Line | Count | Source (jump to first uncovered line) |
1 | | /* GLIB - Library of useful routines for C programming |
2 | | * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald |
3 | | * |
4 | | * SPDX-License-Identifier: LGPL-2.1-or-later |
5 | | * |
6 | | * This library is free software; you can redistribute it and/or |
7 | | * modify it under the terms of the GNU Lesser General Public |
8 | | * License as published by the Free Software Foundation; either |
9 | | * version 2.1 of the License, or (at your option) any later version. |
10 | | * |
11 | | * This library is distributed in the hope that it will be useful, |
12 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | | * Lesser General Public License for more details. |
15 | | * |
16 | | * You should have received a copy of the GNU Lesser General Public |
17 | | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
18 | | */ |
19 | | |
20 | | /* Originally developed and coded by Makoto Matsumoto and Takuji |
21 | | * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using |
22 | | * code from this file in your own programs or libraries. |
23 | | * Further information on the Mersenne Twister can be found at |
24 | | * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html |
25 | | * This code was adapted to glib by Sebastian Wilhelmi. |
26 | | */ |
27 | | |
28 | | /* |
29 | | * Modified by the GLib Team and others 1997-2000. See the AUTHORS |
30 | | * file for a list of people on the GLib Team. See the ChangeLog |
31 | | * files for a list of changes. These files are distributed with |
32 | | * GLib at ftp://ftp.gtk.org/pub/gtk/. |
33 | | */ |
34 | | |
35 | | /* |
36 | | * MT safe |
37 | | */ |
38 | | |
39 | | #include "config.h" |
40 | | #define _CRT_RAND_S |
41 | | |
42 | | #include <math.h> |
43 | | #include <errno.h> |
44 | | #include <stdio.h> |
45 | | #include <string.h> |
46 | | #include <sys/types.h> |
47 | | #include "grand.h" |
48 | | |
49 | | #include "genviron.h" |
50 | | #include "gmain.h" |
51 | | #include "gmem.h" |
52 | | #include "gstdio.h" |
53 | | #include "gtestutils.h" |
54 | | #include "gthread.h" |
55 | | #include "gtimer.h" |
56 | | |
57 | | #ifdef G_OS_UNIX |
58 | | #include <unistd.h> |
59 | | #endif |
60 | | |
61 | | #ifdef G_OS_WIN32 |
62 | | #include <stdlib.h> |
63 | | #include <process.h> /* For getpid() */ |
64 | | #endif |
65 | | |
66 | | /** |
67 | | * GRand: |
68 | | * |
69 | | * The GRand struct is an opaque data structure. It should only be |
70 | | * accessed through the g_rand_* functions. |
71 | | **/ |
72 | | |
73 | | G_LOCK_DEFINE_STATIC (global_random); |
74 | | |
75 | | /* Period parameters */ |
76 | 0 | #define N 624 |
77 | 0 | #define M 397 |
78 | 0 | #define MATRIX_A 0x9908b0df /* constant vector a */ |
79 | 0 | #define UPPER_MASK 0x80000000 /* most significant w-r bits */ |
80 | 0 | #define LOWER_MASK 0x7fffffff /* least significant r bits */ |
81 | | |
82 | | /* Tempering parameters */ |
83 | 0 | #define TEMPERING_MASK_B 0x9d2c5680 |
84 | 0 | #define TEMPERING_MASK_C 0xefc60000 |
85 | 0 | #define TEMPERING_SHIFT_U(y) (y >> 11) |
86 | 0 | #define TEMPERING_SHIFT_S(y) (y << 7) |
87 | 0 | #define TEMPERING_SHIFT_T(y) (y << 15) |
88 | 0 | #define TEMPERING_SHIFT_L(y) (y >> 18) |
89 | | |
90 | | static guint |
91 | | get_random_version (void) |
92 | 0 | { |
93 | 0 | static gsize initialized = FALSE; |
94 | 0 | static guint random_version; |
95 | |
|
96 | 0 | if (g_once_init_enter (&initialized)) |
97 | 0 | { |
98 | 0 | const gchar *version_string = g_getenv ("G_RANDOM_VERSION"); |
99 | 0 | if (!version_string || version_string[0] == '\000' || |
100 | 0 | strcmp (version_string, "2.2") == 0) |
101 | 0 | random_version = 22; |
102 | 0 | else if (strcmp (version_string, "2.0") == 0) |
103 | 0 | random_version = 20; |
104 | 0 | else |
105 | 0 | { |
106 | 0 | g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.", |
107 | 0 | version_string); |
108 | 0 | random_version = 22; |
109 | 0 | } |
110 | 0 | g_once_init_leave (&initialized, TRUE); |
111 | 0 | } |
112 | | |
113 | 0 | return random_version; |
114 | 0 | } |
115 | | |
116 | | struct _GRand |
117 | | { |
118 | | guint32 mt[N]; /* the array for the state vector */ |
119 | | guint mti; |
120 | | }; |
121 | | |
122 | | /** |
123 | | * g_rand_new_with_seed: (constructor) |
124 | | * @seed: a value to initialize the random number generator |
125 | | * |
126 | | * Creates a new random number generator initialized with @seed. |
127 | | * |
128 | | * Returns: (transfer full): the new #GRand |
129 | | **/ |
130 | | GRand* |
131 | | g_rand_new_with_seed (guint32 seed) |
132 | 0 | { |
133 | 0 | GRand *rand = g_new0 (GRand, 1); |
134 | 0 | g_rand_set_seed (rand, seed); |
135 | 0 | return rand; |
136 | 0 | } |
137 | | |
138 | | /** |
139 | | * g_rand_new_with_seed_array: (constructor) |
140 | | * @seed: an array of seeds to initialize the random number generator |
141 | | * @seed_length: an array of seeds to initialize the random number |
142 | | * generator |
143 | | * |
144 | | * Creates a new random number generator initialized with @seed. |
145 | | * |
146 | | * Returns: (transfer full): the new #GRand |
147 | | * |
148 | | * Since: 2.4 |
149 | | */ |
150 | | GRand* |
151 | | g_rand_new_with_seed_array (const guint32 *seed, |
152 | | guint seed_length) |
153 | 0 | { |
154 | 0 | GRand *rand = g_new0 (GRand, 1); |
155 | 0 | g_rand_set_seed_array (rand, seed, seed_length); |
156 | 0 | return rand; |
157 | 0 | } |
158 | | |
159 | | /** |
160 | | * g_rand_new: (constructor) |
161 | | * |
162 | | * Creates a new random number generator initialized with a seed taken |
163 | | * either from `/dev/urandom` (if existing) or from the current time |
164 | | * (as a fallback). |
165 | | * |
166 | | * On Windows, the seed is taken from rand_s(). |
167 | | * |
168 | | * Returns: (transfer full): the new #GRand |
169 | | */ |
170 | | GRand* |
171 | | g_rand_new (void) |
172 | 0 | { |
173 | 0 | guint32 seed[4]; |
174 | 0 | #ifdef G_OS_UNIX |
175 | 0 | static gboolean dev_urandom_exists = TRUE; |
176 | |
|
177 | 0 | if (dev_urandom_exists) |
178 | 0 | { |
179 | 0 | FILE* dev_urandom; |
180 | |
|
181 | 0 | do |
182 | 0 | { |
183 | 0 | dev_urandom = g_fopen ("/dev/urandom", "rbe"); |
184 | 0 | } |
185 | 0 | while G_UNLIKELY (dev_urandom == NULL && errno == EINTR); |
186 | |
|
187 | 0 | if (dev_urandom) |
188 | 0 | { |
189 | 0 | size_t r; |
190 | |
|
191 | 0 | setvbuf (dev_urandom, NULL, _IONBF, 0); |
192 | 0 | do |
193 | 0 | { |
194 | 0 | errno = 0; |
195 | 0 | r = fread (seed, sizeof (seed), 1, dev_urandom); |
196 | 0 | } |
197 | 0 | while G_UNLIKELY (errno == EINTR); |
198 | |
|
199 | 0 | if (r != 1) |
200 | 0 | dev_urandom_exists = FALSE; |
201 | |
|
202 | 0 | fclose (dev_urandom); |
203 | 0 | } |
204 | 0 | else |
205 | 0 | dev_urandom_exists = FALSE; |
206 | 0 | } |
207 | |
|
208 | 0 | if (!dev_urandom_exists) |
209 | 0 | { |
210 | 0 | gint64 now_us = g_get_real_time (); |
211 | 0 | seed[0] = (guint32) (now_us / G_USEC_PER_SEC); |
212 | 0 | seed[1] = now_us % G_USEC_PER_SEC; |
213 | 0 | seed[2] = getpid (); |
214 | 0 | seed[3] = getppid (); |
215 | 0 | } |
216 | | #else /* G_OS_WIN32 */ |
217 | | /* rand_s() is only available since Visual Studio 2005 and |
218 | | * MinGW-w64 has a wrapper that will emulate rand_s() if it's not in msvcrt |
219 | | */ |
220 | | #if (defined(_MSC_VER) && _MSC_VER >= 1400) || defined(__MINGW64_VERSION_MAJOR) |
221 | | gsize i; |
222 | | |
223 | | for (i = 0; i < G_N_ELEMENTS (seed); i++) |
224 | | rand_s (&seed[i]); |
225 | | #else |
226 | | #warning Using insecure seed for random number generation because of missing rand_s() in Windows XP |
227 | | GTimeVal now; |
228 | | |
229 | | g_get_current_time (&now); |
230 | | seed[0] = now.tv_sec; |
231 | | seed[1] = now.tv_usec; |
232 | | seed[2] = getpid (); |
233 | | seed[3] = 0; |
234 | | #endif |
235 | | |
236 | | #endif |
237 | |
|
238 | 0 | return g_rand_new_with_seed_array (seed, 4); |
239 | 0 | } |
240 | | |
241 | | /** |
242 | | * g_rand_free: |
243 | | * @rand_: a #GRand |
244 | | * |
245 | | * Frees the memory allocated for the #GRand. |
246 | | */ |
247 | | void |
248 | | g_rand_free (GRand *rand) |
249 | 0 | { |
250 | 0 | g_return_if_fail (rand != NULL); |
251 | | |
252 | 0 | g_free (rand); |
253 | 0 | } |
254 | | |
255 | | /** |
256 | | * g_rand_copy: |
257 | | * @rand_: a #GRand |
258 | | * |
259 | | * Copies a #GRand into a new one with the same exact state as before. |
260 | | * This way you can take a snapshot of the random number generator for |
261 | | * replaying later. |
262 | | * |
263 | | * Returns: (transfer full): the new #GRand |
264 | | * |
265 | | * Since: 2.4 |
266 | | */ |
267 | | GRand* |
268 | | g_rand_copy (GRand *rand) |
269 | 0 | { |
270 | 0 | GRand* new_rand; |
271 | |
|
272 | 0 | g_return_val_if_fail (rand != NULL, NULL); |
273 | | |
274 | 0 | new_rand = g_new0 (GRand, 1); |
275 | 0 | memcpy (new_rand, rand, sizeof (GRand)); |
276 | |
|
277 | 0 | return new_rand; |
278 | 0 | } |
279 | | |
280 | | /** |
281 | | * g_rand_set_seed: |
282 | | * @rand_: a #GRand |
283 | | * @seed: a value to reinitialize the random number generator |
284 | | * |
285 | | * Sets the seed for the random number generator #GRand to @seed. |
286 | | */ |
287 | | void |
288 | | g_rand_set_seed (GRand *rand, |
289 | | guint32 seed) |
290 | 0 | { |
291 | 0 | g_return_if_fail (rand != NULL); |
292 | | |
293 | 0 | switch (get_random_version ()) |
294 | 0 | { |
295 | 0 | case 20: |
296 | | /* setting initial seeds to mt[N] using */ |
297 | | /* the generator Line 25 of Table 1 in */ |
298 | | /* [KNUTH 1981, The Art of Computer Programming */ |
299 | | /* Vol. 2 (2nd Ed.), pp102] */ |
300 | | |
301 | 0 | if (seed == 0) /* This would make the PRNG produce only zeros */ |
302 | 0 | seed = 0x6b842128; /* Just set it to another number */ |
303 | | |
304 | 0 | rand->mt[0]= seed; |
305 | 0 | for (rand->mti=1; rand->mti<N; rand->mti++) |
306 | 0 | rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]); |
307 | | |
308 | 0 | break; |
309 | 0 | case 22: |
310 | | /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ |
311 | | /* In the previous version (see above), MSBs of the */ |
312 | | /* seed affect only MSBs of the array mt[]. */ |
313 | | |
314 | 0 | rand->mt[0]= seed; |
315 | 0 | for (rand->mti=1; rand->mti<N; rand->mti++) |
316 | 0 | rand->mt[rand->mti] = 1812433253UL * |
317 | 0 | (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti; |
318 | 0 | break; |
319 | 0 | default: |
320 | 0 | g_assert_not_reached (); |
321 | 0 | } |
322 | 0 | } |
323 | | |
324 | | /** |
325 | | * g_rand_set_seed_array: |
326 | | * @rand_: a #GRand |
327 | | * @seed: array to initialize with |
328 | | * @seed_length: length of array |
329 | | * |
330 | | * Initializes the random number generator by an array of longs. |
331 | | * Array can be of arbitrary size, though only the first 624 values |
332 | | * are taken. This function is useful if you have many low entropy |
333 | | * seeds, or if you require more then 32 bits of actual entropy for |
334 | | * your application. |
335 | | * |
336 | | * Since: 2.4 |
337 | | */ |
338 | | void |
339 | | g_rand_set_seed_array (GRand *rand, |
340 | | const guint32 *seed, |
341 | | guint seed_length) |
342 | 0 | { |
343 | 0 | guint i, j, k; |
344 | |
|
345 | 0 | g_return_if_fail (rand != NULL); |
346 | 0 | g_return_if_fail (seed_length >= 1); |
347 | | |
348 | 0 | g_rand_set_seed (rand, 19650218UL); |
349 | |
|
350 | 0 | i=1; j=0; |
351 | 0 | k = (N>seed_length ? N : seed_length); |
352 | 0 | for (; k; k--) |
353 | 0 | { |
354 | 0 | rand->mt[i] = (rand->mt[i] ^ |
355 | 0 | ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL)) |
356 | 0 | + seed[j] + j; /* non linear */ |
357 | 0 | rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
358 | 0 | i++; j++; |
359 | 0 | if (i>=N) |
360 | 0 | { |
361 | 0 | rand->mt[0] = rand->mt[N-1]; |
362 | 0 | i=1; |
363 | 0 | } |
364 | 0 | if (j>=seed_length) |
365 | 0 | j=0; |
366 | 0 | } |
367 | 0 | for (k=N-1; k; k--) |
368 | 0 | { |
369 | 0 | rand->mt[i] = (rand->mt[i] ^ |
370 | 0 | ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL)) |
371 | 0 | - i; /* non linear */ |
372 | 0 | rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ |
373 | 0 | i++; |
374 | 0 | if (i>=N) |
375 | 0 | { |
376 | 0 | rand->mt[0] = rand->mt[N-1]; |
377 | 0 | i=1; |
378 | 0 | } |
379 | 0 | } |
380 | |
|
381 | 0 | rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ |
382 | 0 | } |
383 | | |
384 | | /** |
385 | | * g_rand_boolean: |
386 | | * @rand_: a #GRand |
387 | | * |
388 | | * Returns a random #gboolean from @rand_. |
389 | | * This corresponds to an unbiased coin toss. |
390 | | * |
391 | | * Returns: a random #gboolean |
392 | | */ |
393 | | /** |
394 | | * g_rand_int: |
395 | | * @rand_: a #GRand |
396 | | * |
397 | | * Returns the next random #guint32 from @rand_ equally distributed over |
398 | | * the range [0..2^32-1]. |
399 | | * |
400 | | * Returns: a random number |
401 | | */ |
402 | | guint32 |
403 | | g_rand_int (GRand *rand) |
404 | 0 | { |
405 | 0 | guint32 y; |
406 | 0 | static const guint32 mag01[2]={0x0, MATRIX_A}; |
407 | | /* mag01[x] = x * MATRIX_A for x=0,1 */ |
408 | |
|
409 | 0 | g_return_val_if_fail (rand != NULL, 0); |
410 | | |
411 | 0 | if (rand->mti >= N) { /* generate N words at one time */ |
412 | 0 | int kk; |
413 | | |
414 | 0 | for (kk = 0; kk < N - M; kk++) { |
415 | 0 | y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); |
416 | 0 | rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]; |
417 | 0 | } |
418 | 0 | for (; kk < N - 1; kk++) { |
419 | 0 | y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK); |
420 | 0 | rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1]; |
421 | 0 | } |
422 | 0 | y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK); |
423 | 0 | rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1]; |
424 | | |
425 | 0 | rand->mti = 0; |
426 | 0 | } |
427 | | |
428 | 0 | y = rand->mt[rand->mti++]; |
429 | 0 | y ^= TEMPERING_SHIFT_U(y); |
430 | 0 | y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B; |
431 | 0 | y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C; |
432 | 0 | y ^= TEMPERING_SHIFT_L(y); |
433 | | |
434 | 0 | return y; |
435 | 0 | } |
436 | | |
437 | | /* transform [0..2^32] -> [0..1] */ |
438 | 0 | #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10 |
439 | | |
440 | | /** |
441 | | * g_rand_int_range: |
442 | | * @rand_: a #GRand |
443 | | * @begin: lower closed bound of the interval |
444 | | * @end: upper open bound of the interval |
445 | | * |
446 | | * Returns the next random #gint32 from @rand_ equally distributed over |
447 | | * the range [@begin..@end-1]. |
448 | | * |
449 | | * Returns: a random number |
450 | | */ |
451 | | gint32 |
452 | | g_rand_int_range (GRand *rand, |
453 | | gint32 begin, |
454 | | gint32 end) |
455 | 0 | { |
456 | 0 | guint32 dist = end - begin; |
457 | 0 | guint32 random = 0; |
458 | |
|
459 | 0 | g_return_val_if_fail (rand != NULL, begin); |
460 | 0 | g_return_val_if_fail (end > begin, begin); |
461 | | |
462 | 0 | switch (get_random_version ()) |
463 | 0 | { |
464 | 0 | case 20: |
465 | 0 | if (dist <= 0x10000L) /* 2^16 */ |
466 | 0 | { |
467 | | /* This method, which only calls g_rand_int once is only good |
468 | | * for (end - begin) <= 2^16, because we only have 32 bits set |
469 | | * from the one call to g_rand_int (). |
470 | | * |
471 | | * We are using (trans + trans * trans), because g_rand_int only |
472 | | * covers [0..2^32-1] and thus g_rand_int * trans only covers |
473 | | * [0..1-2^-32], but the biggest double < 1 is 1-2^-52. |
474 | | */ |
475 | | |
476 | 0 | gdouble double_rand = g_rand_int (rand) * |
477 | 0 | (G_RAND_DOUBLE_TRANSFORM + |
478 | 0 | G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM); |
479 | | |
480 | 0 | random = (gint32) (double_rand * dist); |
481 | 0 | } |
482 | 0 | else |
483 | 0 | { |
484 | | /* Now we use g_rand_double_range (), which will set 52 bits |
485 | | * for us, so that it is safe to round and still get a decent |
486 | | * distribution |
487 | | */ |
488 | 0 | random = (gint32) g_rand_double_range (rand, 0, dist); |
489 | 0 | } |
490 | 0 | break; |
491 | 0 | case 22: |
492 | 0 | if (dist == 0) |
493 | 0 | random = 0; |
494 | 0 | else |
495 | 0 | { |
496 | | /* maxvalue is set to the predecessor of the greatest |
497 | | * multiple of dist less or equal 2^32. |
498 | | */ |
499 | 0 | guint32 maxvalue; |
500 | 0 | if (dist <= 0x80000000u) /* 2^31 */ |
501 | 0 | { |
502 | | /* maxvalue = 2^32 - 1 - (2^32 % dist) */ |
503 | 0 | guint32 leftover = (0x80000000u % dist) * 2; |
504 | 0 | if (leftover >= dist) leftover -= dist; |
505 | 0 | maxvalue = 0xffffffffu - leftover; |
506 | 0 | } |
507 | 0 | else |
508 | 0 | maxvalue = dist - 1; |
509 | | |
510 | 0 | do |
511 | 0 | random = g_rand_int (rand); |
512 | 0 | while (random > maxvalue); |
513 | | |
514 | 0 | random %= dist; |
515 | 0 | } |
516 | 0 | break; |
517 | 0 | default: |
518 | 0 | g_assert_not_reached (); |
519 | 0 | } |
520 | | |
521 | 0 | return begin + random; |
522 | 0 | } |
523 | | |
524 | | /** |
525 | | * g_rand_double: |
526 | | * @rand_: a #GRand |
527 | | * |
528 | | * Returns the next random #gdouble from @rand_ equally distributed over |
529 | | * the range [0..1). |
530 | | * |
531 | | * Returns: a random number |
532 | | */ |
533 | | gdouble |
534 | | g_rand_double (GRand *rand) |
535 | 0 | { |
536 | | /* We set all 52 bits after the point for this, not only the first |
537 | | 32. That's why we need two calls to g_rand_int */ |
538 | 0 | gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM; |
539 | 0 | retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM; |
540 | | |
541 | | /* The following might happen due to very bad rounding luck, but |
542 | | * actually this should be more than rare, we just try again then */ |
543 | 0 | if (retval >= 1.0) |
544 | 0 | return g_rand_double (rand); |
545 | | |
546 | 0 | return retval; |
547 | 0 | } |
548 | | |
549 | | /** |
550 | | * g_rand_double_range: |
551 | | * @rand_: a #GRand |
552 | | * @begin: lower closed bound of the interval |
553 | | * @end: upper open bound of the interval |
554 | | * |
555 | | * Returns the next random #gdouble from @rand_ equally distributed over |
556 | | * the range [@begin..@end). |
557 | | * |
558 | | * Returns: a random number |
559 | | */ |
560 | | gdouble |
561 | | g_rand_double_range (GRand *rand, |
562 | | gdouble begin, |
563 | | gdouble end) |
564 | 0 | { |
565 | 0 | gdouble r; |
566 | |
|
567 | 0 | r = g_rand_double (rand); |
568 | |
|
569 | 0 | return r * end - (r - 1) * begin; |
570 | 0 | } |
571 | | |
572 | | static GRand * |
573 | | get_global_random (void) |
574 | 0 | { |
575 | 0 | static GRand *global_random; |
576 | | |
577 | | /* called while locked */ |
578 | 0 | if (!global_random) |
579 | 0 | global_random = g_rand_new (); |
580 | |
|
581 | 0 | return global_random; |
582 | 0 | } |
583 | | |
584 | | /** |
585 | | * g_random_boolean: |
586 | | * |
587 | | * Returns a random #gboolean. |
588 | | * This corresponds to an unbiased coin toss. |
589 | | * |
590 | | * Returns: a random #gboolean |
591 | | */ |
592 | | /** |
593 | | * g_random_int: |
594 | | * |
595 | | * Return a random #guint32 equally distributed over the range |
596 | | * [0..2^32-1]. |
597 | | * |
598 | | * Returns: a random number |
599 | | */ |
600 | | guint32 |
601 | | g_random_int (void) |
602 | 0 | { |
603 | 0 | guint32 result; |
604 | 0 | G_LOCK (global_random); |
605 | 0 | result = g_rand_int (get_global_random ()); |
606 | 0 | G_UNLOCK (global_random); |
607 | 0 | return result; |
608 | 0 | } |
609 | | |
610 | | /** |
611 | | * g_random_int_range: |
612 | | * @begin: lower closed bound of the interval |
613 | | * @end: upper open bound of the interval |
614 | | * |
615 | | * Returns a random #gint32 equally distributed over the range |
616 | | * [@begin..@end-1]. |
617 | | * |
618 | | * Returns: a random number |
619 | | */ |
620 | | gint32 |
621 | | g_random_int_range (gint32 begin, |
622 | | gint32 end) |
623 | 0 | { |
624 | 0 | gint32 result; |
625 | 0 | G_LOCK (global_random); |
626 | 0 | result = g_rand_int_range (get_global_random (), begin, end); |
627 | 0 | G_UNLOCK (global_random); |
628 | 0 | return result; |
629 | 0 | } |
630 | | |
631 | | /** |
632 | | * g_random_double: |
633 | | * |
634 | | * Returns a random #gdouble equally distributed over the range [0..1). |
635 | | * |
636 | | * Returns: a random number |
637 | | */ |
638 | | gdouble |
639 | | g_random_double (void) |
640 | 0 | { |
641 | 0 | double result; |
642 | 0 | G_LOCK (global_random); |
643 | 0 | result = g_rand_double (get_global_random ()); |
644 | 0 | G_UNLOCK (global_random); |
645 | 0 | return result; |
646 | 0 | } |
647 | | |
648 | | /** |
649 | | * g_random_double_range: |
650 | | * @begin: lower closed bound of the interval |
651 | | * @end: upper open bound of the interval |
652 | | * |
653 | | * Returns a random #gdouble equally distributed over the range |
654 | | * [@begin..@end). |
655 | | * |
656 | | * Returns: a random number |
657 | | */ |
658 | | gdouble |
659 | | g_random_double_range (gdouble begin, |
660 | | gdouble end) |
661 | 0 | { |
662 | 0 | double result; |
663 | 0 | G_LOCK (global_random); |
664 | 0 | result = g_rand_double_range (get_global_random (), begin, end); |
665 | 0 | G_UNLOCK (global_random); |
666 | 0 | return result; |
667 | 0 | } |
668 | | |
669 | | /** |
670 | | * g_random_set_seed: |
671 | | * @seed: a value to reinitialize the global random number generator |
672 | | * |
673 | | * Sets the seed for the global random number generator, which is used |
674 | | * by the g_random_* functions, to @seed. |
675 | | */ |
676 | | void |
677 | | g_random_set_seed (guint32 seed) |
678 | 0 | { |
679 | 0 | G_LOCK (global_random); |
680 | 0 | g_rand_set_seed (get_global_random (), seed); |
681 | 0 | G_UNLOCK (global_random); |
682 | 0 | } |