Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Generic reference iterator infrastructure. See refs-internal.h for |
3 | | * documentation about the design and use of reference iterators. |
4 | | */ |
5 | | |
6 | | #include "git-compat-util.h" |
7 | | #include "refs.h" |
8 | | #include "refs/refs-internal.h" |
9 | | #include "iterator.h" |
10 | | |
11 | | int ref_iterator_advance(struct ref_iterator *ref_iterator) |
12 | 18.2k | { |
13 | 18.2k | return ref_iterator->vtable->advance(ref_iterator); |
14 | 18.2k | } |
15 | | |
16 | | int ref_iterator_peel(struct ref_iterator *ref_iterator, |
17 | | struct object_id *peeled) |
18 | 0 | { |
19 | 0 | return ref_iterator->vtable->peel(ref_iterator, peeled); |
20 | 0 | } |
21 | | |
22 | | int ref_iterator_abort(struct ref_iterator *ref_iterator) |
23 | 19.8k | { |
24 | 19.8k | return ref_iterator->vtable->abort(ref_iterator); |
25 | 19.8k | } |
26 | | |
27 | | void base_ref_iterator_init(struct ref_iterator *iter, |
28 | | struct ref_iterator_vtable *vtable) |
29 | 19.8k | { |
30 | 19.8k | iter->vtable = vtable; |
31 | 19.8k | iter->refname = NULL; |
32 | 19.8k | iter->referent = NULL; |
33 | 19.8k | iter->oid = NULL; |
34 | 19.8k | iter->flags = 0; |
35 | 19.8k | } |
36 | | |
37 | | void base_ref_iterator_free(struct ref_iterator *iter) |
38 | 19.8k | { |
39 | | /* Help make use-after-free bugs fail quickly: */ |
40 | 19.8k | iter->vtable = NULL; |
41 | 19.8k | free(iter); |
42 | 19.8k | } |
43 | | |
44 | | struct empty_ref_iterator { |
45 | | struct ref_iterator base; |
46 | | }; |
47 | | |
48 | | static int empty_ref_iterator_advance(struct ref_iterator *ref_iterator) |
49 | 14.9k | { |
50 | 14.9k | return ref_iterator_abort(ref_iterator); |
51 | 14.9k | } |
52 | | |
53 | | static int empty_ref_iterator_peel(struct ref_iterator *ref_iterator UNUSED, |
54 | | struct object_id *peeled UNUSED) |
55 | 0 | { |
56 | 0 | BUG("peel called for empty iterator"); |
57 | 0 | } |
58 | | |
59 | | static int empty_ref_iterator_abort(struct ref_iterator *ref_iterator) |
60 | 16.6k | { |
61 | 16.6k | base_ref_iterator_free(ref_iterator); |
62 | 16.6k | return ITER_DONE; |
63 | 16.6k | } |
64 | | |
65 | | static struct ref_iterator_vtable empty_ref_iterator_vtable = { |
66 | | .advance = empty_ref_iterator_advance, |
67 | | .peel = empty_ref_iterator_peel, |
68 | | .abort = empty_ref_iterator_abort, |
69 | | }; |
70 | | |
71 | | struct ref_iterator *empty_ref_iterator_begin(void) |
72 | 16.6k | { |
73 | 16.6k | struct empty_ref_iterator *iter = xcalloc(1, sizeof(*iter)); |
74 | 16.6k | struct ref_iterator *ref_iterator = &iter->base; |
75 | | |
76 | 16.6k | base_ref_iterator_init(ref_iterator, &empty_ref_iterator_vtable); |
77 | 16.6k | return ref_iterator; |
78 | 16.6k | } |
79 | | |
80 | | int is_empty_ref_iterator(struct ref_iterator *ref_iterator) |
81 | 1.61k | { |
82 | 1.61k | return ref_iterator->vtable == &empty_ref_iterator_vtable; |
83 | 1.61k | } |
84 | | |
85 | | struct merge_ref_iterator { |
86 | | struct ref_iterator base; |
87 | | |
88 | | struct ref_iterator *iter0, *iter1; |
89 | | |
90 | | ref_iterator_select_fn *select; |
91 | | void *cb_data; |
92 | | |
93 | | /* |
94 | | * A pointer to iter0 or iter1 (whichever is supplying the |
95 | | * current value), or NULL if advance has not yet been called. |
96 | | */ |
97 | | struct ref_iterator **current; |
98 | | }; |
99 | | |
100 | | enum iterator_selection ref_iterator_select(struct ref_iterator *iter_worktree, |
101 | | struct ref_iterator *iter_common, |
102 | | void *cb_data UNUSED) |
103 | 0 | { |
104 | 0 | if (iter_worktree && !iter_common) { |
105 | | /* |
106 | | * Return the worktree ref if there are no more common refs. |
107 | | */ |
108 | 0 | return ITER_SELECT_0; |
109 | 0 | } else if (iter_common) { |
110 | | /* |
111 | | * In case we have pending worktree and common refs we need to |
112 | | * yield them based on their lexicographical order. Worktree |
113 | | * refs that have the same name as common refs shadow the |
114 | | * latter. |
115 | | */ |
116 | 0 | if (iter_worktree) { |
117 | 0 | int cmp = strcmp(iter_worktree->refname, |
118 | 0 | iter_common->refname); |
119 | 0 | if (cmp < 0) |
120 | 0 | return ITER_SELECT_0; |
121 | 0 | else if (!cmp) |
122 | 0 | return ITER_SELECT_0_SKIP_1; |
123 | 0 | } |
124 | | |
125 | | /* |
126 | | * We now know that the lexicographically-next ref is a common |
127 | | * ref. When the common ref is a shared one we return it. |
128 | | */ |
129 | 0 | if (parse_worktree_ref(iter_common->refname, NULL, NULL, |
130 | 0 | NULL) == REF_WORKTREE_SHARED) |
131 | 0 | return ITER_SELECT_1; |
132 | | |
133 | | /* |
134 | | * Otherwise, if the common ref is a per-worktree ref we skip |
135 | | * it because it would belong to the main worktree, not ours. |
136 | | */ |
137 | 0 | return ITER_SKIP_1; |
138 | 0 | } else { |
139 | 0 | return ITER_DONE; |
140 | 0 | } |
141 | 0 | } |
142 | | |
143 | | static int merge_ref_iterator_advance(struct ref_iterator *ref_iterator) |
144 | 0 | { |
145 | 0 | struct merge_ref_iterator *iter = |
146 | 0 | (struct merge_ref_iterator *)ref_iterator; |
147 | 0 | int ok; |
148 | |
|
149 | 0 | if (!iter->current) { |
150 | | /* Initialize: advance both iterators to their first entries */ |
151 | 0 | if ((ok = ref_iterator_advance(iter->iter0)) != ITER_OK) { |
152 | 0 | iter->iter0 = NULL; |
153 | 0 | if (ok == ITER_ERROR) |
154 | 0 | goto error; |
155 | 0 | } |
156 | 0 | if ((ok = ref_iterator_advance(iter->iter1)) != ITER_OK) { |
157 | 0 | iter->iter1 = NULL; |
158 | 0 | if (ok == ITER_ERROR) |
159 | 0 | goto error; |
160 | 0 | } |
161 | 0 | } else { |
162 | | /* |
163 | | * Advance the current iterator past the just-used |
164 | | * entry: |
165 | | */ |
166 | 0 | if ((ok = ref_iterator_advance(*iter->current)) != ITER_OK) { |
167 | 0 | *iter->current = NULL; |
168 | 0 | if (ok == ITER_ERROR) |
169 | 0 | goto error; |
170 | 0 | } |
171 | 0 | } |
172 | | |
173 | | /* Loop until we find an entry that we can yield. */ |
174 | 0 | while (1) { |
175 | 0 | struct ref_iterator **secondary; |
176 | 0 | enum iterator_selection selection = |
177 | 0 | iter->select(iter->iter0, iter->iter1, iter->cb_data); |
178 | |
|
179 | 0 | if (selection == ITER_SELECT_DONE) { |
180 | 0 | return ref_iterator_abort(ref_iterator); |
181 | 0 | } else if (selection == ITER_SELECT_ERROR) { |
182 | 0 | ref_iterator_abort(ref_iterator); |
183 | 0 | return ITER_ERROR; |
184 | 0 | } |
185 | | |
186 | 0 | if ((selection & ITER_CURRENT_SELECTION_MASK) == 0) { |
187 | 0 | iter->current = &iter->iter0; |
188 | 0 | secondary = &iter->iter1; |
189 | 0 | } else { |
190 | 0 | iter->current = &iter->iter1; |
191 | 0 | secondary = &iter->iter0; |
192 | 0 | } |
193 | |
|
194 | 0 | if (selection & ITER_SKIP_SECONDARY) { |
195 | 0 | if ((ok = ref_iterator_advance(*secondary)) != ITER_OK) { |
196 | 0 | *secondary = NULL; |
197 | 0 | if (ok == ITER_ERROR) |
198 | 0 | goto error; |
199 | 0 | } |
200 | 0 | } |
201 | | |
202 | 0 | if (selection & ITER_YIELD_CURRENT) { |
203 | 0 | iter->base.referent = (*iter->current)->referent; |
204 | 0 | iter->base.refname = (*iter->current)->refname; |
205 | 0 | iter->base.oid = (*iter->current)->oid; |
206 | 0 | iter->base.flags = (*iter->current)->flags; |
207 | 0 | return ITER_OK; |
208 | 0 | } |
209 | 0 | } |
210 | | |
211 | 0 | error: |
212 | 0 | ref_iterator_abort(ref_iterator); |
213 | 0 | return ITER_ERROR; |
214 | 0 | } |
215 | | |
216 | | static int merge_ref_iterator_peel(struct ref_iterator *ref_iterator, |
217 | | struct object_id *peeled) |
218 | 0 | { |
219 | 0 | struct merge_ref_iterator *iter = |
220 | 0 | (struct merge_ref_iterator *)ref_iterator; |
221 | |
|
222 | 0 | if (!iter->current) { |
223 | 0 | BUG("peel called before advance for merge iterator"); |
224 | 0 | } |
225 | 0 | return ref_iterator_peel(*iter->current, peeled); |
226 | 0 | } |
227 | | |
228 | | static int merge_ref_iterator_abort(struct ref_iterator *ref_iterator) |
229 | 0 | { |
230 | 0 | struct merge_ref_iterator *iter = |
231 | 0 | (struct merge_ref_iterator *)ref_iterator; |
232 | 0 | int ok = ITER_DONE; |
233 | |
|
234 | 0 | if (iter->iter0) { |
235 | 0 | if (ref_iterator_abort(iter->iter0) != ITER_DONE) |
236 | 0 | ok = ITER_ERROR; |
237 | 0 | } |
238 | 0 | if (iter->iter1) { |
239 | 0 | if (ref_iterator_abort(iter->iter1) != ITER_DONE) |
240 | 0 | ok = ITER_ERROR; |
241 | 0 | } |
242 | 0 | base_ref_iterator_free(ref_iterator); |
243 | 0 | return ok; |
244 | 0 | } |
245 | | |
246 | | static struct ref_iterator_vtable merge_ref_iterator_vtable = { |
247 | | .advance = merge_ref_iterator_advance, |
248 | | .peel = merge_ref_iterator_peel, |
249 | | .abort = merge_ref_iterator_abort, |
250 | | }; |
251 | | |
252 | | struct ref_iterator *merge_ref_iterator_begin( |
253 | | struct ref_iterator *iter0, struct ref_iterator *iter1, |
254 | | ref_iterator_select_fn *select, void *cb_data) |
255 | 0 | { |
256 | 0 | struct merge_ref_iterator *iter = xcalloc(1, sizeof(*iter)); |
257 | 0 | struct ref_iterator *ref_iterator = &iter->base; |
258 | | |
259 | | /* |
260 | | * We can't do the same kind of is_empty_ref_iterator()-style |
261 | | * optimization here as overlay_ref_iterator_begin() does, |
262 | | * because we don't know the semantics of the select function. |
263 | | * It might, for example, implement "intersect" by passing |
264 | | * references through only if they exist in both iterators. |
265 | | */ |
266 | |
|
267 | 0 | base_ref_iterator_init(ref_iterator, &merge_ref_iterator_vtable); |
268 | 0 | iter->iter0 = iter0; |
269 | 0 | iter->iter1 = iter1; |
270 | 0 | iter->select = select; |
271 | 0 | iter->cb_data = cb_data; |
272 | 0 | iter->current = NULL; |
273 | 0 | return ref_iterator; |
274 | 0 | } |
275 | | |
276 | | /* |
277 | | * A ref_iterator_select_fn that overlays the items from front on top |
278 | | * of those from back (like loose refs over packed refs). See |
279 | | * overlay_ref_iterator_begin(). |
280 | | */ |
281 | | static enum iterator_selection overlay_iterator_select( |
282 | | struct ref_iterator *front, struct ref_iterator *back, |
283 | | void *cb_data UNUSED) |
284 | 0 | { |
285 | 0 | int cmp; |
286 | |
|
287 | 0 | if (!back) |
288 | 0 | return front ? ITER_SELECT_0 : ITER_SELECT_DONE; |
289 | 0 | else if (!front) |
290 | 0 | return ITER_SELECT_1; |
291 | | |
292 | 0 | cmp = strcmp(front->refname, back->refname); |
293 | |
|
294 | 0 | if (cmp < 0) |
295 | 0 | return ITER_SELECT_0; |
296 | 0 | else if (cmp > 0) |
297 | 0 | return ITER_SELECT_1; |
298 | 0 | else |
299 | 0 | return ITER_SELECT_0_SKIP_1; |
300 | 0 | } |
301 | | |
302 | | struct ref_iterator *overlay_ref_iterator_begin( |
303 | | struct ref_iterator *front, struct ref_iterator *back) |
304 | 1.61k | { |
305 | | /* |
306 | | * Optimization: if one of the iterators is empty, return the |
307 | | * other one rather than incurring the overhead of wrapping |
308 | | * them. |
309 | | */ |
310 | 1.61k | if (is_empty_ref_iterator(front)) { |
311 | 1.61k | ref_iterator_abort(front); |
312 | 1.61k | return back; |
313 | 1.61k | } else if (is_empty_ref_iterator(back)) { |
314 | 0 | ref_iterator_abort(back); |
315 | 0 | return front; |
316 | 0 | } |
317 | | |
318 | 0 | return merge_ref_iterator_begin(front, back, overlay_iterator_select, NULL); |
319 | 1.61k | } |
320 | | |
321 | | struct prefix_ref_iterator { |
322 | | struct ref_iterator base; |
323 | | |
324 | | struct ref_iterator *iter0; |
325 | | char *prefix; |
326 | | int trim; |
327 | | }; |
328 | | |
329 | | /* Return -1, 0, 1 if refname is before, inside, or after the prefix. */ |
330 | | static int compare_prefix(const char *refname, const char *prefix) |
331 | 0 | { |
332 | 0 | while (*prefix) { |
333 | 0 | if (*refname != *prefix) |
334 | 0 | return ((unsigned char)*refname < (unsigned char)*prefix) ? -1 : +1; |
335 | | |
336 | 0 | refname++; |
337 | 0 | prefix++; |
338 | 0 | } |
339 | | |
340 | 0 | return 0; |
341 | 0 | } |
342 | | |
343 | | static int prefix_ref_iterator_advance(struct ref_iterator *ref_iterator) |
344 | 1.61k | { |
345 | 1.61k | struct prefix_ref_iterator *iter = |
346 | 1.61k | (struct prefix_ref_iterator *)ref_iterator; |
347 | 1.61k | int ok; |
348 | | |
349 | 1.61k | while ((ok = ref_iterator_advance(iter->iter0)) == ITER_OK) { |
350 | 0 | int cmp = compare_prefix(iter->iter0->refname, iter->prefix); |
351 | |
|
352 | 0 | if (cmp < 0) |
353 | 0 | continue; |
354 | | |
355 | 0 | if (cmp > 0) { |
356 | | /* |
357 | | * As the source iterator is ordered, we |
358 | | * can stop the iteration as soon as we see a |
359 | | * refname that comes after the prefix: |
360 | | */ |
361 | 0 | ok = ref_iterator_abort(iter->iter0); |
362 | 0 | break; |
363 | 0 | } |
364 | | |
365 | 0 | if (iter->trim) { |
366 | | /* |
367 | | * It is nonsense to trim off characters that |
368 | | * you haven't already checked for via a |
369 | | * prefix check, whether via this |
370 | | * `prefix_ref_iterator` or upstream in |
371 | | * `iter0`). So if there wouldn't be at least |
372 | | * one character left in the refname after |
373 | | * trimming, report it as a bug: |
374 | | */ |
375 | 0 | if (strlen(iter->iter0->refname) <= iter->trim) |
376 | 0 | BUG("attempt to trim too many characters"); |
377 | 0 | iter->base.refname = iter->iter0->refname + iter->trim; |
378 | 0 | } else { |
379 | 0 | iter->base.refname = iter->iter0->refname; |
380 | 0 | } |
381 | | |
382 | 0 | iter->base.oid = iter->iter0->oid; |
383 | 0 | iter->base.flags = iter->iter0->flags; |
384 | 0 | return ITER_OK; |
385 | 0 | } |
386 | | |
387 | 1.61k | iter->iter0 = NULL; |
388 | 1.61k | if (ref_iterator_abort(ref_iterator) != ITER_DONE) |
389 | 0 | return ITER_ERROR; |
390 | 1.61k | return ok; |
391 | 1.61k | } |
392 | | |
393 | | static int prefix_ref_iterator_peel(struct ref_iterator *ref_iterator, |
394 | | struct object_id *peeled) |
395 | 0 | { |
396 | 0 | struct prefix_ref_iterator *iter = |
397 | 0 | (struct prefix_ref_iterator *)ref_iterator; |
398 | |
|
399 | 0 | return ref_iterator_peel(iter->iter0, peeled); |
400 | 0 | } |
401 | | |
402 | | static int prefix_ref_iterator_abort(struct ref_iterator *ref_iterator) |
403 | 1.61k | { |
404 | 1.61k | struct prefix_ref_iterator *iter = |
405 | 1.61k | (struct prefix_ref_iterator *)ref_iterator; |
406 | 1.61k | int ok = ITER_DONE; |
407 | | |
408 | 1.61k | if (iter->iter0) |
409 | 0 | ok = ref_iterator_abort(iter->iter0); |
410 | 1.61k | free(iter->prefix); |
411 | 1.61k | base_ref_iterator_free(ref_iterator); |
412 | 1.61k | return ok; |
413 | 1.61k | } |
414 | | |
415 | | static struct ref_iterator_vtable prefix_ref_iterator_vtable = { |
416 | | .advance = prefix_ref_iterator_advance, |
417 | | .peel = prefix_ref_iterator_peel, |
418 | | .abort = prefix_ref_iterator_abort, |
419 | | }; |
420 | | |
421 | | struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0, |
422 | | const char *prefix, |
423 | | int trim) |
424 | 1.61k | { |
425 | 1.61k | struct prefix_ref_iterator *iter; |
426 | 1.61k | struct ref_iterator *ref_iterator; |
427 | | |
428 | 1.61k | if (!*prefix && !trim) |
429 | 0 | return iter0; /* optimization: no need to wrap iterator */ |
430 | | |
431 | 1.61k | CALLOC_ARRAY(iter, 1); |
432 | 1.61k | ref_iterator = &iter->base; |
433 | | |
434 | 1.61k | base_ref_iterator_init(ref_iterator, &prefix_ref_iterator_vtable); |
435 | | |
436 | 1.61k | iter->iter0 = iter0; |
437 | 1.61k | iter->prefix = xstrdup(prefix); |
438 | 1.61k | iter->trim = trim; |
439 | | |
440 | 1.61k | return ref_iterator; |
441 | 1.61k | } |
442 | | |
443 | | struct ref_iterator *current_ref_iter = NULL; |
444 | | |
445 | | int do_for_each_ref_iterator(struct ref_iterator *iter, |
446 | | each_ref_fn fn, void *cb_data) |
447 | 1.61k | { |
448 | 1.61k | int retval = 0, ok; |
449 | 1.61k | struct ref_iterator *old_ref_iter = current_ref_iter; |
450 | | |
451 | 1.61k | current_ref_iter = iter; |
452 | 1.61k | while ((ok = ref_iterator_advance(iter)) == ITER_OK) { |
453 | 0 | retval = fn(iter->refname, iter->referent, iter->oid, iter->flags, cb_data); |
454 | 0 | if (retval) { |
455 | | /* |
456 | | * If ref_iterator_abort() returns ITER_ERROR, |
457 | | * we ignore that error in deference to the |
458 | | * callback function's return value. |
459 | | */ |
460 | 0 | ref_iterator_abort(iter); |
461 | 0 | goto out; |
462 | 0 | } |
463 | 0 | } |
464 | | |
465 | 1.61k | out: |
466 | 1.61k | current_ref_iter = old_ref_iter; |
467 | 1.61k | if (ok == ITER_ERROR) |
468 | 0 | return -1; |
469 | 1.61k | return retval; |
470 | 1.61k | } |