized to zero, and for each |
231 | | incoming bit, x^32 is added mod p to the register if the bit is a one (where |
232 | | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x |
233 | | (which is shifting right by one and adding x^32 mod p if the bit shifted out |
234 | | is a one). We start with the highest power (least significant bit) of q and |
235 | | repeat for all eight bits of q. |
236 | | |
237 | | The table is simply the CRC of all possible eight bit values. This is all the |
238 | | information needed to generate CRCs on data a byte at a time for all |
239 | | combinations of CRC register values and incoming bytes. |
240 | | */ |
241 | | |
242 | | local void make_crc_table(void) { |
243 | | unsigned i, j, n; |
244 | | z_crc_t p; |
245 | | |
246 | | /* initialize the CRC of bytes tables */ |
247 | | for (i = 0; i < 256; i++) { |
248 | | p = i; |
249 | | for (j = 0; j < 8; j++) |
250 | | p = p & 1 ? (p >> 1) ^ POLY : p >> 1; |
251 | | crc_table[i] = p; |
252 | | #ifdef W |
253 | | crc_big_table[i] = byte_swap(p); |
254 | | #endif |
255 | | } |
256 | | |
257 | | /* initialize the x^2^n mod p(x) table */ |
258 | | p = (z_crc_t)1 << 30; /* x^1 */ |
259 | | x2n_table[0] = p; |
260 | | for (n = 1; n < 32; n++) |
261 | | x2n_table[n] = p = (z_crc_t)multmodp(p, p); |
262 | | |
263 | | #ifdef W |
264 | | /* initialize the braiding tables -- needs x2n_table[] */ |
265 | | braid(crc_braid_table, crc_braid_big_table, N, W); |
266 | | #endif |
267 | | |
268 | | #ifdef MAKECRCH |
269 | | { |
270 | | /* |
271 | | The crc32.h header file contains tables for both 32-bit and 64-bit |
272 | | z_word_t's, and so requires a 64-bit type be available. In that case, |
273 | | z_word_t must be defined to be 64-bits. This code then also generates |
274 | | and writes out the tables for the case that z_word_t is 32 bits. |
275 | | */ |
276 | | #if !defined(W) || W != 8 |
277 | | # error Need a 64-bit integer type in order to generate crc32.h. |
278 | | #endif |
279 | | FILE *out; |
280 | | int k, n; |
281 | | z_crc_t ltl[8][256]; |
282 | | z_word_t big[8][256]; |
283 | | |
284 | | out = fopen("crc32.h", "w"); |
285 | | if (out == NULL) return; |
286 | | |
287 | | /* write out little-endian CRC table to crc32.h */ |
288 | | fprintf(out, |
289 | | "/* crc32.h -- tables for rapid CRC calculation\n" |
290 | | " * Generated automatically by crc32.c\n */\n" |
291 | | "\n" |
292 | | "local const z_crc_t FAR crc_table[] = {\n" |
293 | | " "); |
294 | | write_table(out, crc_table, 256); |
295 | | fprintf(out, |
296 | | "};\n"); |
297 | | |
298 | | /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */ |
299 | | fprintf(out, |
300 | | "\n" |
301 | | "#ifdef W\n" |
302 | | "\n" |
303 | | "#if W == 8\n" |
304 | | "\n" |
305 | | "local const z_word_t FAR crc_big_table[] = {\n" |
306 | | " "); |
307 | | write_table64(out, crc_big_table, 256); |
308 | | fprintf(out, |
309 | | "};\n"); |
310 | | |
311 | | /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */ |
312 | | fprintf(out, |
313 | | "\n" |
314 | | "#else /* W == 4 */\n" |
315 | | "\n" |
316 | | "local const z_word_t FAR crc_big_table[] = {\n" |
317 | | " "); |
318 | | write_table32hi(out, crc_big_table, 256); |
319 | | fprintf(out, |
320 | | "};\n" |
321 | | "\n" |
322 | | "#endif\n"); |
323 | | |
324 | | /* write out braid tables for each value of N */ |
325 | | for (n = 1; n <= 6; n++) { |
326 | | fprintf(out, |
327 | | "\n" |
328 | | "#if N == %d\n", n); |
329 | | |
330 | | /* compute braid tables for this N and 64-bit word_t */ |
331 | | braid(ltl, big, n, 8); |
332 | | |
333 | | /* write out braid tables for 64-bit z_word_t to crc32.h */ |
334 | | fprintf(out, |
335 | | "\n" |
336 | | "#if W == 8\n" |
337 | | "\n" |
338 | | "local const z_crc_t FAR crc_braid_table[][256] = {\n"); |
339 | | for (k = 0; k < 8; k++) { |
340 | | fprintf(out, " {"); |
341 | | write_table(out, ltl[k], 256); |
342 | | fprintf(out, "}%s", k < 7 ? ",\n" : ""); |
343 | | } |
344 | | fprintf(out, |
345 | | "};\n" |
346 | | "\n" |
347 | | "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); |
348 | | for (k = 0; k < 8; k++) { |
349 | | fprintf(out, " {"); |
350 | | write_table64(out, big[k], 256); |
351 | | fprintf(out, "}%s", k < 7 ? ",\n" : ""); |
352 | | } |
353 | | fprintf(out, |
354 | | "};\n"); |
355 | | |
356 | | /* compute braid tables for this N and 32-bit word_t */ |
357 | | braid(ltl, big, n, 4); |
358 | | |
359 | | /* write out braid tables for 32-bit z_word_t to crc32.h */ |
360 | | fprintf(out, |
361 | | "\n" |
362 | | "#else /* W == 4 */\n" |
363 | | "\n" |
364 | | "local const z_crc_t FAR crc_braid_table[][256] = {\n"); |
365 | | for (k = 0; k < 4; k++) { |
366 | | fprintf(out, " {"); |
367 | | write_table(out, ltl[k], 256); |
368 | | fprintf(out, "}%s", k < 3 ? ",\n" : ""); |
369 | | } |
370 | | fprintf(out, |
371 | | "};\n" |
372 | | "\n" |
373 | | "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); |
374 | | for (k = 0; k < 4; k++) { |
375 | | fprintf(out, " {"); |
376 | | write_table32hi(out, big[k], 256); |
377 | | fprintf(out, "}%s", k < 3 ? ",\n" : ""); |
378 | | } |
379 | | fprintf(out, |
380 | | "};\n" |
381 | | "\n" |
382 | | "#endif\n" |
383 | | "\n" |
384 | | "#endif\n"); |
385 | | } |
386 | | fprintf(out, |
387 | | "\n" |
388 | | "#endif\n"); |
389 | | |
390 | | /* write out zeros operator table to crc32.h */ |
391 | | fprintf(out, |
392 | | "\n" |
393 | | "local const z_crc_t FAR x2n_table[] = {\n" |
394 | | " "); |
395 | | write_table(out, x2n_table, 32); |
396 | | fprintf(out, |
397 | | "};\n"); |
398 | | fclose(out); |
399 | | } |
400 | | #endif /* MAKECRCH */ |
401 | | } |
402 | | |
403 | | #ifdef MAKECRCH |
404 | | |
405 | | /* |
406 | | Write the 32-bit values in table[0..k-1] to out, five per line in |
407 | | hexadecimal separated by commas. |
408 | | */ |
409 | | local void write_table(FILE *out, const z_crc_t FAR *table, int k) { |
410 | | int n; |
411 | | |
412 | | for (n = 0; n < k; n++) |
413 | | fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ", |
414 | | (unsigned long)(table[n]), |
415 | | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); |
416 | | } |
417 | | |
418 | | /* |
419 | | Write the high 32-bits of each value in table[0..k-1] to out, five per line |
420 | | in hexadecimal separated by commas. |
421 | | */ |
422 | | local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) { |
423 | | int n; |
424 | | |
425 | | for (n = 0; n < k; n++) |
426 | | fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ", |
427 | | (unsigned long)(table[n] >> 32), |
428 | | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); |
429 | | } |
430 | | |
431 | | /* |
432 | | Write the 64-bit values in table[0..k-1] to out, three per line in |
433 | | hexadecimal separated by commas. This assumes that if there is a 64-bit |
434 | | type, then there is also a long long integer type, and it is at least 64 |
435 | | bits. If not, then the type cast and format string can be adjusted |
436 | | accordingly. |
437 | | */ |
438 | | local void write_table64(FILE *out, const z_word_t FAR *table, int k) { |
439 | | int n; |
440 | | |
441 | | for (n = 0; n < k; n++) |
442 | | fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : " ", |
443 | | (unsigned long long)(table[n]), |
444 | | n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", ")); |
445 | | } |
446 | | |
447 | | /* Actually do the deed. */ |
448 | | int main(void) { |
449 | | make_crc_table(); |
450 | | return 0; |
451 | | } |
452 | | |
453 | | #endif /* MAKECRCH */ |
454 | | |
455 | | #ifdef W |
456 | | /* |
457 | | Generate the little and big-endian braid tables for the given n and z_word_t |
458 | | size w. Each array must have room for w blocks of 256 elements. |
459 | | */ |
460 | | local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) { |
461 | | int k; |
462 | | z_crc_t i, p, q; |
463 | | for (k = 0; k < w; k++) { |
464 | | p = (z_crc_t)x2nmodp((n * w + 3 - k) << 3, 0); |
465 | | ltl[k][0] = 0; |
466 | | big[w - 1 - k][0] = 0; |
467 | | for (i = 1; i < 256; i++) { |
468 | | ltl[k][i] = q = (z_crc_t)multmodp(i << 24, p); |
469 | | big[w - 1 - k][i] = byte_swap(q); |
470 | | } |
471 | | } |
472 | | } |
473 | | #endif |
474 | | |
475 | | #endif /* DYNAMIC_CRC_TABLE */ |
476 | | |
477 | | /* ========================================================================= |
478 | | * This function can be used by asm versions of crc32(), and to force the |
479 | | * generation of the CRC tables in a threaded application. |
480 | | */ |
481 | 0 | const z_crc_t FAR * ZEXPORT get_crc_table(void) { |
482 | | #ifdef DYNAMIC_CRC_TABLE |
483 | | z_once(&made, make_crc_table); |
484 | | #endif /* DYNAMIC_CRC_TABLE */ |
485 | 0 | return (const z_crc_t FAR *)crc_table; |
486 | 0 | } |
487 | | |
488 | | /* ========================================================================= |
489 | | * Use ARM machine instructions if available. This will compute the CRC about |
490 | | * ten times faster than the braided calculation. This code does not check for |
491 | | * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will |
492 | | * only be defined if the compilation specifies an ARM processor architecture |
493 | | * that has the instructions. For example, compiling with -march=armv8.1-a or |
494 | | * -march=armv8-a+crc, or -march=native if the compile machine has the crc32 |
495 | | * instructions. |
496 | | */ |
497 | | #ifdef ARMCRC32 |
498 | | |
499 | | /* |
500 | | Constants empirically determined to maximize speed. These values are from |
501 | | measurements on a Cortex-A57. Your mileage may vary. |
502 | | */ |
503 | | #define Z_BATCH 3990 /* number of words in a batch */ |
504 | | #define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */ |
505 | | #define Z_BATCH_MIN 800 /* fewest words in a final batch */ |
506 | | |
507 | | uLong ZEXPORT crc32_z(uLong crc, const unsigned char FAR *buf, z_size_t len) { |
508 | | uLong val; |
509 | | z_word_t crc1, crc2; |
510 | | const z_word_t *word; |
511 | | z_word_t val0, val1, val2; |
512 | | z_size_t last, last2, i; |
513 | | z_size_t num; |
514 | | |
515 | | /* Return initial CRC, if requested. */ |
516 | | if (buf == Z_NULL) return 0; |
517 | | |
518 | | #ifdef DYNAMIC_CRC_TABLE |
519 | | z_once(&made, make_crc_table); |
520 | | #endif /* DYNAMIC_CRC_TABLE */ |
521 | | |
522 | | /* Pre-condition the CRC */ |
523 | | crc = (~crc) & 0xffffffff; |
524 | | |
525 | | /* Compute the CRC up to a word boundary. */ |
526 | | while (len && ((z_size_t)buf & 7) != 0) { |
527 | | len--; |
528 | | val = *buf++; |
529 | | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); |
530 | | } |
531 | | |
532 | | /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */ |
533 | | word = (z_word_t const *)buf; |
534 | | num = len >> 3; |
535 | | len &= 7; |
536 | | |
537 | | /* Do three interleaved CRCs to realize the throughput of one crc32x |
538 | | instruction per cycle. Each CRC is calculated on Z_BATCH words. The |
539 | | three CRCs are combined into a single CRC after each set of batches. */ |
540 | | while (num >= 3 * Z_BATCH) { |
541 | | crc1 = 0; |
542 | | crc2 = 0; |
543 | | for (i = 0; i < Z_BATCH; i++) { |
544 | | val0 = word[i]; |
545 | | val1 = word[i + Z_BATCH]; |
546 | | val2 = word[i + 2 * Z_BATCH]; |
547 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); |
548 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); |
549 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); |
550 | | } |
551 | | word += 3 * Z_BATCH; |
552 | | num -= 3 * Z_BATCH; |
553 | | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1; |
554 | | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2; |
555 | | } |
556 | | |
557 | | /* Do one last smaller batch with the remaining words, if there are enough |
558 | | to pay for the combination of CRCs. */ |
559 | | last = num / 3; |
560 | | if (last >= Z_BATCH_MIN) { |
561 | | last2 = last << 1; |
562 | | crc1 = 0; |
563 | | crc2 = 0; |
564 | | for (i = 0; i < last; i++) { |
565 | | val0 = word[i]; |
566 | | val1 = word[i + last]; |
567 | | val2 = word[i + last2]; |
568 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); |
569 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); |
570 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); |
571 | | } |
572 | | word += 3 * last; |
573 | | num -= 3 * last; |
574 | | val = x2nmodp((int)last, 6); |
575 | | crc = multmodp(val, crc) ^ crc1; |
576 | | crc = multmodp(val, crc) ^ crc2; |
577 | | } |
578 | | |
579 | | /* Compute the CRC on any remaining words. */ |
580 | | for (i = 0; i < num; i++) { |
581 | | val0 = word[i]; |
582 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); |
583 | | } |
584 | | word += num; |
585 | | |
586 | | /* Complete the CRC on any remaining bytes. */ |
587 | | buf = (const unsigned char FAR *)word; |
588 | | while (len) { |
589 | | len--; |
590 | | val = *buf++; |
591 | | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); |
592 | | } |
593 | | |
594 | | /* Return the CRC, post-conditioned. */ |
595 | | return crc ^ 0xffffffff; |
596 | | } |
597 | | |
598 | | #else |
599 | | |
600 | | #ifdef W |
601 | | |
602 | | /* |
603 | | Return the CRC of the W bytes in the word_t data, taking the |
604 | | least-significant byte of the word as the first byte of data, without any pre |
605 | | or post conditioning. This is used to combine the CRCs of each braid. |
606 | | */ |
607 | 0 | local z_crc_t crc_word(z_word_t data) { |
608 | 0 | int k; |
609 | 0 | for (k = 0; k < W; k++) |
610 | 0 | data = (data >> 8) ^ crc_table[data & 0xff]; |
611 | 0 | return (z_crc_t)data; |
612 | 0 | } |
613 | | |
614 | 0 | local z_word_t crc_word_big(z_word_t data) { |
615 | 0 | int k; |
616 | 0 | for (k = 0; k < W; k++) |
617 | 0 | data = (data << 8) ^ |
618 | 0 | crc_big_table[(data >> ((W - 1) << 3)) & 0xff]; |
619 | 0 | return data; |
620 | 0 | } |
621 | | |
622 | | #endif |
623 | | |
624 | | /* ========================================================================= */ |
625 | 0 | uLong ZEXPORT crc32_z(uLong crc, const unsigned char FAR *buf, z_size_t len) { |
626 | | /* Return initial CRC, if requested. */ |
627 | 0 | if (buf == Z_NULL) return 0; |
628 | | |
629 | | #ifdef DYNAMIC_CRC_TABLE |
630 | | z_once(&made, make_crc_table); |
631 | | #endif /* DYNAMIC_CRC_TABLE */ |
632 | | |
633 | | /* Pre-condition the CRC */ |
634 | 0 | crc = (~crc) & 0xffffffff; |
635 | |
|
636 | 0 | #ifdef W |
637 | | |
638 | | /* If provided enough bytes, do a braided CRC calculation. */ |
639 | 0 | if (len >= N * W + W - 1) { |
640 | 0 | z_size_t blks; |
641 | 0 | z_word_t const *words; |
642 | 0 | unsigned endian; |
643 | 0 | int k; |
644 | | |
645 | | /* Compute the CRC up to a z_word_t boundary. */ |
646 | 0 | while (len && ((z_size_t)buf & (W - 1)) != 0) { |
647 | 0 | len--; |
648 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
649 | 0 | } |
650 | | |
651 | | /* Compute the CRC on as many N z_word_t blocks as are available. */ |
652 | 0 | blks = len / (N * W); |
653 | 0 | len -= blks * N * W; |
654 | 0 | words = (z_word_t const *)buf; |
655 | | |
656 | | /* Do endian check at execution time instead of compile time, since ARM |
657 | | processors can change the endianness at execution time. If the |
658 | | compiler knows what the endianness will be, it can optimize out the |
659 | | check and the unused branch. */ |
660 | 0 | endian = 1; |
661 | 0 | if (*(unsigned char *)&endian) { |
662 | | /* Little endian. */ |
663 | |
|
664 | 0 | z_crc_t crc0; |
665 | 0 | z_word_t word0; |
666 | 0 | #if N > 1 |
667 | 0 | z_crc_t crc1; |
668 | 0 | z_word_t word1; |
669 | 0 | #if N > 2 |
670 | 0 | z_crc_t crc2; |
671 | 0 | z_word_t word2; |
672 | 0 | #if N > 3 |
673 | 0 | z_crc_t crc3; |
674 | 0 | z_word_t word3; |
675 | 0 | #if N > 4 |
676 | 0 | z_crc_t crc4; |
677 | 0 | z_word_t word4; |
678 | | #if N > 5 |
679 | | z_crc_t crc5; |
680 | | z_word_t word5; |
681 | | #endif |
682 | 0 | #endif |
683 | 0 | #endif |
684 | 0 | #endif |
685 | 0 | #endif |
686 | | |
687 | | /* Initialize the CRC for each braid. */ |
688 | 0 | crc0 = crc; |
689 | 0 | #if N > 1 |
690 | 0 | crc1 = 0; |
691 | 0 | #if N > 2 |
692 | 0 | crc2 = 0; |
693 | 0 | #if N > 3 |
694 | 0 | crc3 = 0; |
695 | 0 | #if N > 4 |
696 | 0 | crc4 = 0; |
697 | | #if N > 5 |
698 | | crc5 = 0; |
699 | | #endif |
700 | 0 | #endif |
701 | 0 | #endif |
702 | 0 | #endif |
703 | 0 | #endif |
704 | | |
705 | | /* |
706 | | Process the first blks-1 blocks, computing the CRCs on each braid |
707 | | independently. |
708 | | */ |
709 | 0 | while (--blks) { |
710 | | /* Load the word for each braid into registers. */ |
711 | 0 | word0 = crc0 ^ words[0]; |
712 | 0 | #if N > 1 |
713 | 0 | word1 = crc1 ^ words[1]; |
714 | 0 | #if N > 2 |
715 | 0 | word2 = crc2 ^ words[2]; |
716 | 0 | #if N > 3 |
717 | 0 | word3 = crc3 ^ words[3]; |
718 | 0 | #if N > 4 |
719 | 0 | word4 = crc4 ^ words[4]; |
720 | | #if N > 5 |
721 | | word5 = crc5 ^ words[5]; |
722 | | #endif |
723 | 0 | #endif |
724 | 0 | #endif |
725 | 0 | #endif |
726 | 0 | #endif |
727 | 0 | words += N; |
728 | | |
729 | | /* Compute and update the CRC for each word. The loop should |
730 | | get unrolled. */ |
731 | 0 | crc0 = crc_braid_table[0][word0 & 0xff]; |
732 | 0 | #if N > 1 |
733 | 0 | crc1 = crc_braid_table[0][word1 & 0xff]; |
734 | 0 | #if N > 2 |
735 | 0 | crc2 = crc_braid_table[0][word2 & 0xff]; |
736 | 0 | #if N > 3 |
737 | 0 | crc3 = crc_braid_table[0][word3 & 0xff]; |
738 | 0 | #if N > 4 |
739 | 0 | crc4 = crc_braid_table[0][word4 & 0xff]; |
740 | | #if N > 5 |
741 | | crc5 = crc_braid_table[0][word5 & 0xff]; |
742 | | #endif |
743 | 0 | #endif |
744 | 0 | #endif |
745 | 0 | #endif |
746 | 0 | #endif |
747 | 0 | for (k = 1; k < W; k++) { |
748 | 0 | crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff]; |
749 | 0 | #if N > 1 |
750 | 0 | crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff]; |
751 | 0 | #if N > 2 |
752 | 0 | crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff]; |
753 | 0 | #if N > 3 |
754 | 0 | crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff]; |
755 | 0 | #if N > 4 |
756 | 0 | crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff]; |
757 | | #if N > 5 |
758 | | crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff]; |
759 | | #endif |
760 | 0 | #endif |
761 | 0 | #endif |
762 | 0 | #endif |
763 | 0 | #endif |
764 | 0 | } |
765 | 0 | } |
766 | | |
767 | | /* |
768 | | Process the last block, combining the CRCs of the N braids at the |
769 | | same time. |
770 | | */ |
771 | 0 | crc = crc_word(crc0 ^ words[0]); |
772 | 0 | #if N > 1 |
773 | 0 | crc = crc_word(crc1 ^ words[1] ^ crc); |
774 | 0 | #if N > 2 |
775 | 0 | crc = crc_word(crc2 ^ words[2] ^ crc); |
776 | 0 | #if N > 3 |
777 | 0 | crc = crc_word(crc3 ^ words[3] ^ crc); |
778 | 0 | #if N > 4 |
779 | 0 | crc = crc_word(crc4 ^ words[4] ^ crc); |
780 | | #if N > 5 |
781 | | crc = crc_word(crc5 ^ words[5] ^ crc); |
782 | | #endif |
783 | 0 | #endif |
784 | 0 | #endif |
785 | 0 | #endif |
786 | 0 | #endif |
787 | 0 | words += N; |
788 | 0 | } |
789 | 0 | else { |
790 | | /* Big endian. */ |
791 | |
|
792 | 0 | z_word_t crc0, word0, comb; |
793 | 0 | #if N > 1 |
794 | 0 | z_word_t crc1, word1; |
795 | 0 | #if N > 2 |
796 | 0 | z_word_t crc2, word2; |
797 | 0 | #if N > 3 |
798 | 0 | z_word_t crc3, word3; |
799 | 0 | #if N > 4 |
800 | 0 | z_word_t crc4, word4; |
801 | | #if N > 5 |
802 | | z_word_t crc5, word5; |
803 | | #endif |
804 | 0 | #endif |
805 | 0 | #endif |
806 | 0 | #endif |
807 | 0 | #endif |
808 | | |
809 | | /* Initialize the CRC for each braid. */ |
810 | 0 | crc0 = byte_swap(crc); |
811 | 0 | #if N > 1 |
812 | 0 | crc1 = 0; |
813 | 0 | #if N > 2 |
814 | 0 | crc2 = 0; |
815 | 0 | #if N > 3 |
816 | 0 | crc3 = 0; |
817 | 0 | #if N > 4 |
818 | 0 | crc4 = 0; |
819 | | #if N > 5 |
820 | | crc5 = 0; |
821 | | #endif |
822 | 0 | #endif |
823 | 0 | #endif |
824 | 0 | #endif |
825 | 0 | #endif |
826 | | |
827 | | /* |
828 | | Process the first blks-1 blocks, computing the CRCs on each braid |
829 | | independently. |
830 | | */ |
831 | 0 | while (--blks) { |
832 | | /* Load the word for each braid into registers. */ |
833 | 0 | word0 = crc0 ^ words[0]; |
834 | 0 | #if N > 1 |
835 | 0 | word1 = crc1 ^ words[1]; |
836 | 0 | #if N > 2 |
837 | 0 | word2 = crc2 ^ words[2]; |
838 | 0 | #if N > 3 |
839 | 0 | word3 = crc3 ^ words[3]; |
840 | 0 | #if N > 4 |
841 | 0 | word4 = crc4 ^ words[4]; |
842 | | #if N > 5 |
843 | | word5 = crc5 ^ words[5]; |
844 | | #endif |
845 | 0 | #endif |
846 | 0 | #endif |
847 | 0 | #endif |
848 | 0 | #endif |
849 | 0 | words += N; |
850 | | |
851 | | /* Compute and update the CRC for each word. The loop should |
852 | | get unrolled. */ |
853 | 0 | crc0 = crc_braid_big_table[0][word0 & 0xff]; |
854 | 0 | #if N > 1 |
855 | 0 | crc1 = crc_braid_big_table[0][word1 & 0xff]; |
856 | 0 | #if N > 2 |
857 | 0 | crc2 = crc_braid_big_table[0][word2 & 0xff]; |
858 | 0 | #if N > 3 |
859 | 0 | crc3 = crc_braid_big_table[0][word3 & 0xff]; |
860 | 0 | #if N > 4 |
861 | 0 | crc4 = crc_braid_big_table[0][word4 & 0xff]; |
862 | | #if N > 5 |
863 | | crc5 = crc_braid_big_table[0][word5 & 0xff]; |
864 | | #endif |
865 | 0 | #endif |
866 | 0 | #endif |
867 | 0 | #endif |
868 | 0 | #endif |
869 | 0 | for (k = 1; k < W; k++) { |
870 | 0 | crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff]; |
871 | 0 | #if N > 1 |
872 | 0 | crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff]; |
873 | 0 | #if N > 2 |
874 | 0 | crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff]; |
875 | 0 | #if N > 3 |
876 | 0 | crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff]; |
877 | 0 | #if N > 4 |
878 | 0 | crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff]; |
879 | | #if N > 5 |
880 | | crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff]; |
881 | | #endif |
882 | 0 | #endif |
883 | 0 | #endif |
884 | 0 | #endif |
885 | 0 | #endif |
886 | 0 | } |
887 | 0 | } |
888 | | |
889 | | /* |
890 | | Process the last block, combining the CRCs of the N braids at the |
891 | | same time. |
892 | | */ |
893 | 0 | comb = crc_word_big(crc0 ^ words[0]); |
894 | 0 | #if N > 1 |
895 | 0 | comb = crc_word_big(crc1 ^ words[1] ^ comb); |
896 | 0 | #if N > 2 |
897 | 0 | comb = crc_word_big(crc2 ^ words[2] ^ comb); |
898 | 0 | #if N > 3 |
899 | 0 | comb = crc_word_big(crc3 ^ words[3] ^ comb); |
900 | 0 | #if N > 4 |
901 | 0 | comb = crc_word_big(crc4 ^ words[4] ^ comb); |
902 | | #if N > 5 |
903 | | comb = crc_word_big(crc5 ^ words[5] ^ comb); |
904 | | #endif |
905 | 0 | #endif |
906 | 0 | #endif |
907 | 0 | #endif |
908 | 0 | #endif |
909 | 0 | words += N; |
910 | 0 | crc = byte_swap(comb); |
911 | 0 | } |
912 | | |
913 | | /* |
914 | | Update the pointer to the remaining bytes to process. |
915 | | */ |
916 | 0 | buf = (unsigned char const *)words; |
917 | 0 | } |
918 | |
|
919 | 0 | #endif /* W */ |
920 | | |
921 | | /* Complete the computation of the CRC on any remaining bytes. */ |
922 | 0 | while (len >= 8) { |
923 | 0 | len -= 8; |
924 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
925 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
926 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
927 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
928 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
929 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
930 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
931 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
932 | 0 | } |
933 | 0 | while (len) { |
934 | 0 | len--; |
935 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
936 | 0 | } |
937 | | |
938 | | /* Return the CRC, post-conditioned. */ |
939 | 0 | return crc ^ 0xffffffff; |
940 | 0 | } |
941 | | |
942 | | #endif |
943 | | |
944 | | /* ========================================================================= */ |
945 | 0 | uLong ZEXPORT crc32(uLong crc, const unsigned char FAR *buf, uInt len) { |
946 | | #ifdef HAVE_S390X_VX |
947 | | return crc32_z_hook(crc, buf, len); |
948 | | #endif |
949 | 0 | return crc32_z(crc, buf, len); |
950 | 0 | } |
951 | | |
952 | | /* ========================================================================= */ |
953 | 0 | uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) { |
954 | 0 | if (len2 < 0) |
955 | 0 | return 0; |
956 | | #ifdef DYNAMIC_CRC_TABLE |
957 | | z_once(&made, make_crc_table); |
958 | | #endif /* DYNAMIC_CRC_TABLE */ |
959 | 0 | return x2nmodp(len2, 3); |
960 | 0 | } |
961 | | |
962 | | /* ========================================================================= */ |
963 | 0 | uLong ZEXPORT crc32_combine_gen(z_off_t len2) { |
964 | 0 | return crc32_combine_gen64((z_off64_t)len2); |
965 | 0 | } |
966 | | |
967 | | /* ========================================================================= */ |
968 | 0 | uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) { |
969 | 0 | if (op == 0) |
970 | 0 | return 0; |
971 | 0 | return multmodp(op, crc1 & 0xffffffff) ^ (crc2 & 0xffffffff); |
972 | 0 | } |
973 | | |
974 | | /* ========================================================================= */ |
975 | 0 | uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) { |
976 | 0 | return crc32_combine_op(crc1, crc2, crc32_combine_gen64(len2)); |
977 | 0 | } |
978 | | |
979 | | /* ========================================================================= */ |
980 | 0 | uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) { |
981 | 0 | return crc32_combine64(crc1, crc2, (z_off64_t)len2); |
982 | 0 | } |