Coverage Report

Created: 2026-02-14 06:27

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/zlib/deflate.c
Line
Count
Source
1
/* deflate.c -- compress data using the deflation algorithm
2
 * Copyright (C) 1995-2025 Jean-loup Gailly and Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/*
7
 *  ALGORITHM
8
 *
9
 *      The "deflation" process depends on being able to identify portions
10
 *      of the input text which are identical to earlier input (within a
11
 *      sliding window trailing behind the input currently being processed).
12
 *
13
 *      The most straightforward technique turns out to be the fastest for
14
 *      most input files: try all possible matches and select the longest.
15
 *      The key feature of this algorithm is that insertions into the string
16
 *      dictionary are very simple and thus fast, and deletions are avoided
17
 *      completely. Insertions are performed at each input character, whereas
18
 *      string matches are performed only when the previous match ends. So it
19
 *      is preferable to spend more time in matches to allow very fast string
20
 *      insertions and avoid deletions. The matching algorithm for small
21
 *      strings is inspired from that of Rabin & Karp. A brute force approach
22
 *      is used to find longer strings when a small match has been found.
23
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
 *      (by Leonid Broukhis).
25
 *         A previous version of this file used a more sophisticated algorithm
26
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27
 *      time, but has a larger average cost, uses more memory and is patented.
28
 *      However the F&G algorithm may be faster for some highly redundant
29
 *      files if the parameter max_chain_length (described below) is too large.
30
 *
31
 *  ACKNOWLEDGEMENTS
32
 *
33
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
 *      I found it in 'freeze' written by Leonid Broukhis.
35
 *      Thanks to many people for bug reports and testing.
36
 *
37
 *  REFERENCES
38
 *
39
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
 *      Available at https://datatracker.ietf.org/doc/html/rfc1951
41
 *
42
 *      A description of the Rabin and Karp algorithm is given in the book
43
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
 *
45
 *      Fiala,E.R., and Greene,D.H.
46
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
 *
48
 */
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
   " deflate 1.3.1.2 Copyright 1995-2025 Jean-loup Gailly and Mark Adler ";
56
/*
57
  If you use the zlib library in a product, an acknowledgment is welcome
58
  in the documentation of your product. If for some reason you cannot
59
  include such an acknowledgment, I would appreciate that you keep this
60
  copyright string in the executable of your product.
61
 */
62
63
typedef enum {
64
    need_more,      /* block not completed, need more input or more output */
65
    block_done,     /* block flush performed */
66
    finish_started, /* finish started, need only more output at next deflate */
67
    finish_done     /* finish done, accept no more input or output */
68
} block_state;
69
70
typedef block_state (*compress_func)(deflate_state *s, int flush);
71
/* Compression function. Returns the block state after the call. */
72
73
local block_state deflate_stored(deflate_state *s, int flush);
74
local block_state deflate_fast(deflate_state *s, int flush);
75
#ifndef FASTEST
76
local block_state deflate_slow(deflate_state *s, int flush);
77
#endif
78
local block_state deflate_rle(deflate_state *s, int flush);
79
local block_state deflate_huff(deflate_state *s, int flush);
80
81
/* ===========================================================================
82
 * Local data
83
 */
84
85
0
#define NIL 0
86
/* Tail of hash chains */
87
88
#ifndef TOO_FAR
89
0
#  define TOO_FAR 4096
90
#endif
91
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93
/* Values for max_lazy_match, good_match and max_chain_length, depending on
94
 * the desired pack level (0..9). The values given below have been tuned to
95
 * exclude worst case performance for pathological files. Better values may be
96
 * found for specific files.
97
 */
98
typedef struct config_s {
99
   ush good_length; /* reduce lazy search above this match length */
100
   ush max_lazy;    /* do not perform lazy search above this match length */
101
   ush nice_length; /* quit search above this match length */
102
   ush max_chain;
103
   compress_func func;
104
} config;
105
106
#ifdef FASTEST
107
local const config configuration_table[2] = {
108
/*      good lazy nice chain */
109
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
110
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
111
#else
112
local const config configuration_table[10] = {
113
/*      good lazy nice chain */
114
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
115
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
116
/* 2 */ {4,    5, 16,    8, deflate_fast},
117
/* 3 */ {4,    6, 32,   32, deflate_fast},
118
119
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
120
/* 5 */ {8,   16, 32,   32, deflate_slow},
121
/* 6 */ {8,   16, 128, 128, deflate_slow},
122
/* 7 */ {8,   32, 128, 256, deflate_slow},
123
/* 8 */ {32, 128, 258, 1024, deflate_slow},
124
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125
#endif
126
127
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129
 * meaning.
130
 */
131
132
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133
0
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135
/* ===========================================================================
136
 * Update a hash value with the given input byte
137
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
138
 *    characters, so that a running hash key can be computed from the previous
139
 *    key instead of complete recalculation each time.
140
 */
141
0
#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144
/* ===========================================================================
145
 * Insert string str in the dictionary and set match_head to the previous head
146
 * of the hash chain (the most recent string with same hash key). Return
147
 * the previous length of the hash chain.
148
 * If this file is compiled with -DFASTEST, the compression level is forced
149
 * to 1, and no hash chains are maintained.
150
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
151
 *    characters and the first MIN_MATCH bytes of str are valid (except for
152
 *    the last MIN_MATCH-1 bytes of the input file).
153
 */
154
#ifdef FASTEST
155
#define INSERT_STRING(s, str, match_head) \
156
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157
    match_head = s->head[s->ins_h], \
158
    s->head[s->ins_h] = (Pos)(str))
159
#else
160
#define INSERT_STRING(s, str, match_head) \
161
0
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162
0
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163
0
    s->head[s->ins_h] = (Pos)(str))
164
#endif
165
166
/* ===========================================================================
167
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168
 * prev[] will be initialized on the fly.
169
 */
170
#define CLEAR_HASH(s) \
171
0
    do { \
172
0
        s->head[s->hash_size - 1] = NIL; \
173
0
        zmemzero((Bytef *)s->head, \
174
0
                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175
0
        s->slid = 0; \
176
0
    } while (0)
177
178
/* ===========================================================================
179
 * Slide the hash table when sliding the window down (could be avoided with 32
180
 * bit values at the expense of memory usage). We slide even when level == 0 to
181
 * keep the hash table consistent if we switch back to level > 0 later.
182
 */
183
#if defined(__has_feature)
184
#  if __has_feature(memory_sanitizer)
185
     __attribute__((no_sanitize("memory")))
186
#  endif
187
#endif
188
0
local void slide_hash(deflate_state *s) {
189
0
    unsigned n, m;
190
0
    Posf *p;
191
0
    uInt wsize = s->w_size;
192
193
0
    n = s->hash_size;
194
0
    p = &s->head[n];
195
0
    do {
196
0
        m = *--p;
197
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
198
0
    } while (--n);
199
0
#ifndef FASTEST
200
0
    n = wsize;
201
0
    p = &s->prev[n];
202
0
    do {
203
0
        m = *--p;
204
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
205
        /* If n is not on any hash chain, prev[n] is garbage but
206
         * its value will never be used.
207
         */
208
0
    } while (--n);
209
0
#endif
210
0
    s->slid = 1;
211
0
}
212
213
/* ===========================================================================
214
 * Read a new buffer from the current input stream, update the adler32
215
 * and total number of bytes read.  All deflate() input goes through
216
 * this function so some applications may wish to modify it to avoid
217
 * allocating a large strm->next_in buffer and copying from it.
218
 * (See also flush_pending()).
219
 */
220
0
local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
221
0
    unsigned len = strm->avail_in;
222
223
0
    if (len > size) len = size;
224
0
    if (len == 0) return 0;
225
226
0
    strm->avail_in  -= len;
227
228
0
    zmemcpy(buf, strm->next_in, len);
229
0
    if (strm->state->wrap == 1) {
230
0
        strm->adler = adler32(strm->adler, buf, len);
231
0
    }
232
0
#ifdef GZIP
233
0
    else if (strm->state->wrap == 2) {
234
0
        strm->adler = crc32(strm->adler, buf, len);
235
0
    }
236
0
#endif
237
0
    strm->next_in  += len;
238
0
    strm->total_in += len;
239
240
0
    return len;
241
0
}
242
243
/* ===========================================================================
244
 * Fill the window when the lookahead becomes insufficient.
245
 * Updates strstart and lookahead.
246
 *
247
 * IN assertion: lookahead < MIN_LOOKAHEAD
248
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
249
 *    At least one byte has been read, or avail_in == 0; reads are
250
 *    performed for at least two bytes (required for the zip translate_eol
251
 *    option -- not supported here).
252
 */
253
0
local void fill_window(deflate_state *s) {
254
0
    unsigned n;
255
0
    unsigned more;    /* Amount of free space at the end of the window. */
256
0
    uInt wsize = s->w_size;
257
258
0
    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
259
260
0
    do {
261
0
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
262
263
        /* Deal with !@#$% 64K limit: */
264
#ifdef _MSC_VER
265
#pragma warning(push)
266
#pragma warning(disable: 4127)
267
#endif
268
0
        if (sizeof(int) <= 2) {
269
#ifdef _MSC_VER
270
#pragma warning(pop)
271
#endif
272
0
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
273
0
                more = wsize;
274
275
0
            } else if (more == (unsigned)(-1)) {
276
                /* Very unlikely, but possible on 16 bit machine if
277
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
278
                 */
279
0
                more--;
280
0
            }
281
0
        }
282
283
        /* If the window is almost full and there is insufficient lookahead,
284
         * move the upper half to the lower one to make room in the upper half.
285
         */
286
0
        if (s->strstart >= wsize + MAX_DIST(s)) {
287
288
0
            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
289
0
            s->match_start -= wsize;
290
0
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
291
0
            s->block_start -= (long) wsize;
292
0
            if (s->insert > s->strstart)
293
0
                s->insert = s->strstart;
294
0
            slide_hash(s);
295
0
            more += wsize;
296
0
        }
297
0
        if (s->strm->avail_in == 0) break;
298
299
        /* If there was no sliding:
300
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
301
         *    more == window_size - lookahead - strstart
302
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
303
         * => more >= window_size - 2*WSIZE + 2
304
         * In the BIG_MEM or MMAP case (not yet supported),
305
         *   window_size == input_size + MIN_LOOKAHEAD  &&
306
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
307
         * Otherwise, window_size == 2*WSIZE so more >= 2.
308
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
309
         */
310
0
        Assert(more >= 2, "more < 2");
311
312
0
        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
313
0
        s->lookahead += n;
314
315
        /* Initialize the hash value now that we have some input: */
316
0
        if (s->lookahead + s->insert >= MIN_MATCH) {
317
0
            uInt str = s->strstart - s->insert;
318
0
            s->ins_h = s->window[str];
319
0
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
320
#if MIN_MATCH != 3
321
            Call UPDATE_HASH() MIN_MATCH-3 more times
322
#endif
323
0
            while (s->insert) {
324
0
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
325
0
#ifndef FASTEST
326
0
                s->prev[str & s->w_mask] = s->head[s->ins_h];
327
0
#endif
328
0
                s->head[s->ins_h] = (Pos)str;
329
0
                str++;
330
0
                s->insert--;
331
0
                if (s->lookahead + s->insert < MIN_MATCH)
332
0
                    break;
333
0
            }
334
0
        }
335
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
336
         * but this is not important since only literal bytes will be emitted.
337
         */
338
339
0
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
340
341
    /* If the WIN_INIT bytes after the end of the current data have never been
342
     * written, then zero those bytes in order to avoid memory check reports of
343
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
344
     * the longest match routines.  Update the high water mark for the next
345
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
346
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
347
     */
348
0
    if (s->high_water < s->window_size) {
349
0
        ulg curr = s->strstart + (ulg)(s->lookahead);
350
0
        ulg init;
351
352
0
        if (s->high_water < curr) {
353
            /* Previous high water mark below current data -- zero WIN_INIT
354
             * bytes or up to end of window, whichever is less.
355
             */
356
0
            init = s->window_size - curr;
357
0
            if (init > WIN_INIT)
358
0
                init = WIN_INIT;
359
0
            zmemzero(s->window + curr, (unsigned)init);
360
0
            s->high_water = curr + init;
361
0
        }
362
0
        else if (s->high_water < (ulg)curr + WIN_INIT) {
363
            /* High water mark at or above current data, but below current data
364
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
365
             * to end of window, whichever is less.
366
             */
367
0
            init = (ulg)curr + WIN_INIT - s->high_water;
368
0
            if (init > s->window_size - s->high_water)
369
0
                init = s->window_size - s->high_water;
370
0
            zmemzero(s->window + s->high_water, (unsigned)init);
371
0
            s->high_water += init;
372
0
        }
373
0
    }
374
375
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
376
0
           "not enough room for search");
377
0
}
378
379
/* ========================================================================= */
380
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
381
0
                         int stream_size) {
382
0
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
383
0
                         Z_DEFAULT_STRATEGY, version, stream_size);
384
    /* To do: ignore strm->next_in if we use it as window */
385
0
}
386
387
/* ========================================================================= */
388
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
389
                          int windowBits, int memLevel, int strategy,
390
                          const char *version, int stream_size) {
391
    deflate_state *s;
392
    int wrap = 1;
393
    static const char my_version[] = ZLIB_VERSION;
394
395
    if (version == Z_NULL || version[0] != my_version[0] ||
396
        stream_size != sizeof(z_stream)) {
397
        return Z_VERSION_ERROR;
398
    }
399
    if (strm == Z_NULL) return Z_STREAM_ERROR;
400
401
    strm->msg = Z_NULL;
402
    if (strm->zalloc == (alloc_func)0) {
403
#ifdef Z_SOLO
404
        return Z_STREAM_ERROR;
405
#else
406
        strm->zalloc = zcalloc;
407
        strm->opaque = (voidpf)0;
408
#endif
409
    }
410
    if (strm->zfree == (free_func)0)
411
#ifdef Z_SOLO
412
        return Z_STREAM_ERROR;
413
#else
414
        strm->zfree = zcfree;
415
#endif
416
417
#ifdef FASTEST
418
    if (level != 0) level = 1;
419
#else
420
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
421
#endif
422
423
    if (windowBits < 0) { /* suppress zlib wrapper */
424
        wrap = 0;
425
        if (windowBits < -15)
426
            return Z_STREAM_ERROR;
427
        windowBits = -windowBits;
428
    }
429
#ifdef GZIP
430
    else if (windowBits > 15) {
431
        wrap = 2;       /* write gzip wrapper instead */
432
        windowBits -= 16;
433
    }
434
#endif
435
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
436
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
437
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
438
        return Z_STREAM_ERROR;
439
    }
440
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
441
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
442
    if (s == Z_NULL) return Z_MEM_ERROR;
443
    zmemzero(s, sizeof(deflate_state));
444
    strm->state = (struct internal_state FAR *)s;
445
    s->strm = strm;
446
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
447
448
    s->wrap = wrap;
449
    s->gzhead = Z_NULL;
450
    s->w_bits = (uInt)windowBits;
451
    s->w_size = 1 << s->w_bits;
452
    s->w_mask = s->w_size - 1;
453
454
    s->hash_bits = (uInt)memLevel + 7;
455
    s->hash_size = 1 << s->hash_bits;
456
    s->hash_mask = s->hash_size - 1;
457
    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
458
459
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
460
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
461
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
462
463
    s->high_water = 0;      /* nothing written to s->window yet */
464
465
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
466
467
    /* We overlay pending_buf and sym_buf. This works since the average size
468
     * for length/distance pairs over any compressed block is assured to be 31
469
     * bits or less.
470
     *
471
     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
472
     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
473
     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
474
     * possible fixed-codes length/distance pair is then 31 bits total.
475
     *
476
     * sym_buf starts one-fourth of the way into pending_buf. So there are
477
     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
478
     * in sym_buf is three bytes -- two for the distance and one for the
479
     * literal/length. As each symbol is consumed, the pointer to the next
480
     * sym_buf value to read moves forward three bytes. From that symbol, up to
481
     * 31 bits are written to pending_buf. The closest the written pending_buf
482
     * bits gets to the next sym_buf symbol to read is just before the last
483
     * code is written. At that time, 31*(n - 2) bits have been written, just
484
     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
485
     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
486
     * symbols are written.) The closest the writing gets to what is unread is
487
     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
488
     * can range from 128 to 32768.
489
     *
490
     * Therefore, at a minimum, there are 142 bits of space between what is
491
     * written and what is read in the overlain buffers, so the symbols cannot
492
     * be overwritten by the compressed data. That space is actually 139 bits,
493
     * due to the three-bit fixed-code block header.
494
     *
495
     * That covers the case where either Z_FIXED is specified, forcing fixed
496
     * codes, or when the use of fixed codes is chosen, because that choice
497
     * results in a smaller compressed block than dynamic codes. That latter
498
     * condition then assures that the above analysis also covers all dynamic
499
     * blocks. A dynamic-code block will only be chosen to be emitted if it has
500
     * fewer bits than a fixed-code block would for the same set of symbols.
501
     * Therefore its average symbol length is assured to be less than 31. So
502
     * the compressed data for a dynamic block also cannot overwrite the
503
     * symbols from which it is being constructed.
504
     */
505
506
    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
507
    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
508
509
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
510
        s->pending_buf == Z_NULL) {
511
        s->status = FINISH_STATE;
512
        strm->msg = ERR_MSG(Z_MEM_ERROR);
513
        deflateEnd (strm);
514
        return Z_MEM_ERROR;
515
    }
516
#ifdef LIT_MEM
517
    s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
518
    s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
519
    s->sym_end = s->lit_bufsize - 1;
520
#else
521
    s->sym_buf = s->pending_buf + s->lit_bufsize;
522
    s->sym_end = (s->lit_bufsize - 1) * 3;
523
#endif
524
    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
525
     * on 16 bit machines and because stored blocks are restricted to
526
     * 64K-1 bytes.
527
     */
528
529
    s->level = level;
530
    s->strategy = strategy;
531
    s->method = (Byte)method;
532
533
    return deflateReset(strm);
534
}
535
536
/* =========================================================================
537
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
538
 */
539
0
local int deflateStateCheck(z_streamp strm) {
540
0
    deflate_state *s;
541
0
    if (strm == Z_NULL ||
542
0
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
543
0
        return 1;
544
0
    s = strm->state;
545
0
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
546
0
#ifdef GZIP
547
0
                                           s->status != GZIP_STATE &&
548
0
#endif
549
0
                                           s->status != EXTRA_STATE &&
550
0
                                           s->status != NAME_STATE &&
551
0
                                           s->status != COMMENT_STATE &&
552
0
                                           s->status != HCRC_STATE &&
553
0
                                           s->status != BUSY_STATE &&
554
0
                                           s->status != FINISH_STATE))
555
0
        return 1;
556
0
    return 0;
557
0
}
558
559
/* ========================================================================= */
560
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
561
0
                                 uInt  dictLength) {
562
0
    deflate_state *s;
563
0
    uInt str, n;
564
0
    int wrap;
565
0
    unsigned avail;
566
0
    z_const unsigned char *next;
567
568
0
    if (deflateStateCheck(strm) || dictionary == Z_NULL)
569
0
        return Z_STREAM_ERROR;
570
0
    s = strm->state;
571
0
    wrap = s->wrap;
572
0
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
573
0
        return Z_STREAM_ERROR;
574
575
    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
576
0
    if (wrap == 1)
577
0
        strm->adler = adler32(strm->adler, dictionary, dictLength);
578
0
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
579
580
    /* if dictionary would fill window, just replace the history */
581
0
    if (dictLength >= s->w_size) {
582
0
        if (wrap == 0) {            /* already empty otherwise */
583
0
            CLEAR_HASH(s);
584
0
            s->strstart = 0;
585
0
            s->block_start = 0L;
586
0
            s->insert = 0;
587
0
        }
588
0
        dictionary += dictLength - s->w_size;  /* use the tail */
589
0
        dictLength = s->w_size;
590
0
    }
591
592
    /* insert dictionary into window and hash */
593
0
    avail = strm->avail_in;
594
0
    next = strm->next_in;
595
0
    strm->avail_in = dictLength;
596
0
    strm->next_in = (z_const Bytef *)dictionary;
597
0
    fill_window(s);
598
0
    while (s->lookahead >= MIN_MATCH) {
599
0
        str = s->strstart;
600
0
        n = s->lookahead - (MIN_MATCH-1);
601
0
        do {
602
0
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
603
0
#ifndef FASTEST
604
0
            s->prev[str & s->w_mask] = s->head[s->ins_h];
605
0
#endif
606
0
            s->head[s->ins_h] = (Pos)str;
607
0
            str++;
608
0
        } while (--n);
609
0
        s->strstart = str;
610
0
        s->lookahead = MIN_MATCH-1;
611
0
        fill_window(s);
612
0
    }
613
0
    s->strstart += s->lookahead;
614
0
    s->block_start = (long)s->strstart;
615
0
    s->insert = s->lookahead;
616
0
    s->lookahead = 0;
617
0
    s->match_length = s->prev_length = MIN_MATCH-1;
618
0
    s->match_available = 0;
619
0
    strm->next_in = next;
620
0
    strm->avail_in = avail;
621
0
    s->wrap = wrap;
622
0
    return Z_OK;
623
0
}
624
625
/* ========================================================================= */
626
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
627
0
                                 uInt *dictLength) {
628
0
    deflate_state *s;
629
0
    uInt len;
630
631
0
    if (deflateStateCheck(strm))
632
0
        return Z_STREAM_ERROR;
633
0
    s = strm->state;
634
0
    len = s->strstart + s->lookahead;
635
0
    if (len > s->w_size)
636
0
        len = s->w_size;
637
0
    if (dictionary != Z_NULL && len)
638
0
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
639
0
    if (dictLength != Z_NULL)
640
0
        *dictLength = len;
641
0
    return Z_OK;
642
0
}
643
644
/* ========================================================================= */
645
0
int ZEXPORT deflateResetKeep(z_streamp strm) {
646
0
    deflate_state *s;
647
648
0
    if (deflateStateCheck(strm)) {
649
0
        return Z_STREAM_ERROR;
650
0
    }
651
652
0
    strm->total_in = strm->total_out = 0;
653
0
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
654
0
    strm->data_type = Z_UNKNOWN;
655
656
0
    s = (deflate_state *)strm->state;
657
0
    s->pending = 0;
658
0
    s->pending_out = s->pending_buf;
659
660
0
    if (s->wrap < 0) {
661
0
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
662
0
    }
663
0
    s->status =
664
0
#ifdef GZIP
665
0
        s->wrap == 2 ? GZIP_STATE :
666
0
#endif
667
0
        INIT_STATE;
668
0
    strm->adler =
669
0
#ifdef GZIP
670
0
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
671
0
#endif
672
0
        adler32(0L, Z_NULL, 0);
673
0
    s->last_flush = -2;
674
675
0
    _tr_init(s);
676
677
0
    return Z_OK;
678
0
}
679
680
/* ===========================================================================
681
 * Initialize the "longest match" routines for a new zlib stream
682
 */
683
0
local void lm_init(deflate_state *s) {
684
0
    s->window_size = (ulg)2L*s->w_size;
685
686
0
    CLEAR_HASH(s);
687
688
    /* Set the default configuration parameters:
689
     */
690
0
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
691
0
    s->good_match       = configuration_table[s->level].good_length;
692
0
    s->nice_match       = configuration_table[s->level].nice_length;
693
0
    s->max_chain_length = configuration_table[s->level].max_chain;
694
695
0
    s->strstart = 0;
696
0
    s->block_start = 0L;
697
0
    s->lookahead = 0;
698
0
    s->insert = 0;
699
0
    s->match_length = s->prev_length = MIN_MATCH-1;
700
0
    s->match_available = 0;
701
0
    s->ins_h = 0;
702
0
}
703
704
/* ========================================================================= */
705
0
int ZEXPORT deflateReset(z_streamp strm) {
706
0
    int ret;
707
708
0
    ret = deflateResetKeep(strm);
709
0
    if (ret == Z_OK)
710
0
        lm_init(strm->state);
711
0
    return ret;
712
0
}
713
714
/* ========================================================================= */
715
0
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
716
0
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
717
0
        return Z_STREAM_ERROR;
718
0
    strm->state->gzhead = head;
719
0
    return Z_OK;
720
0
}
721
722
/* ========================================================================= */
723
0
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
724
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
725
0
    if (bits != Z_NULL)
726
0
        *bits = strm->state->bi_valid;
727
0
    if (pending != Z_NULL) {
728
0
        *pending = (unsigned)strm->state->pending;
729
0
        if (*pending != strm->state->pending) {
730
0
            *pending = (unsigned)-1;
731
0
            return Z_BUF_ERROR;
732
0
        }
733
0
    }
734
0
    return Z_OK;
735
0
}
736
737
/* ========================================================================= */
738
0
int ZEXPORT deflateUsed(z_streamp strm, int *bits) {
739
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
740
0
    if (bits != Z_NULL)
741
0
        *bits = strm->state->bi_used;
742
0
    return Z_OK;
743
0
}
744
745
/* ========================================================================= */
746
0
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
747
0
    deflate_state *s;
748
0
    int put;
749
750
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
751
0
    s = strm->state;
752
#ifdef LIT_MEM
753
    if (bits < 0 || bits > 16 ||
754
        (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
755
        return Z_BUF_ERROR;
756
#else
757
0
    if (bits < 0 || bits > 16 ||
758
0
        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
759
0
        return Z_BUF_ERROR;
760
0
#endif
761
0
    do {
762
0
        put = Buf_size - s->bi_valid;
763
0
        if (put > bits)
764
0
            put = bits;
765
0
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
766
0
        s->bi_valid += put;
767
0
        _tr_flush_bits(s);
768
0
        value >>= put;
769
0
        bits -= put;
770
0
    } while (bits);
771
0
    return Z_OK;
772
0
}
773
774
/* ========================================================================= */
775
0
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
776
0
    deflate_state *s;
777
0
    compress_func func;
778
779
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
780
0
    s = strm->state;
781
782
#ifdef FASTEST
783
    if (level != 0) level = 1;
784
#else
785
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
786
0
#endif
787
0
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
788
0
        return Z_STREAM_ERROR;
789
0
    }
790
0
    func = configuration_table[s->level].func;
791
792
0
    if ((strategy != s->strategy || func != configuration_table[level].func) &&
793
0
        s->last_flush != -2) {
794
        /* Flush the last buffer: */
795
0
        int err = deflate(strm, Z_BLOCK);
796
0
        if (err == Z_STREAM_ERROR)
797
0
            return err;
798
0
        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
799
0
            return Z_BUF_ERROR;
800
0
    }
801
0
    if (s->level != level) {
802
0
        if (s->level == 0 && s->matches != 0) {
803
0
            if (s->matches == 1)
804
0
                slide_hash(s);
805
0
            else
806
0
                CLEAR_HASH(s);
807
0
            s->matches = 0;
808
0
        }
809
0
        s->level = level;
810
0
        s->max_lazy_match   = configuration_table[level].max_lazy;
811
0
        s->good_match       = configuration_table[level].good_length;
812
0
        s->nice_match       = configuration_table[level].nice_length;
813
0
        s->max_chain_length = configuration_table[level].max_chain;
814
0
    }
815
0
    s->strategy = strategy;
816
0
    return Z_OK;
817
0
}
818
819
/* ========================================================================= */
820
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
821
0
                        int nice_length, int max_chain) {
822
0
    deflate_state *s;
823
824
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
825
0
    s = strm->state;
826
0
    s->good_match = (uInt)good_length;
827
0
    s->max_lazy_match = (uInt)max_lazy;
828
0
    s->nice_match = nice_length;
829
0
    s->max_chain_length = (uInt)max_chain;
830
0
    return Z_OK;
831
0
}
832
833
/* =========================================================================
834
 * For the default windowBits of 15 and memLevel of 8, this function returns a
835
 * close to exact, as well as small, upper bound on the compressed size. This
836
 * is an expansion of ~0.03%, plus a small constant.
837
 *
838
 * For any setting other than those defaults for windowBits and memLevel, one
839
 * of two worst case bounds is returned. This is at most an expansion of ~4% or
840
 * ~13%, plus a small constant.
841
 *
842
 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
843
 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
844
 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
845
 * expansion results from five bytes of header for each stored block.
846
 *
847
 * The larger expansion of 13% results from a window size less than or equal to
848
 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
849
 * the data being compressed may have slid out of the sliding window, impeding
850
 * a stored block from being emitted. Then the only choice is a fixed or
851
 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
852
 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
853
 * which this can occur is 255 (memLevel == 2).
854
 *
855
 * Shifts are used to approximate divisions, for speed.
856
 */
857
0
z_size_t ZEXPORT deflateBound_z(z_streamp strm, z_size_t sourceLen) {
858
0
    deflate_state *s;
859
0
    z_size_t fixedlen, storelen, wraplen, bound;
860
861
    /* upper bound for fixed blocks with 9-bit literals and length 255
862
       (memLevel == 2, which is the lowest that may not use stored blocks) --
863
       ~13% overhead plus a small constant */
864
0
    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
865
0
               (sourceLen >> 9) + 4;
866
0
    if (fixedlen < sourceLen)
867
0
        fixedlen = (z_size_t)-1;
868
869
    /* upper bound for stored blocks with length 127 (memLevel == 1) --
870
       ~4% overhead plus a small constant */
871
0
    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
872
0
               (sourceLen >> 11) + 7;
873
0
    if (storelen < sourceLen)
874
0
        storelen = (z_size_t)-1;
875
876
    /* if can't get parameters, return larger bound plus a wrapper */
877
0
    if (deflateStateCheck(strm)) {
878
0
        bound = fixedlen > storelen ? fixedlen : storelen;
879
0
        return bound + 18 < bound ? (z_size_t)-1 : bound + 18;
880
0
    }
881
882
    /* compute wrapper length */
883
0
    s = strm->state;
884
0
    switch (s->wrap < 0 ? -s->wrap : s->wrap) {
885
0
    case 0:                                 /* raw deflate */
886
0
        wraplen = 0;
887
0
        break;
888
0
    case 1:                                 /* zlib wrapper */
889
0
        wraplen = 6 + (s->strstart ? 4 : 0);
890
0
        break;
891
0
#ifdef GZIP
892
0
    case 2:                                 /* gzip wrapper */
893
0
        wraplen = 18;
894
0
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
895
0
            Bytef *str;
896
0
            if (s->gzhead->extra != Z_NULL)
897
0
                wraplen += 2 + s->gzhead->extra_len;
898
0
            str = s->gzhead->name;
899
0
            if (str != Z_NULL)
900
0
                do {
901
0
                    wraplen++;
902
0
                } while (*str++);
903
0
            str = s->gzhead->comment;
904
0
            if (str != Z_NULL)
905
0
                do {
906
0
                    wraplen++;
907
0
                } while (*str++);
908
0
            if (s->gzhead->hcrc)
909
0
                wraplen += 2;
910
0
        }
911
0
        break;
912
0
#endif
913
0
    default:                                /* for compiler happiness */
914
0
        wraplen = 18;
915
0
    }
916
917
    /* if not default parameters, return one of the conservative bounds */
918
0
    if (s->w_bits != 15 || s->hash_bits != 8 + 7) {
919
0
        bound = s->w_bits <= s->hash_bits && s->level ? fixedlen :
920
0
                                                        storelen;
921
0
        return bound + wraplen < bound ? (z_size_t)-1 : bound + wraplen;
922
0
    }
923
924
    /* default settings: return tight bound for that case -- ~0.03% overhead
925
       plus a small constant */
926
0
    bound = sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
927
0
            (sourceLen >> 25) + 13 - 6 + wraplen;
928
0
    return bound < sourceLen ? (z_size_t)-1 : bound;
929
0
}
930
0
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
931
0
    z_size_t bound = deflateBound_z(strm, sourceLen);
932
0
    return (uLong)bound != bound ? (uLong)-1 : (uLong)bound;
933
0
}
934
935
/* =========================================================================
936
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
937
 * IN assertion: the stream state is correct and there is enough room in
938
 * pending_buf.
939
 */
940
0
local void putShortMSB(deflate_state *s, uInt b) {
941
0
    put_byte(s, (Byte)(b >> 8));
942
0
    put_byte(s, (Byte)(b & 0xff));
943
0
}
944
945
/* =========================================================================
946
 * Flush as much pending output as possible. All deflate() output, except for
947
 * some deflate_stored() output, goes through this function so some
948
 * applications may wish to modify it to avoid allocating a large
949
 * strm->next_out buffer and copying into it. (See also read_buf()).
950
 */
951
0
local void flush_pending(z_streamp strm) {
952
0
    unsigned len;
953
0
    deflate_state *s = strm->state;
954
955
0
    _tr_flush_bits(s);
956
0
    len = s->pending > strm->avail_out ? strm->avail_out :
957
0
                                         (unsigned)s->pending;
958
0
    if (len == 0) return;
959
960
0
    zmemcpy(strm->next_out, s->pending_out, len);
961
0
    strm->next_out  += len;
962
0
    s->pending_out  += len;
963
0
    strm->total_out += len;
964
0
    strm->avail_out -= len;
965
0
    s->pending      -= len;
966
0
    if (s->pending == 0) {
967
0
        s->pending_out = s->pending_buf;
968
0
    }
969
0
}
970
971
/* ===========================================================================
972
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
973
 */
974
#define HCRC_UPDATE(beg) \
975
0
    do { \
976
0
        if (s->gzhead->hcrc && s->pending > (beg)) \
977
0
            strm->adler = crc32_z(strm->adler, s->pending_buf + (beg), \
978
0
                                  s->pending - (beg)); \
979
0
    } while (0)
980
981
/* ========================================================================= */
982
0
int ZEXPORT deflate(z_streamp strm, int flush) {
983
0
    int old_flush; /* value of flush param for previous deflate call */
984
0
    deflate_state *s;
985
986
0
    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
987
0
        return Z_STREAM_ERROR;
988
0
    }
989
0
    s = strm->state;
990
991
0
    if (strm->next_out == Z_NULL ||
992
0
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
993
0
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
994
0
        ERR_RETURN(strm, Z_STREAM_ERROR);
995
0
    }
996
0
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
997
998
0
    old_flush = s->last_flush;
999
0
    s->last_flush = flush;
1000
1001
    /* Flush as much pending output as possible */
1002
0
    if (s->pending != 0) {
1003
0
        flush_pending(strm);
1004
0
        if (strm->avail_out == 0) {
1005
            /* Since avail_out is 0, deflate will be called again with
1006
             * more output space, but possibly with both pending and
1007
             * avail_in equal to zero. There won't be anything to do,
1008
             * but this is not an error situation so make sure we
1009
             * return OK instead of BUF_ERROR at next call of deflate:
1010
             */
1011
0
            s->last_flush = -1;
1012
0
            return Z_OK;
1013
0
        }
1014
1015
    /* Make sure there is something to do and avoid duplicate consecutive
1016
     * flushes. For repeated and useless calls with Z_FINISH, we keep
1017
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
1018
     */
1019
0
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
1020
0
               flush != Z_FINISH) {
1021
0
        ERR_RETURN(strm, Z_BUF_ERROR);
1022
0
    }
1023
1024
    /* User must not provide more input after the first FINISH: */
1025
0
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
1026
0
        ERR_RETURN(strm, Z_BUF_ERROR);
1027
0
    }
1028
1029
    /* Write the header */
1030
0
    if (s->status == INIT_STATE && s->wrap == 0)
1031
0
        s->status = BUSY_STATE;
1032
0
    if (s->status == INIT_STATE) {
1033
        /* zlib header */
1034
0
        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1035
0
        uInt level_flags;
1036
1037
0
        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1038
0
            level_flags = 0;
1039
0
        else if (s->level < 6)
1040
0
            level_flags = 1;
1041
0
        else if (s->level == 6)
1042
0
            level_flags = 2;
1043
0
        else
1044
0
            level_flags = 3;
1045
0
        header |= (level_flags << 6);
1046
0
        if (s->strstart != 0) header |= PRESET_DICT;
1047
0
        header += 31 - (header % 31);
1048
1049
0
        putShortMSB(s, header);
1050
1051
        /* Save the adler32 of the preset dictionary: */
1052
0
        if (s->strstart != 0) {
1053
0
            putShortMSB(s, (uInt)(strm->adler >> 16));
1054
0
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
1055
0
        }
1056
0
        strm->adler = adler32(0L, Z_NULL, 0);
1057
0
        s->status = BUSY_STATE;
1058
1059
        /* Compression must start with an empty pending buffer */
1060
0
        flush_pending(strm);
1061
0
        if (s->pending != 0) {
1062
0
            s->last_flush = -1;
1063
0
            return Z_OK;
1064
0
        }
1065
0
    }
1066
0
#ifdef GZIP
1067
0
    if (s->status == GZIP_STATE) {
1068
        /* gzip header */
1069
0
        strm->adler = crc32(0L, Z_NULL, 0);
1070
0
        put_byte(s, 31);
1071
0
        put_byte(s, 139);
1072
0
        put_byte(s, 8);
1073
0
        if (s->gzhead == Z_NULL) {
1074
0
            put_byte(s, 0);
1075
0
            put_byte(s, 0);
1076
0
            put_byte(s, 0);
1077
0
            put_byte(s, 0);
1078
0
            put_byte(s, 0);
1079
0
            put_byte(s, s->level == 9 ? 2 :
1080
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1081
0
                      4 : 0));
1082
0
            put_byte(s, OS_CODE);
1083
0
            s->status = BUSY_STATE;
1084
1085
            /* Compression must start with an empty pending buffer */
1086
0
            flush_pending(strm);
1087
0
            if (s->pending != 0) {
1088
0
                s->last_flush = -1;
1089
0
                return Z_OK;
1090
0
            }
1091
0
        }
1092
0
        else {
1093
0
            put_byte(s, (s->gzhead->text ? 1 : 0) +
1094
0
                     (s->gzhead->hcrc ? 2 : 0) +
1095
0
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
1096
0
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
1097
0
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
1098
0
                     );
1099
0
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
1100
0
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1101
0
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1102
0
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1103
0
            put_byte(s, s->level == 9 ? 2 :
1104
0
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1105
0
                      4 : 0));
1106
0
            put_byte(s, s->gzhead->os & 0xff);
1107
0
            if (s->gzhead->extra != Z_NULL) {
1108
0
                put_byte(s, s->gzhead->extra_len & 0xff);
1109
0
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1110
0
            }
1111
0
            if (s->gzhead->hcrc)
1112
0
                strm->adler = crc32_z(strm->adler, s->pending_buf,
1113
0
                                      s->pending);
1114
0
            s->gzindex = 0;
1115
0
            s->status = EXTRA_STATE;
1116
0
        }
1117
0
    }
1118
0
    if (s->status == EXTRA_STATE) {
1119
0
        if (s->gzhead->extra != Z_NULL) {
1120
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1121
0
            ulg left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1122
0
            while (s->pending + left > s->pending_buf_size) {
1123
0
                ulg copy = s->pending_buf_size - s->pending;
1124
0
                zmemcpy(s->pending_buf + s->pending,
1125
0
                        s->gzhead->extra + s->gzindex, copy);
1126
0
                s->pending = s->pending_buf_size;
1127
0
                HCRC_UPDATE(beg);
1128
0
                s->gzindex += copy;
1129
0
                flush_pending(strm);
1130
0
                if (s->pending != 0) {
1131
0
                    s->last_flush = -1;
1132
0
                    return Z_OK;
1133
0
                }
1134
0
                beg = 0;
1135
0
                left -= copy;
1136
0
            }
1137
0
            zmemcpy(s->pending_buf + s->pending,
1138
0
                    s->gzhead->extra + s->gzindex, left);
1139
0
            s->pending += left;
1140
0
            HCRC_UPDATE(beg);
1141
0
            s->gzindex = 0;
1142
0
        }
1143
0
        s->status = NAME_STATE;
1144
0
    }
1145
0
    if (s->status == NAME_STATE) {
1146
0
        if (s->gzhead->name != Z_NULL) {
1147
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1148
0
            int val;
1149
0
            do {
1150
0
                if (s->pending == s->pending_buf_size) {
1151
0
                    HCRC_UPDATE(beg);
1152
0
                    flush_pending(strm);
1153
0
                    if (s->pending != 0) {
1154
0
                        s->last_flush = -1;
1155
0
                        return Z_OK;
1156
0
                    }
1157
0
                    beg = 0;
1158
0
                }
1159
0
                val = s->gzhead->name[s->gzindex++];
1160
0
                put_byte(s, val);
1161
0
            } while (val != 0);
1162
0
            HCRC_UPDATE(beg);
1163
0
            s->gzindex = 0;
1164
0
        }
1165
0
        s->status = COMMENT_STATE;
1166
0
    }
1167
0
    if (s->status == COMMENT_STATE) {
1168
0
        if (s->gzhead->comment != Z_NULL) {
1169
0
            ulg beg = s->pending;   /* start of bytes to update crc */
1170
0
            int val;
1171
0
            do {
1172
0
                if (s->pending == s->pending_buf_size) {
1173
0
                    HCRC_UPDATE(beg);
1174
0
                    flush_pending(strm);
1175
0
                    if (s->pending != 0) {
1176
0
                        s->last_flush = -1;
1177
0
                        return Z_OK;
1178
0
                    }
1179
0
                    beg = 0;
1180
0
                }
1181
0
                val = s->gzhead->comment[s->gzindex++];
1182
0
                put_byte(s, val);
1183
0
            } while (val != 0);
1184
0
            HCRC_UPDATE(beg);
1185
0
        }
1186
0
        s->status = HCRC_STATE;
1187
0
    }
1188
0
    if (s->status == HCRC_STATE) {
1189
0
        if (s->gzhead->hcrc) {
1190
0
            if (s->pending + 2 > s->pending_buf_size) {
1191
0
                flush_pending(strm);
1192
0
                if (s->pending != 0) {
1193
0
                    s->last_flush = -1;
1194
0
                    return Z_OK;
1195
0
                }
1196
0
            }
1197
0
            put_byte(s, (Byte)(strm->adler & 0xff));
1198
0
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1199
0
            strm->adler = crc32(0L, Z_NULL, 0);
1200
0
        }
1201
0
        s->status = BUSY_STATE;
1202
1203
        /* Compression must start with an empty pending buffer */
1204
0
        flush_pending(strm);
1205
0
        if (s->pending != 0) {
1206
0
            s->last_flush = -1;
1207
0
            return Z_OK;
1208
0
        }
1209
0
    }
1210
0
#endif
1211
1212
    /* Start a new block or continue the current one.
1213
     */
1214
0
    if (strm->avail_in != 0 || s->lookahead != 0 ||
1215
0
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1216
0
        block_state bstate;
1217
1218
0
        bstate = s->level == 0 ? deflate_stored(s, flush) :
1219
0
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1220
0
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1221
0
                 (*(configuration_table[s->level].func))(s, flush);
1222
1223
0
        if (bstate == finish_started || bstate == finish_done) {
1224
0
            s->status = FINISH_STATE;
1225
0
        }
1226
0
        if (bstate == need_more || bstate == finish_started) {
1227
0
            if (strm->avail_out == 0) {
1228
0
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1229
0
            }
1230
0
            return Z_OK;
1231
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1232
             * of deflate should use the same flush parameter to make sure
1233
             * that the flush is complete. So we don't have to output an
1234
             * empty block here, this will be done at next call. This also
1235
             * ensures that for a very small output buffer, we emit at most
1236
             * one empty block.
1237
             */
1238
0
        }
1239
0
        if (bstate == block_done) {
1240
0
            if (flush == Z_PARTIAL_FLUSH) {
1241
0
                _tr_align(s);
1242
0
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1243
0
                _tr_stored_block(s, (char*)0, 0L, 0);
1244
                /* For a full flush, this empty block will be recognized
1245
                 * as a special marker by inflate_sync().
1246
                 */
1247
0
                if (flush == Z_FULL_FLUSH) {
1248
0
                    CLEAR_HASH(s);             /* forget history */
1249
0
                    if (s->lookahead == 0) {
1250
0
                        s->strstart = 0;
1251
0
                        s->block_start = 0L;
1252
0
                        s->insert = 0;
1253
0
                    }
1254
0
                }
1255
0
            }
1256
0
            flush_pending(strm);
1257
0
            if (strm->avail_out == 0) {
1258
0
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1259
0
              return Z_OK;
1260
0
            }
1261
0
        }
1262
0
    }
1263
1264
0
    if (flush != Z_FINISH) return Z_OK;
1265
0
    if (s->wrap <= 0) return Z_STREAM_END;
1266
1267
    /* Write the trailer */
1268
0
#ifdef GZIP
1269
0
    if (s->wrap == 2) {
1270
0
        put_byte(s, (Byte)(strm->adler & 0xff));
1271
0
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1272
0
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1273
0
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1274
0
        put_byte(s, (Byte)(strm->total_in & 0xff));
1275
0
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1276
0
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1277
0
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1278
0
    }
1279
0
    else
1280
0
#endif
1281
0
    {
1282
0
        putShortMSB(s, (uInt)(strm->adler >> 16));
1283
0
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1284
0
    }
1285
0
    flush_pending(strm);
1286
    /* If avail_out is zero, the application will call deflate again
1287
     * to flush the rest.
1288
     */
1289
0
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1290
0
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1291
0
}
1292
1293
/* ========================================================================= */
1294
0
int ZEXPORT deflateEnd(z_streamp strm) {
1295
0
    int status;
1296
1297
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1298
1299
0
    status = strm->state->status;
1300
1301
    /* Deallocate in reverse order of allocations: */
1302
0
    TRY_FREE(strm, strm->state->pending_buf);
1303
0
    TRY_FREE(strm, strm->state->head);
1304
0
    TRY_FREE(strm, strm->state->prev);
1305
0
    TRY_FREE(strm, strm->state->window);
1306
1307
0
    ZFREE(strm, strm->state);
1308
0
    strm->state = Z_NULL;
1309
1310
0
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1311
0
}
1312
1313
/* =========================================================================
1314
 * Copy the source state to the destination state.
1315
 * To simplify the source, this is not supported for 16-bit MSDOS (which
1316
 * doesn't have enough memory anyway to duplicate compression states).
1317
 */
1318
0
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1319
#ifdef MAXSEG_64K
1320
    (void)dest;
1321
    (void)source;
1322
    return Z_STREAM_ERROR;
1323
#else
1324
0
    deflate_state *ds;
1325
0
    deflate_state *ss;
1326
1327
1328
0
    if (deflateStateCheck(source) || dest == Z_NULL) {
1329
0
        return Z_STREAM_ERROR;
1330
0
    }
1331
1332
0
    ss = source->state;
1333
1334
0
    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1335
1336
0
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1337
0
    if (ds == Z_NULL) return Z_MEM_ERROR;
1338
0
    zmemzero(ds, sizeof(deflate_state));
1339
0
    dest->state = (struct internal_state FAR *) ds;
1340
0
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1341
0
    ds->strm = dest;
1342
1343
0
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1344
0
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1345
0
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1346
0
    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1347
1348
0
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1349
0
        ds->pending_buf == Z_NULL) {
1350
0
        deflateEnd (dest);
1351
0
        return Z_MEM_ERROR;
1352
0
    }
1353
    /* following zmemcpy's do not work for 16-bit MSDOS */
1354
0
    zmemcpy(ds->window, ss->window, ss->high_water);
1355
0
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev,
1356
0
            (ss->slid || ss->strstart - ss->insert > ds->w_size ? ds->w_size :
1357
0
                ss->strstart - ss->insert) * sizeof(Pos));
1358
0
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1359
1360
0
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1361
0
    zmemcpy(ds->pending_out, ss->pending_out, ss->pending);
1362
#ifdef LIT_MEM
1363
    ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1364
    ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1365
    zmemcpy(ds->d_buf, ss->d_buf, ss->sym_next * sizeof(ush));
1366
    zmemcpy(ds->l_buf, ss->l_buf, ss->sym_next);
1367
#else
1368
0
    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1369
0
    zmemcpy(ds->sym_buf, ss->sym_buf, ss->sym_next);
1370
0
#endif
1371
1372
0
    ds->l_desc.dyn_tree = ds->dyn_ltree;
1373
0
    ds->d_desc.dyn_tree = ds->dyn_dtree;
1374
0
    ds->bl_desc.dyn_tree = ds->bl_tree;
1375
1376
0
    return Z_OK;
1377
0
#endif /* MAXSEG_64K */
1378
0
}
1379
1380
#ifndef FASTEST
1381
/* ===========================================================================
1382
 * Set match_start to the longest match starting at the given string and
1383
 * return its length. Matches shorter or equal to prev_length are discarded,
1384
 * in which case the result is equal to prev_length and match_start is
1385
 * garbage.
1386
 * IN assertions: cur_match is the head of the hash chain for the current
1387
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1388
 * OUT assertion: the match length is not greater than s->lookahead.
1389
 */
1390
0
local uInt longest_match(deflate_state *s, IPos cur_match) {
1391
0
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1392
0
    Bytef *scan = s->window + s->strstart;      /* current string */
1393
0
    Bytef *match;                               /* matched string */
1394
0
    int len;                                    /* length of current match */
1395
0
    int best_len = (int)s->prev_length;         /* best match length so far */
1396
0
    int nice_match = s->nice_match;             /* stop if match long enough */
1397
0
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1398
0
        s->strstart - (IPos)MAX_DIST(s) : NIL;
1399
    /* Stop when cur_match becomes <= limit. To simplify the code,
1400
     * we prevent matches with the string of window index 0.
1401
     */
1402
0
    Posf *prev = s->prev;
1403
0
    uInt wmask = s->w_mask;
1404
1405
#ifdef UNALIGNED_OK
1406
    /* Compare two bytes at a time. Note: this is not always beneficial.
1407
     * Try with and without -DUNALIGNED_OK to check.
1408
     */
1409
    Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1410
    ush scan_start = *(ushf*)scan;
1411
    ush scan_end   = *(ushf*)(scan + best_len - 1);
1412
#else
1413
0
    Bytef *strend = s->window + s->strstart + MAX_MATCH;
1414
0
    Byte scan_end1  = scan[best_len - 1];
1415
0
    Byte scan_end   = scan[best_len];
1416
0
#endif
1417
1418
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1419
     * It is easy to get rid of this optimization if necessary.
1420
     */
1421
0
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1422
1423
    /* Do not waste too much time if we already have a good match: */
1424
0
    if (s->prev_length >= s->good_match) {
1425
0
        chain_length >>= 2;
1426
0
    }
1427
    /* Do not look for matches beyond the end of the input. This is necessary
1428
     * to make deflate deterministic.
1429
     */
1430
0
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1431
1432
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1433
0
           "need lookahead");
1434
1435
0
    do {
1436
0
        Assert(cur_match < s->strstart, "no future");
1437
0
        match = s->window + cur_match;
1438
1439
        /* Skip to next match if the match length cannot increase
1440
         * or if the match length is less than 2.  Note that the checks below
1441
         * for insufficient lookahead only occur occasionally for performance
1442
         * reasons.  Therefore uninitialized memory will be accessed, and
1443
         * conditional jumps will be made that depend on those values.
1444
         * However the length of the match is limited to the lookahead, so
1445
         * the output of deflate is not affected by the uninitialized values.
1446
         */
1447
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1448
        /* This code assumes sizeof(unsigned short) == 2. Do not use
1449
         * UNALIGNED_OK if your compiler uses a different size.
1450
         */
1451
        if (*(ushf*)(match + best_len - 1) != scan_end ||
1452
            *(ushf*)match != scan_start) continue;
1453
1454
        /* It is not necessary to compare scan[2] and match[2] since they are
1455
         * always equal when the other bytes match, given that the hash keys
1456
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1457
         * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1458
         * lookahead only every 4th comparison; the 128th check will be made
1459
         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1460
         * necessary to put more guard bytes at the end of the window, or
1461
         * to check more often for insufficient lookahead.
1462
         */
1463
        Assert(scan[2] == match[2], "scan[2]?");
1464
        scan++, match++;
1465
        do {
1466
        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1467
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1468
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1469
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1470
                 scan < strend);
1471
        /* The funny "do {}" generates better code on most compilers */
1472
1473
        /* Here, scan <= window + strstart + 257 */
1474
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1475
               "wild scan");
1476
        if (*scan == *match) scan++;
1477
1478
        len = (MAX_MATCH - 1) - (int)(strend - scan);
1479
        scan = strend - (MAX_MATCH-1);
1480
1481
#else /* UNALIGNED_OK */
1482
1483
0
        if (match[best_len]     != scan_end  ||
1484
0
            match[best_len - 1] != scan_end1 ||
1485
0
            *match              != *scan     ||
1486
0
            *++match            != scan[1])      continue;
1487
1488
        /* The check at best_len - 1 can be removed because it will be made
1489
         * again later. (This heuristic is not always a win.)
1490
         * It is not necessary to compare scan[2] and match[2] since they
1491
         * are always equal when the other bytes match, given that
1492
         * the hash keys are equal and that HASH_BITS >= 8.
1493
         */
1494
0
        scan += 2, match++;
1495
0
        Assert(*scan == *match, "match[2]?");
1496
1497
        /* We check for insufficient lookahead only every 8th comparison;
1498
         * the 256th check will be made at strstart + 258.
1499
         */
1500
0
        do {
1501
0
        } while (*++scan == *++match && *++scan == *++match &&
1502
0
                 *++scan == *++match && *++scan == *++match &&
1503
0
                 *++scan == *++match && *++scan == *++match &&
1504
0
                 *++scan == *++match && *++scan == *++match &&
1505
0
                 scan < strend);
1506
1507
0
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1508
0
               "wild scan");
1509
1510
0
        len = MAX_MATCH - (int)(strend - scan);
1511
0
        scan = strend - MAX_MATCH;
1512
1513
0
#endif /* UNALIGNED_OK */
1514
1515
0
        if (len > best_len) {
1516
0
            s->match_start = cur_match;
1517
0
            best_len = len;
1518
0
            if (len >= nice_match) break;
1519
#ifdef UNALIGNED_OK
1520
            scan_end = *(ushf*)(scan + best_len - 1);
1521
#else
1522
0
            scan_end1  = scan[best_len - 1];
1523
0
            scan_end   = scan[best_len];
1524
0
#endif
1525
0
        }
1526
0
    } while ((cur_match = prev[cur_match & wmask]) > limit
1527
0
             && --chain_length != 0);
1528
1529
0
    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1530
0
    return s->lookahead;
1531
0
}
1532
1533
#else /* FASTEST */
1534
1535
/* ---------------------------------------------------------------------------
1536
 * Optimized version for FASTEST only
1537
 */
1538
local uInt longest_match(deflate_state *s, IPos cur_match) {
1539
    Bytef *scan = s->window + s->strstart;      /* current string */
1540
    Bytef *match;                               /* matched string */
1541
    int len;                                    /* length of current match */
1542
    Bytef *strend = s->window + s->strstart + MAX_MATCH;
1543
1544
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1545
     * It is easy to get rid of this optimization if necessary.
1546
     */
1547
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1548
1549
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1550
           "need lookahead");
1551
1552
    Assert(cur_match < s->strstart, "no future");
1553
1554
    match = s->window + cur_match;
1555
1556
    /* Return failure if the match length is less than 2:
1557
     */
1558
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1559
1560
    /* The check at best_len - 1 can be removed because it will be made
1561
     * again later. (This heuristic is not always a win.)
1562
     * It is not necessary to compare scan[2] and match[2] since they
1563
     * are always equal when the other bytes match, given that
1564
     * the hash keys are equal and that HASH_BITS >= 8.
1565
     */
1566
    scan += 2, match += 2;
1567
    Assert(*scan == *match, "match[2]?");
1568
1569
    /* We check for insufficient lookahead only every 8th comparison;
1570
     * the 256th check will be made at strstart + 258.
1571
     */
1572
    do {
1573
    } while (*++scan == *++match && *++scan == *++match &&
1574
             *++scan == *++match && *++scan == *++match &&
1575
             *++scan == *++match && *++scan == *++match &&
1576
             *++scan == *++match && *++scan == *++match &&
1577
             scan < strend);
1578
1579
    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1580
1581
    len = MAX_MATCH - (int)(strend - scan);
1582
1583
    if (len < MIN_MATCH) return MIN_MATCH - 1;
1584
1585
    s->match_start = cur_match;
1586
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1587
}
1588
1589
#endif /* FASTEST */
1590
1591
#ifdef ZLIB_DEBUG
1592
1593
#define EQUAL 0
1594
/* result of memcmp for equal strings */
1595
1596
/* ===========================================================================
1597
 * Check that the match at match_start is indeed a match.
1598
 */
1599
local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1600
    /* check that the match is indeed a match */
1601
    Bytef *back = s->window + (int)match, *here = s->window + start;
1602
    IPos len = (IPos)length;
1603
    if (match == (IPos)-1) {
1604
        /* match starts one byte before the current window -- just compare the
1605
           subsequent length-1 bytes */
1606
        back++;
1607
        here++;
1608
        len--;
1609
    }
1610
    if (zmemcmp(back, here, len) != EQUAL) {
1611
        fprintf(stderr, " start %u, match %d, length %d\n",
1612
                start, (int)match, length);
1613
        do {
1614
            fprintf(stderr, "(%02x %02x)", *back++, *here++);
1615
        } while (--len != 0);
1616
        z_error("invalid match");
1617
    }
1618
    if (z_verbose > 1) {
1619
        fprintf(stderr,"\\[%d,%d]", start - match, length);
1620
        do { putc(s->window[start++], stderr); } while (--length != 0);
1621
    }
1622
}
1623
#else
1624
#  define check_match(s, start, match, length)
1625
#endif /* ZLIB_DEBUG */
1626
1627
/* ===========================================================================
1628
 * Flush the current block, with given end-of-file flag.
1629
 * IN assertion: strstart is set to the end of the current match.
1630
 */
1631
0
#define FLUSH_BLOCK_ONLY(s, last) { \
1632
0
   _tr_flush_block(s, (s->block_start >= 0L ? \
1633
0
                   (charf *)&s->window[(unsigned)s->block_start] : \
1634
0
                   (charf *)Z_NULL), \
1635
0
                (ulg)((long)s->strstart - s->block_start), \
1636
0
                (last)); \
1637
0
   s->block_start = s->strstart; \
1638
0
   flush_pending(s->strm); \
1639
0
   Tracev((stderr,"[FLUSH]")); \
1640
0
}
1641
1642
/* Same but force premature exit if necessary. */
1643
0
#define FLUSH_BLOCK(s, last) { \
1644
0
   FLUSH_BLOCK_ONLY(s, last); \
1645
0
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1646
0
}
1647
1648
/* Maximum stored block length in deflate format (not including header). */
1649
0
#define MAX_STORED 65535
1650
1651
/* Minimum of a and b. */
1652
0
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1653
1654
/* ===========================================================================
1655
 * Copy without compression as much as possible from the input stream, return
1656
 * the current block state.
1657
 *
1658
 * In case deflateParams() is used to later switch to a non-zero compression
1659
 * level, s->matches (otherwise unused when storing) keeps track of the number
1660
 * of hash table slides to perform. If s->matches is 1, then one hash table
1661
 * slide will be done when switching. If s->matches is 2, the maximum value
1662
 * allowed here, then the hash table will be cleared, since two or more slides
1663
 * is the same as a clear.
1664
 *
1665
 * deflate_stored() is written to minimize the number of times an input byte is
1666
 * copied. It is most efficient with large input and output buffers, which
1667
 * maximizes the opportunities to have a single copy from next_in to next_out.
1668
 */
1669
0
local block_state deflate_stored(deflate_state *s, int flush) {
1670
    /* Smallest worthy block size when not flushing or finishing. By default
1671
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1672
     * large input and output buffers, the stored block size will be larger.
1673
     */
1674
0
    unsigned min_block = (unsigned)(MIN(s->pending_buf_size - 5, s->w_size));
1675
1676
    /* Copy as many min_block or larger stored blocks directly to next_out as
1677
     * possible. If flushing, copy the remaining available input to next_out as
1678
     * stored blocks, if there is enough space.
1679
     */
1680
0
    int last = 0;
1681
0
    unsigned len, left, have;
1682
0
    unsigned used = s->strm->avail_in;
1683
0
    do {
1684
        /* Set len to the maximum size block that we can copy directly with the
1685
         * available input data and output space. Set left to how much of that
1686
         * would be copied from what's left in the window.
1687
         */
1688
0
        len = MAX_STORED;       /* maximum deflate stored block length */
1689
0
        have = ((unsigned)s->bi_valid + 42) >> 3;   /* bytes in header */
1690
0
        if (s->strm->avail_out < have)          /* need room for header */
1691
0
            break;
1692
            /* maximum stored block length that will fit in avail_out: */
1693
0
        have = s->strm->avail_out - have;
1694
0
        left = (unsigned)(s->strstart - s->block_start);    /* window bytes */
1695
0
        if (len > (ulg)left + s->strm->avail_in)
1696
0
            len = left + s->strm->avail_in;     /* limit len to the input */
1697
0
        if (len > have)
1698
0
            len = have;                         /* limit len to the output */
1699
1700
        /* If the stored block would be less than min_block in length, or if
1701
         * unable to copy all of the available input when flushing, then try
1702
         * copying to the window and the pending buffer instead. Also don't
1703
         * write an empty block when flushing -- deflate() does that.
1704
         */
1705
0
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1706
0
                                flush == Z_NO_FLUSH ||
1707
0
                                len != left + s->strm->avail_in))
1708
0
            break;
1709
1710
        /* Make a dummy stored block in pending to get the header bytes,
1711
         * including any pending bits. This also updates the debugging counts.
1712
         */
1713
0
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1714
0
        _tr_stored_block(s, (char *)0, 0L, last);
1715
1716
        /* Replace the lengths in the dummy stored block with len. */
1717
0
        s->pending_buf[s->pending - 4] = (Bytef)len;
1718
0
        s->pending_buf[s->pending - 3] = (Bytef)(len >> 8);
1719
0
        s->pending_buf[s->pending - 2] = (Bytef)~len;
1720
0
        s->pending_buf[s->pending - 1] = (Bytef)(~len >> 8);
1721
1722
        /* Write the stored block header bytes. */
1723
0
        flush_pending(s->strm);
1724
1725
#ifdef ZLIB_DEBUG
1726
        /* Update debugging counts for the data about to be copied. */
1727
        s->compressed_len += len << 3;
1728
        s->bits_sent += len << 3;
1729
#endif
1730
1731
        /* Copy uncompressed bytes from the window to next_out. */
1732
0
        if (left) {
1733
0
            if (left > len)
1734
0
                left = len;
1735
0
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1736
0
            s->strm->next_out += left;
1737
0
            s->strm->avail_out -= left;
1738
0
            s->strm->total_out += left;
1739
0
            s->block_start += left;
1740
0
            len -= left;
1741
0
        }
1742
1743
        /* Copy uncompressed bytes directly from next_in to next_out, updating
1744
         * the check value.
1745
         */
1746
0
        if (len) {
1747
0
            read_buf(s->strm, s->strm->next_out, len);
1748
0
            s->strm->next_out += len;
1749
0
            s->strm->avail_out -= len;
1750
0
            s->strm->total_out += len;
1751
0
        }
1752
0
    } while (last == 0);
1753
1754
    /* Update the sliding window with the last s->w_size bytes of the copied
1755
     * data, or append all of the copied data to the existing window if less
1756
     * than s->w_size bytes were copied. Also update the number of bytes to
1757
     * insert in the hash tables, in the event that deflateParams() switches to
1758
     * a non-zero compression level.
1759
     */
1760
0
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1761
0
    if (used) {
1762
        /* If any input was used, then no unused input remains in the window,
1763
         * therefore s->block_start == s->strstart.
1764
         */
1765
0
        if (used >= s->w_size) {    /* supplant the previous history */
1766
0
            s->matches = 2;         /* clear hash */
1767
0
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1768
0
            s->strstart = s->w_size;
1769
0
            s->insert = s->strstart;
1770
0
        }
1771
0
        else {
1772
0
            if (s->window_size - s->strstart <= used) {
1773
                /* Slide the window down. */
1774
0
                s->strstart -= s->w_size;
1775
0
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1776
0
                if (s->matches < 2)
1777
0
                    s->matches++;   /* add a pending slide_hash() */
1778
0
                if (s->insert > s->strstart)
1779
0
                    s->insert = s->strstart;
1780
0
            }
1781
0
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1782
0
            s->strstart += used;
1783
0
            s->insert += MIN(used, s->w_size - s->insert);
1784
0
        }
1785
0
        s->block_start = s->strstart;
1786
0
    }
1787
0
    if (s->high_water < s->strstart)
1788
0
        s->high_water = s->strstart;
1789
1790
    /* If the last block was written to next_out, then done. */
1791
0
    if (last) {
1792
0
        s->bi_used = 8;
1793
0
        return finish_done;
1794
0
    }
1795
1796
    /* If flushing and all input has been consumed, then done. */
1797
0
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1798
0
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1799
0
        return block_done;
1800
1801
    /* Fill the window with any remaining input. */
1802
0
    have = (unsigned)(s->window_size - s->strstart);
1803
0
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1804
        /* Slide the window down. */
1805
0
        s->block_start -= s->w_size;
1806
0
        s->strstart -= s->w_size;
1807
0
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1808
0
        if (s->matches < 2)
1809
0
            s->matches++;           /* add a pending slide_hash() */
1810
0
        have += s->w_size;          /* more space now */
1811
0
        if (s->insert > s->strstart)
1812
0
            s->insert = s->strstart;
1813
0
    }
1814
0
    if (have > s->strm->avail_in)
1815
0
        have = s->strm->avail_in;
1816
0
    if (have) {
1817
0
        read_buf(s->strm, s->window + s->strstart, have);
1818
0
        s->strstart += have;
1819
0
        s->insert += MIN(have, s->w_size - s->insert);
1820
0
    }
1821
0
    if (s->high_water < s->strstart)
1822
0
        s->high_water = s->strstart;
1823
1824
    /* There was not enough avail_out to write a complete worthy or flushed
1825
     * stored block to next_out. Write a stored block to pending instead, if we
1826
     * have enough input for a worthy block, or if flushing and there is enough
1827
     * room for the remaining input as a stored block in the pending buffer.
1828
     */
1829
0
    have = ((unsigned)s->bi_valid + 42) >> 3;   /* bytes in header */
1830
        /* maximum stored block length that will fit in pending: */
1831
0
    have = (unsigned)MIN(s->pending_buf_size - have, MAX_STORED);
1832
0
    min_block = MIN(have, s->w_size);
1833
0
    left = (unsigned)(s->strstart - s->block_start);
1834
0
    if (left >= min_block ||
1835
0
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1836
0
         s->strm->avail_in == 0 && left <= have)) {
1837
0
        len = MIN(left, have);
1838
0
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1839
0
               len == left ? 1 : 0;
1840
0
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1841
0
        s->block_start += len;
1842
0
        flush_pending(s->strm);
1843
0
    }
1844
1845
    /* We've done all we can with the available input and output. */
1846
0
    if (last)
1847
0
        s->bi_used = 8;
1848
0
    return last ? finish_started : need_more;
1849
0
}
1850
1851
/* ===========================================================================
1852
 * Compress as much as possible from the input stream, return the current
1853
 * block state.
1854
 * This function does not perform lazy evaluation of matches and inserts
1855
 * new strings in the dictionary only for unmatched strings or for short
1856
 * matches. It is used only for the fast compression options.
1857
 */
1858
0
local block_state deflate_fast(deflate_state *s, int flush) {
1859
0
    IPos hash_head;       /* head of the hash chain */
1860
0
    int bflush;           /* set if current block must be flushed */
1861
1862
0
    for (;;) {
1863
        /* Make sure that we always have enough lookahead, except
1864
         * at the end of the input file. We need MAX_MATCH bytes
1865
         * for the next match, plus MIN_MATCH bytes to insert the
1866
         * string following the next match.
1867
         */
1868
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1869
0
            fill_window(s);
1870
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1871
0
                return need_more;
1872
0
            }
1873
0
            if (s->lookahead == 0) break; /* flush the current block */
1874
0
        }
1875
1876
        /* Insert the string window[strstart .. strstart + 2] in the
1877
         * dictionary, and set hash_head to the head of the hash chain:
1878
         */
1879
0
        hash_head = NIL;
1880
0
        if (s->lookahead >= MIN_MATCH) {
1881
0
            INSERT_STRING(s, s->strstart, hash_head);
1882
0
        }
1883
1884
        /* Find the longest match, discarding those <= prev_length.
1885
         * At this point we have always match_length < MIN_MATCH
1886
         */
1887
0
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1888
            /* To simplify the code, we prevent matches with the string
1889
             * of window index 0 (in particular we have to avoid a match
1890
             * of the string with itself at the start of the input file).
1891
             */
1892
0
            s->match_length = longest_match (s, hash_head);
1893
            /* longest_match() sets match_start */
1894
0
        }
1895
0
        if (s->match_length >= MIN_MATCH) {
1896
0
            check_match(s, s->strstart, s->match_start, (int)s->match_length);
1897
1898
0
            _tr_tally_dist(s, s->strstart - s->match_start,
1899
0
                           s->match_length - MIN_MATCH, bflush);
1900
1901
0
            s->lookahead -= s->match_length;
1902
1903
            /* Insert new strings in the hash table only if the match length
1904
             * is not too large. This saves time but degrades compression.
1905
             */
1906
0
#ifndef FASTEST
1907
0
            if (s->match_length <= s->max_insert_length &&
1908
0
                s->lookahead >= MIN_MATCH) {
1909
0
                s->match_length--; /* string at strstart already in table */
1910
0
                do {
1911
0
                    s->strstart++;
1912
0
                    INSERT_STRING(s, s->strstart, hash_head);
1913
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1914
                     * always MIN_MATCH bytes ahead.
1915
                     */
1916
0
                } while (--s->match_length != 0);
1917
0
                s->strstart++;
1918
0
            } else
1919
0
#endif
1920
0
            {
1921
0
                s->strstart += s->match_length;
1922
0
                s->match_length = 0;
1923
0
                s->ins_h = s->window[s->strstart];
1924
0
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1925
#if MIN_MATCH != 3
1926
                Call UPDATE_HASH() MIN_MATCH-3 more times
1927
#endif
1928
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1929
                 * matter since it will be recomputed at next deflate call.
1930
                 */
1931
0
            }
1932
0
        } else {
1933
            /* No match, output a literal byte */
1934
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
1935
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
1936
0
            s->lookahead--;
1937
0
            s->strstart++;
1938
0
        }
1939
0
        if (bflush) FLUSH_BLOCK(s, 0);
1940
0
    }
1941
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1942
0
    if (flush == Z_FINISH) {
1943
0
        FLUSH_BLOCK(s, 1);
1944
0
        return finish_done;
1945
0
    }
1946
0
    if (s->sym_next)
1947
0
        FLUSH_BLOCK(s, 0);
1948
0
    return block_done;
1949
0
}
1950
1951
#ifndef FASTEST
1952
/* ===========================================================================
1953
 * Same as above, but achieves better compression. We use a lazy
1954
 * evaluation for matches: a match is finally adopted only if there is
1955
 * no better match at the next window position.
1956
 */
1957
0
local block_state deflate_slow(deflate_state *s, int flush) {
1958
0
    IPos hash_head;          /* head of hash chain */
1959
0
    int bflush;              /* set if current block must be flushed */
1960
1961
    /* Process the input block. */
1962
0
    for (;;) {
1963
        /* Make sure that we always have enough lookahead, except
1964
         * at the end of the input file. We need MAX_MATCH bytes
1965
         * for the next match, plus MIN_MATCH bytes to insert the
1966
         * string following the next match.
1967
         */
1968
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1969
0
            fill_window(s);
1970
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1971
0
                return need_more;
1972
0
            }
1973
0
            if (s->lookahead == 0) break; /* flush the current block */
1974
0
        }
1975
1976
        /* Insert the string window[strstart .. strstart + 2] in the
1977
         * dictionary, and set hash_head to the head of the hash chain:
1978
         */
1979
0
        hash_head = NIL;
1980
0
        if (s->lookahead >= MIN_MATCH) {
1981
0
            INSERT_STRING(s, s->strstart, hash_head);
1982
0
        }
1983
1984
        /* Find the longest match, discarding those <= prev_length.
1985
         */
1986
0
        s->prev_length = s->match_length, s->prev_match = s->match_start;
1987
0
        s->match_length = MIN_MATCH-1;
1988
1989
0
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1990
0
            s->strstart - hash_head <= MAX_DIST(s)) {
1991
            /* To simplify the code, we prevent matches with the string
1992
             * of window index 0 (in particular we have to avoid a match
1993
             * of the string with itself at the start of the input file).
1994
             */
1995
0
            s->match_length = longest_match (s, hash_head);
1996
            /* longest_match() sets match_start */
1997
1998
0
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1999
0
#if TOO_FAR <= 32767
2000
0
                || (s->match_length == MIN_MATCH &&
2001
0
                    s->strstart - s->match_start > TOO_FAR)
2002
0
#endif
2003
0
                )) {
2004
2005
                /* If prev_match is also MIN_MATCH, match_start is garbage
2006
                 * but we will ignore the current match anyway.
2007
                 */
2008
0
                s->match_length = MIN_MATCH-1;
2009
0
            }
2010
0
        }
2011
        /* If there was a match at the previous step and the current
2012
         * match is not better, output the previous match:
2013
         */
2014
0
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2015
0
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2016
            /* Do not insert strings in hash table beyond this. */
2017
2018
0
            check_match(s, s->strstart - 1, s->prev_match, (int)s->prev_length);
2019
2020
0
            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2021
0
                           s->prev_length - MIN_MATCH, bflush);
2022
2023
            /* Insert in hash table all strings up to the end of the match.
2024
             * strstart - 1 and strstart are already inserted. If there is not
2025
             * enough lookahead, the last two strings are not inserted in
2026
             * the hash table.
2027
             */
2028
0
            s->lookahead -= s->prev_length - 1;
2029
0
            s->prev_length -= 2;
2030
0
            do {
2031
0
                if (++s->strstart <= max_insert) {
2032
0
                    INSERT_STRING(s, s->strstart, hash_head);
2033
0
                }
2034
0
            } while (--s->prev_length != 0);
2035
0
            s->match_available = 0;
2036
0
            s->match_length = MIN_MATCH-1;
2037
0
            s->strstart++;
2038
2039
0
            if (bflush) FLUSH_BLOCK(s, 0);
2040
2041
0
        } else if (s->match_available) {
2042
            /* If there was no match at the previous position, output a
2043
             * single literal. If there was a match but the current match
2044
             * is longer, truncate the previous match to a single literal.
2045
             */
2046
0
            Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2047
0
            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2048
0
            if (bflush) {
2049
0
                FLUSH_BLOCK_ONLY(s, 0);
2050
0
            }
2051
0
            s->strstart++;
2052
0
            s->lookahead--;
2053
0
            if (s->strm->avail_out == 0) return need_more;
2054
0
        } else {
2055
            /* There is no previous match to compare with, wait for
2056
             * the next step to decide.
2057
             */
2058
0
            s->match_available = 1;
2059
0
            s->strstart++;
2060
0
            s->lookahead--;
2061
0
        }
2062
0
    }
2063
0
    Assert (flush != Z_NO_FLUSH, "no flush?");
2064
0
    if (s->match_available) {
2065
0
        Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2066
0
        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2067
0
        s->match_available = 0;
2068
0
    }
2069
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2070
0
    if (flush == Z_FINISH) {
2071
0
        FLUSH_BLOCK(s, 1);
2072
0
        return finish_done;
2073
0
    }
2074
0
    if (s->sym_next)
2075
0
        FLUSH_BLOCK(s, 0);
2076
0
    return block_done;
2077
0
}
2078
#endif /* FASTEST */
2079
2080
/* ===========================================================================
2081
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2082
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2083
 * deflate switches away from Z_RLE.)
2084
 */
2085
0
local block_state deflate_rle(deflate_state *s, int flush) {
2086
0
    int bflush;             /* set if current block must be flushed */
2087
0
    uInt prev;              /* byte at distance one to match */
2088
0
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2089
2090
0
    for (;;) {
2091
        /* Make sure that we always have enough lookahead, except
2092
         * at the end of the input file. We need MAX_MATCH bytes
2093
         * for the longest run, plus one for the unrolled loop.
2094
         */
2095
0
        if (s->lookahead <= MAX_MATCH) {
2096
0
            fill_window(s);
2097
0
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2098
0
                return need_more;
2099
0
            }
2100
0
            if (s->lookahead == 0) break; /* flush the current block */
2101
0
        }
2102
2103
        /* See how many times the previous byte repeats */
2104
0
        s->match_length = 0;
2105
0
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2106
0
            scan = s->window + s->strstart - 1;
2107
0
            prev = *scan;
2108
0
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2109
0
                strend = s->window + s->strstart + MAX_MATCH;
2110
0
                do {
2111
0
                } while (prev == *++scan && prev == *++scan &&
2112
0
                         prev == *++scan && prev == *++scan &&
2113
0
                         prev == *++scan && prev == *++scan &&
2114
0
                         prev == *++scan && prev == *++scan &&
2115
0
                         scan < strend);
2116
0
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2117
0
                if (s->match_length > s->lookahead)
2118
0
                    s->match_length = s->lookahead;
2119
0
            }
2120
0
            Assert(scan <= s->window + (uInt)(s->window_size - 1),
2121
0
                   "wild scan");
2122
0
        }
2123
2124
        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2125
0
        if (s->match_length >= MIN_MATCH) {
2126
0
            check_match(s, s->strstart, s->strstart - 1, (int)s->match_length);
2127
2128
0
            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2129
2130
0
            s->lookahead -= s->match_length;
2131
0
            s->strstart += s->match_length;
2132
0
            s->match_length = 0;
2133
0
        } else {
2134
            /* No match, output a literal byte */
2135
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
2136
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
2137
0
            s->lookahead--;
2138
0
            s->strstart++;
2139
0
        }
2140
0
        if (bflush) FLUSH_BLOCK(s, 0);
2141
0
    }
2142
0
    s->insert = 0;
2143
0
    if (flush == Z_FINISH) {
2144
0
        FLUSH_BLOCK(s, 1);
2145
0
        return finish_done;
2146
0
    }
2147
0
    if (s->sym_next)
2148
0
        FLUSH_BLOCK(s, 0);
2149
0
    return block_done;
2150
0
}
2151
2152
/* ===========================================================================
2153
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2154
 * (It will be regenerated if this run of deflate switches away from Huffman.)
2155
 */
2156
0
local block_state deflate_huff(deflate_state *s, int flush) {
2157
0
    int bflush;             /* set if current block must be flushed */
2158
2159
0
    for (;;) {
2160
        /* Make sure that we have a literal to write. */
2161
0
        if (s->lookahead == 0) {
2162
0
            fill_window(s);
2163
0
            if (s->lookahead == 0) {
2164
0
                if (flush == Z_NO_FLUSH)
2165
0
                    return need_more;
2166
0
                break;      /* flush the current block */
2167
0
            }
2168
0
        }
2169
2170
        /* Output a literal byte */
2171
0
        s->match_length = 0;
2172
0
        Tracevv((stderr,"%c", s->window[s->strstart]));
2173
0
        _tr_tally_lit(s, s->window[s->strstart], bflush);
2174
0
        s->lookahead--;
2175
0
        s->strstart++;
2176
0
        if (bflush) FLUSH_BLOCK(s, 0);
2177
0
    }
2178
0
    s->insert = 0;
2179
0
    if (flush == Z_FINISH) {
2180
0
        FLUSH_BLOCK(s, 1);
2181
0
        return finish_done;
2182
0
    }
2183
0
    if (s->sym_next)
2184
0
        FLUSH_BLOCK(s, 0);
2185
0
    return block_done;
2186
0
}