/src/libgcrypt/cipher/elgamal.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Elgamal.c - Elgamal Public Key encryption |
2 | | * Copyright (C) 1998, 2000, 2001, 2002, 2003, |
3 | | * 2008 Free Software Foundation, Inc. |
4 | | * Copyright (C) 2013 g10 Code GmbH |
5 | | * |
6 | | * This file is part of Libgcrypt. |
7 | | * |
8 | | * Libgcrypt is free software; you can redistribute it and/or modify |
9 | | * it under the terms of the GNU Lesser General Public License as |
10 | | * published by the Free Software Foundation; either version 2.1 of |
11 | | * the License, or (at your option) any later version. |
12 | | * |
13 | | * Libgcrypt is distributed in the hope that it will be useful, |
14 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 | | * GNU Lesser General Public License for more details. |
17 | | * |
18 | | * You should have received a copy of the GNU Lesser General Public |
19 | | * License along with this program; if not, see <http://www.gnu.org/licenses/>. |
20 | | * |
21 | | * For a description of the algorithm, see: |
22 | | * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996. |
23 | | * ISBN 0-471-11709-9. Pages 476 ff. |
24 | | */ |
25 | | |
26 | | #include <config.h> |
27 | | #include <stdio.h> |
28 | | #include <stdlib.h> |
29 | | #include <string.h> |
30 | | #include "g10lib.h" |
31 | | #include "mpi.h" |
32 | | #include "cipher.h" |
33 | | #include "pubkey-internal.h" |
34 | | |
35 | | |
36 | | /* Blinding is used to mitigate side-channel attacks. You may undef |
37 | | this to speed up the operation in case the system is secured |
38 | | against physical and network mounted side-channel attacks. */ |
39 | | #define USE_BLINDING 1 |
40 | | |
41 | | |
42 | | typedef struct |
43 | | { |
44 | | gcry_mpi_t p; /* prime */ |
45 | | gcry_mpi_t g; /* group generator */ |
46 | | gcry_mpi_t y; /* g^x mod p */ |
47 | | } ELG_public_key; |
48 | | |
49 | | |
50 | | typedef struct |
51 | | { |
52 | | gcry_mpi_t p; /* prime */ |
53 | | gcry_mpi_t g; /* group generator */ |
54 | | gcry_mpi_t y; /* g^x mod p */ |
55 | | gcry_mpi_t x; /* secret exponent */ |
56 | | } ELG_secret_key; |
57 | | |
58 | | |
59 | | static const char *elg_names[] = |
60 | | { |
61 | | "elg", |
62 | | "openpgp-elg", |
63 | | "openpgp-elg-sig", |
64 | | NULL, |
65 | | }; |
66 | | |
67 | | |
68 | | static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie); |
69 | | static gcry_mpi_t gen_k (gcry_mpi_t p); |
70 | | static gcry_err_code_t generate (ELG_secret_key *sk, unsigned nbits, |
71 | | gcry_mpi_t **factors); |
72 | | static int check_secret_key (ELG_secret_key *sk); |
73 | | static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, |
74 | | ELG_public_key *pkey); |
75 | | static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, |
76 | | ELG_secret_key *skey); |
77 | | static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, |
78 | | ELG_secret_key *skey); |
79 | | static int verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, |
80 | | ELG_public_key *pkey); |
81 | | static unsigned int elg_get_nbits (gcry_sexp_t parms); |
82 | | |
83 | | |
84 | | static void (*progress_cb) (void *, const char *, int, int, int); |
85 | | static void *progress_cb_data; |
86 | | |
87 | | void |
88 | | _gcry_register_pk_elg_progress (void (*cb) (void *, const char *, |
89 | | int, int, int), |
90 | | void *cb_data) |
91 | 0 | { |
92 | 0 | progress_cb = cb; |
93 | 0 | progress_cb_data = cb_data; |
94 | 0 | } |
95 | | |
96 | | |
97 | | static void |
98 | | progress (int c) |
99 | 0 | { |
100 | 0 | if (progress_cb) |
101 | 0 | progress_cb (progress_cb_data, "pk_elg", c, 0, 0); |
102 | 0 | } |
103 | | |
104 | | |
105 | | /**************** |
106 | | * Michael Wiener's table on subgroup sizes to match field sizes. |
107 | | * (floating around somewhere, probably based on the paper from |
108 | | * Eurocrypt 96, page 332) |
109 | | */ |
110 | | static unsigned int |
111 | | wiener_map( unsigned int n ) |
112 | 0 | { |
113 | 0 | static struct { unsigned int p_n, q_n; } t[] = |
114 | 0 | { /* p q attack cost */ |
115 | 0 | { 512, 119 }, /* 9 x 10^17 */ |
116 | 0 | { 768, 145 }, /* 6 x 10^21 */ |
117 | 0 | { 1024, 165 }, /* 7 x 10^24 */ |
118 | 0 | { 1280, 183 }, /* 3 x 10^27 */ |
119 | 0 | { 1536, 198 }, /* 7 x 10^29 */ |
120 | 0 | { 1792, 212 }, /* 9 x 10^31 */ |
121 | 0 | { 2048, 225 }, /* 8 x 10^33 */ |
122 | 0 | { 2304, 237 }, /* 5 x 10^35 */ |
123 | 0 | { 2560, 249 }, /* 3 x 10^37 */ |
124 | 0 | { 2816, 259 }, /* 1 x 10^39 */ |
125 | 0 | { 3072, 269 }, /* 3 x 10^40 */ |
126 | 0 | { 3328, 279 }, /* 8 x 10^41 */ |
127 | 0 | { 3584, 288 }, /* 2 x 10^43 */ |
128 | 0 | { 3840, 296 }, /* 4 x 10^44 */ |
129 | 0 | { 4096, 305 }, /* 7 x 10^45 */ |
130 | 0 | { 4352, 313 }, /* 1 x 10^47 */ |
131 | 0 | { 4608, 320 }, /* 2 x 10^48 */ |
132 | 0 | { 4864, 328 }, /* 2 x 10^49 */ |
133 | 0 | { 5120, 335 }, /* 3 x 10^50 */ |
134 | 0 | { 0, 0 } |
135 | 0 | }; |
136 | 0 | int i; |
137 | |
|
138 | 0 | for(i=0; t[i].p_n; i++ ) |
139 | 0 | { |
140 | 0 | if( n <= t[i].p_n ) |
141 | 0 | return t[i].q_n; |
142 | 0 | } |
143 | | /* Not in table - use an arbitrary high number. */ |
144 | 0 | return n / 8 + 200; |
145 | 0 | } |
146 | | |
147 | | static int |
148 | | test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie ) |
149 | 0 | { |
150 | 0 | ELG_public_key pk; |
151 | 0 | gcry_mpi_t test = mpi_new ( 0 ); |
152 | 0 | gcry_mpi_t out1_a = mpi_new ( nbits ); |
153 | 0 | gcry_mpi_t out1_b = mpi_new ( nbits ); |
154 | 0 | gcry_mpi_t out2 = mpi_new ( nbits ); |
155 | 0 | int failed = 0; |
156 | |
|
157 | 0 | pk.p = sk->p; |
158 | 0 | pk.g = sk->g; |
159 | 0 | pk.y = sk->y; |
160 | |
|
161 | 0 | _gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM ); |
162 | |
|
163 | 0 | do_encrypt ( out1_a, out1_b, test, &pk ); |
164 | 0 | decrypt ( out2, out1_a, out1_b, sk ); |
165 | 0 | if ( mpi_cmp( test, out2 ) ) |
166 | 0 | failed |= 1; |
167 | |
|
168 | 0 | sign ( out1_a, out1_b, test, sk ); |
169 | 0 | if ( !verify( out1_a, out1_b, test, &pk ) ) |
170 | 0 | failed |= 2; |
171 | |
|
172 | 0 | _gcry_mpi_release ( test ); |
173 | 0 | _gcry_mpi_release ( out1_a ); |
174 | 0 | _gcry_mpi_release ( out1_b ); |
175 | 0 | _gcry_mpi_release ( out2 ); |
176 | |
|
177 | 0 | if (failed && !nodie) |
178 | 0 | log_fatal ("Elgamal test key for %s %s failed\n", |
179 | 0 | (failed & 1)? "encrypt+decrypt":"", |
180 | 0 | (failed & 2)? "sign+verify":""); |
181 | 0 | if (failed && DBG_CIPHER) |
182 | 0 | log_debug ("Elgamal test key for %s %s failed\n", |
183 | 0 | (failed & 1)? "encrypt+decrypt":"", |
184 | 0 | (failed & 2)? "sign+verify":""); |
185 | |
|
186 | 0 | return failed; |
187 | 0 | } |
188 | | |
189 | | |
190 | | /**************** |
191 | | * Generate a random secret exponent k from prime p, so that k is |
192 | | * relatively prime to p-1. |
193 | | */ |
194 | | static gcry_mpi_t |
195 | | gen_k( gcry_mpi_t p ) |
196 | 0 | { |
197 | 0 | gcry_mpi_t k = mpi_alloc_secure( 0 ); |
198 | 0 | gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) ); |
199 | 0 | gcry_mpi_t p_1 = mpi_copy(p); |
200 | 0 | unsigned int orig_nbits = mpi_get_nbits(p); |
201 | 0 | unsigned int nbits, nbytes; |
202 | 0 | char *rndbuf = NULL; |
203 | |
|
204 | 0 | nbits = orig_nbits; |
205 | |
|
206 | 0 | nbytes = (nbits+7)/8; |
207 | 0 | if( DBG_CIPHER ) |
208 | 0 | log_debug("choosing a random k\n"); |
209 | 0 | mpi_sub_ui( p_1, p, 1); |
210 | 0 | for(;;) |
211 | 0 | { |
212 | 0 | if( !rndbuf || nbits < 32 ) |
213 | 0 | { |
214 | 0 | xfree(rndbuf); |
215 | 0 | rndbuf = _gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM ); |
216 | 0 | } |
217 | 0 | else |
218 | 0 | { |
219 | | /* Change only some of the higher bits. We could improve |
220 | | this by directly requesting more memory at the first call |
221 | | to get_random_bytes() and use this the here maybe it is |
222 | | easier to do this directly in random.c Anyway, it is |
223 | | highly inlikely that we will ever reach this code. */ |
224 | 0 | char *pp = _gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM ); |
225 | 0 | memcpy( rndbuf, pp, 4 ); |
226 | 0 | xfree(pp); |
227 | 0 | } |
228 | 0 | _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 ); |
229 | |
|
230 | 0 | for(;;) |
231 | 0 | { |
232 | 0 | if( !(mpi_cmp( k, p_1 ) < 0) ) /* check: k < (p-1) */ |
233 | 0 | { |
234 | 0 | if( DBG_CIPHER ) |
235 | 0 | progress('+'); |
236 | 0 | break; /* no */ |
237 | 0 | } |
238 | 0 | if( !(mpi_cmp_ui( k, 0 ) > 0) ) /* check: k > 0 */ |
239 | 0 | { |
240 | 0 | if( DBG_CIPHER ) |
241 | 0 | progress('-'); |
242 | 0 | break; /* no */ |
243 | 0 | } |
244 | 0 | if (mpi_gcd( temp, k, p_1 )) |
245 | 0 | goto found; /* okay, k is relative prime to (p-1) */ |
246 | 0 | mpi_add_ui( k, k, 1 ); |
247 | 0 | if( DBG_CIPHER ) |
248 | 0 | progress('.'); |
249 | 0 | } |
250 | 0 | } |
251 | 0 | found: |
252 | 0 | xfree (rndbuf); |
253 | 0 | if( DBG_CIPHER ) |
254 | 0 | progress('\n'); |
255 | 0 | mpi_free(p_1); |
256 | 0 | mpi_free(temp); |
257 | |
|
258 | 0 | return k; |
259 | 0 | } |
260 | | |
261 | | /**************** |
262 | | * Generate a key pair with a key of size NBITS |
263 | | * Returns: 2 structures filled with all needed values |
264 | | * and an array with n-1 factors of (p-1) |
265 | | */ |
266 | | static gcry_err_code_t |
267 | | generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors ) |
268 | 0 | { |
269 | 0 | gcry_err_code_t rc; |
270 | 0 | gcry_mpi_t p; /* the prime */ |
271 | 0 | gcry_mpi_t p_min1; |
272 | 0 | gcry_mpi_t g; |
273 | 0 | gcry_mpi_t x; /* the secret exponent */ |
274 | 0 | gcry_mpi_t y; |
275 | 0 | unsigned int qbits; |
276 | 0 | unsigned int xbits; |
277 | 0 | byte *rndbuf; |
278 | |
|
279 | 0 | p_min1 = mpi_new ( nbits ); |
280 | 0 | qbits = wiener_map( nbits ); |
281 | 0 | if( qbits & 1 ) /* better have a even one */ |
282 | 0 | qbits++; |
283 | 0 | g = mpi_alloc(1); |
284 | 0 | rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors); |
285 | 0 | if (rc) |
286 | 0 | { |
287 | 0 | mpi_free (p_min1); |
288 | 0 | mpi_free (g); |
289 | 0 | return rc; |
290 | 0 | } |
291 | 0 | mpi_sub_ui(p_min1, p, 1); |
292 | | |
293 | | |
294 | | /* Select a random number which has these properties: |
295 | | * 0 < x < p-1 |
296 | | * This must be a very good random number because this is the |
297 | | * secret part. The prime is public and may be shared anyway, |
298 | | * so a random generator level of 1 is used for the prime. |
299 | | * |
300 | | * I don't see a reason to have a x of about the same size |
301 | | * as the p. It should be sufficient to have one about the size |
302 | | * of q or the later used k plus a large safety margin. Decryption |
303 | | * will be much faster with such an x. |
304 | | */ |
305 | 0 | xbits = qbits * 3 / 2; |
306 | 0 | if( xbits >= nbits ) |
307 | 0 | BUG(); |
308 | 0 | x = mpi_snew ( xbits ); |
309 | 0 | if( DBG_CIPHER ) |
310 | 0 | log_debug("choosing a random x of size %u\n", xbits ); |
311 | 0 | rndbuf = NULL; |
312 | 0 | do |
313 | 0 | { |
314 | 0 | if( DBG_CIPHER ) |
315 | 0 | progress('.'); |
316 | 0 | if( rndbuf ) |
317 | 0 | { /* Change only some of the higher bits */ |
318 | 0 | if( xbits < 16 ) /* should never happen ... */ |
319 | 0 | { |
320 | 0 | xfree(rndbuf); |
321 | 0 | rndbuf = _gcry_random_bytes_secure ((xbits+7)/8, |
322 | 0 | GCRY_VERY_STRONG_RANDOM); |
323 | 0 | } |
324 | 0 | else |
325 | 0 | { |
326 | 0 | char *r = _gcry_random_bytes_secure (2, GCRY_VERY_STRONG_RANDOM); |
327 | 0 | memcpy(rndbuf, r, 2 ); |
328 | 0 | xfree (r); |
329 | 0 | } |
330 | 0 | } |
331 | 0 | else |
332 | 0 | { |
333 | 0 | rndbuf = _gcry_random_bytes_secure ((xbits+7)/8, |
334 | 0 | GCRY_VERY_STRONG_RANDOM ); |
335 | 0 | } |
336 | 0 | _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 ); |
337 | 0 | mpi_clear_highbit( x, xbits+1 ); |
338 | 0 | } |
339 | 0 | while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) ); |
340 | 0 | xfree(rndbuf); |
341 | |
|
342 | 0 | y = mpi_new (nbits); |
343 | 0 | mpi_powm( y, g, x, p ); |
344 | |
|
345 | 0 | if( DBG_CIPHER ) |
346 | 0 | { |
347 | 0 | progress ('\n'); |
348 | 0 | log_mpidump ("elg p", p ); |
349 | 0 | log_mpidump ("elg g", g ); |
350 | 0 | log_mpidump ("elg y", y ); |
351 | 0 | log_mpidump ("elg x", x ); |
352 | 0 | } |
353 | | |
354 | | /* Copy the stuff to the key structures */ |
355 | 0 | sk->p = p; |
356 | 0 | sk->g = g; |
357 | 0 | sk->y = y; |
358 | 0 | sk->x = x; |
359 | |
|
360 | 0 | _gcry_mpi_release ( p_min1 ); |
361 | | |
362 | | /* Now we can test our keys (this should never fail!) */ |
363 | 0 | test_keys ( sk, nbits - 64, 0 ); |
364 | |
|
365 | 0 | return 0; |
366 | 0 | } |
367 | | |
368 | | |
369 | | /* Generate a key pair with a key of size NBITS not using a random |
370 | | value for the secret key but the one given as X. This is useful to |
371 | | implement a passphrase based decryption for a public key based |
372 | | encryption. It has appliactions in backup systems. |
373 | | |
374 | | Returns: A structure filled with all needed values and an array |
375 | | with n-1 factors of (p-1). */ |
376 | | static gcry_err_code_t |
377 | | generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x, |
378 | | gcry_mpi_t **ret_factors ) |
379 | 0 | { |
380 | 0 | gcry_err_code_t rc; |
381 | 0 | gcry_mpi_t p; /* The prime. */ |
382 | 0 | gcry_mpi_t p_min1; /* The prime minus 1. */ |
383 | 0 | gcry_mpi_t g; /* The generator. */ |
384 | 0 | gcry_mpi_t y; /* g^x mod p. */ |
385 | 0 | unsigned int qbits; |
386 | 0 | unsigned int xbits; |
387 | |
|
388 | 0 | sk->p = NULL; |
389 | 0 | sk->g = NULL; |
390 | 0 | sk->y = NULL; |
391 | 0 | sk->x = NULL; |
392 | | |
393 | | /* Do a quick check to see whether X is suitable. */ |
394 | 0 | xbits = mpi_get_nbits (x); |
395 | 0 | if ( xbits < 64 || xbits >= nbits ) |
396 | 0 | return GPG_ERR_INV_VALUE; |
397 | | |
398 | 0 | p_min1 = mpi_new ( nbits ); |
399 | 0 | qbits = wiener_map ( nbits ); |
400 | 0 | if ( (qbits & 1) ) /* Better have an even one. */ |
401 | 0 | qbits++; |
402 | 0 | g = mpi_alloc (1); |
403 | 0 | rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors ); |
404 | 0 | if (rc) |
405 | 0 | { |
406 | 0 | mpi_free (p_min1); |
407 | 0 | mpi_free (g); |
408 | 0 | return rc; |
409 | 0 | } |
410 | 0 | mpi_sub_ui (p_min1, p, 1); |
411 | |
|
412 | 0 | if (DBG_CIPHER) |
413 | 0 | log_debug ("using a supplied x of size %u", xbits ); |
414 | 0 | if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) ) |
415 | 0 | { |
416 | 0 | _gcry_mpi_release ( p_min1 ); |
417 | 0 | _gcry_mpi_release ( p ); |
418 | 0 | _gcry_mpi_release ( g ); |
419 | 0 | return GPG_ERR_INV_VALUE; |
420 | 0 | } |
421 | | |
422 | 0 | y = mpi_new (nbits); |
423 | 0 | mpi_powm ( y, g, x, p ); |
424 | |
|
425 | 0 | if ( DBG_CIPHER ) |
426 | 0 | { |
427 | 0 | progress ('\n'); |
428 | 0 | log_mpidump ("elg p", p ); |
429 | 0 | log_mpidump ("elg g", g ); |
430 | 0 | log_mpidump ("elg y", y ); |
431 | 0 | log_mpidump ("elg x", x ); |
432 | 0 | } |
433 | | |
434 | | /* Copy the stuff to the key structures */ |
435 | 0 | sk->p = p; |
436 | 0 | sk->g = g; |
437 | 0 | sk->y = y; |
438 | 0 | sk->x = mpi_copy (x); |
439 | |
|
440 | 0 | _gcry_mpi_release ( p_min1 ); |
441 | | |
442 | | /* Now we can test our keys. */ |
443 | 0 | if ( test_keys ( sk, nbits - 64, 1 ) ) |
444 | 0 | { |
445 | 0 | _gcry_mpi_release ( sk->p ); sk->p = NULL; |
446 | 0 | _gcry_mpi_release ( sk->g ); sk->g = NULL; |
447 | 0 | _gcry_mpi_release ( sk->y ); sk->y = NULL; |
448 | 0 | _gcry_mpi_release ( sk->x ); sk->x = NULL; |
449 | 0 | return GPG_ERR_BAD_SECKEY; |
450 | 0 | } |
451 | | |
452 | 0 | return 0; |
453 | 0 | } |
454 | | |
455 | | |
456 | | /**************** |
457 | | * Test whether the secret key is valid. |
458 | | * Returns: if this is a valid key. |
459 | | */ |
460 | | static int |
461 | | check_secret_key( ELG_secret_key *sk ) |
462 | 0 | { |
463 | 0 | int rc; |
464 | 0 | gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) ); |
465 | |
|
466 | 0 | mpi_powm (y, sk->g, sk->x, sk->p); |
467 | 0 | rc = !mpi_cmp( y, sk->y ); |
468 | 0 | mpi_free( y ); |
469 | 0 | return rc; |
470 | 0 | } |
471 | | |
472 | | |
473 | | static void |
474 | | do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey ) |
475 | 0 | { |
476 | 0 | gcry_mpi_t k; |
477 | | |
478 | | /* Note: maybe we should change the interface, so that it |
479 | | * is possible to check that input is < p and return an |
480 | | * error code. |
481 | | */ |
482 | |
|
483 | 0 | k = gen_k( pkey->p ); |
484 | 0 | mpi_powm (a, pkey->g, k, pkey->p); |
485 | | |
486 | | /* b = (y^k * input) mod p |
487 | | * = ((y^k mod p) * (input mod p)) mod p |
488 | | * and because input is < p |
489 | | * = ((y^k mod p) * input) mod p |
490 | | */ |
491 | 0 | mpi_powm (b, pkey->y, k, pkey->p); |
492 | 0 | mpi_mulm (b, b, input, pkey->p); |
493 | | #if 0 |
494 | | if( DBG_CIPHER ) |
495 | | { |
496 | | log_mpidump("elg encrypted y", pkey->y); |
497 | | log_mpidump("elg encrypted p", pkey->p); |
498 | | log_mpidump("elg encrypted k", k); |
499 | | log_mpidump("elg encrypted M", input); |
500 | | log_mpidump("elg encrypted a", a); |
501 | | log_mpidump("elg encrypted b", b); |
502 | | } |
503 | | #endif |
504 | 0 | mpi_free(k); |
505 | 0 | } |
506 | | |
507 | | |
508 | | |
509 | | |
510 | | static void |
511 | | decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey ) |
512 | 0 | { |
513 | 0 | gcry_mpi_t t1, t2, r, r1, h; |
514 | 0 | unsigned int nbits = mpi_get_nbits (skey->p); |
515 | 0 | gcry_mpi_t x_blind; |
516 | |
|
517 | 0 | mpi_normalize (a); |
518 | 0 | mpi_normalize (b); |
519 | |
|
520 | 0 | t1 = mpi_snew (nbits); |
521 | |
|
522 | 0 | #ifdef USE_BLINDING |
523 | |
|
524 | 0 | t2 = mpi_snew (nbits); |
525 | 0 | r = mpi_new (nbits); |
526 | 0 | r1 = mpi_new (nbits); |
527 | 0 | h = mpi_new (nbits); |
528 | 0 | x_blind = mpi_snew (nbits); |
529 | | |
530 | | /* We need a random number of about the prime size. The random |
531 | | number merely needs to be unpredictable; thus we use level 0. */ |
532 | 0 | _gcry_mpi_randomize (r, nbits, GCRY_WEAK_RANDOM); |
533 | | |
534 | | /* Also, exponent blinding: x_blind = x + (p-1)*r1 */ |
535 | 0 | _gcry_mpi_randomize (r1, nbits, GCRY_WEAK_RANDOM); |
536 | 0 | mpi_set_highbit (r1, nbits - 1); |
537 | 0 | mpi_sub_ui (h, skey->p, 1); |
538 | 0 | mpi_mul (x_blind, h, r1); |
539 | 0 | mpi_add (x_blind, skey->x, x_blind); |
540 | | |
541 | | /* t1 = r^x mod p */ |
542 | 0 | mpi_powm (t1, r, x_blind, skey->p); |
543 | | /* t2 = (a * r)^-x mod p */ |
544 | 0 | mpi_mulm (t2, a, r, skey->p); |
545 | 0 | mpi_powm (t2, t2, x_blind, skey->p); |
546 | 0 | mpi_invm (t2, t2, skey->p); |
547 | | /* t1 = (t1 * t2) mod p*/ |
548 | 0 | mpi_mulm (t1, t1, t2, skey->p); |
549 | |
|
550 | 0 | mpi_free (x_blind); |
551 | 0 | mpi_free (h); |
552 | 0 | mpi_free (r1); |
553 | 0 | mpi_free (r); |
554 | 0 | mpi_free (t2); |
555 | |
|
556 | | #else /*!USE_BLINDING*/ |
557 | | |
558 | | /* output = b/(a^x) mod p */ |
559 | | mpi_powm (t1, a, skey->x, skey->p); |
560 | | mpi_invm (t1, t1, skey->p); |
561 | | |
562 | | #endif /*!USE_BLINDING*/ |
563 | |
|
564 | 0 | mpi_mulm (output, b, t1, skey->p); |
565 | |
|
566 | | #if 0 |
567 | | if( DBG_CIPHER ) |
568 | | { |
569 | | log_mpidump ("elg decrypted x", skey->x); |
570 | | log_mpidump ("elg decrypted p", skey->p); |
571 | | log_mpidump ("elg decrypted a", a); |
572 | | log_mpidump ("elg decrypted b", b); |
573 | | log_mpidump ("elg decrypted M", output); |
574 | | } |
575 | | #endif |
576 | 0 | mpi_free (t1); |
577 | 0 | } |
578 | | |
579 | | |
580 | | /**************** |
581 | | * Make an Elgamal signature out of INPUT |
582 | | */ |
583 | | |
584 | | static void |
585 | | sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey ) |
586 | 0 | { |
587 | 0 | gcry_mpi_t k; |
588 | 0 | gcry_mpi_t t = mpi_alloc( mpi_get_nlimbs(a) ); |
589 | 0 | gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) ); |
590 | 0 | gcry_mpi_t p_1 = mpi_copy(skey->p); |
591 | | |
592 | | /* |
593 | | * b = (t * inv) mod (p-1) |
594 | | * b = (t * inv(k,(p-1),(p-1)) mod (p-1) |
595 | | * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1) |
596 | | * |
597 | | */ |
598 | 0 | mpi_sub_ui(p_1, p_1, 1); |
599 | 0 | k = gen_k( skey->p ); |
600 | 0 | mpi_powm( a, skey->g, k, skey->p ); |
601 | 0 | mpi_mul(t, skey->x, a ); |
602 | 0 | mpi_subm(t, input, t, p_1 ); |
603 | 0 | mpi_invm(inv, k, p_1 ); |
604 | 0 | mpi_mulm(b, t, inv, p_1 ); |
605 | |
|
606 | | #if 0 |
607 | | if( DBG_CIPHER ) |
608 | | { |
609 | | log_mpidump ("elg sign p", skey->p); |
610 | | log_mpidump ("elg sign g", skey->g); |
611 | | log_mpidump ("elg sign y", skey->y); |
612 | | log_mpidump ("elg sign x", skey->x); |
613 | | log_mpidump ("elg sign k", k); |
614 | | log_mpidump ("elg sign M", input); |
615 | | log_mpidump ("elg sign a", a); |
616 | | log_mpidump ("elg sign b", b); |
617 | | } |
618 | | #endif |
619 | 0 | mpi_free(k); |
620 | 0 | mpi_free(t); |
621 | 0 | mpi_free(inv); |
622 | 0 | mpi_free(p_1); |
623 | 0 | } |
624 | | |
625 | | |
626 | | /**************** |
627 | | * Returns true if the signature composed of A and B is valid. |
628 | | */ |
629 | | static int |
630 | | verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey ) |
631 | 655 | { |
632 | 655 | int rc; |
633 | 655 | gcry_mpi_t t1; |
634 | 655 | gcry_mpi_t t2; |
635 | 655 | gcry_mpi_t base[4]; |
636 | 655 | gcry_mpi_t ex[4]; |
637 | | |
638 | 655 | if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) ) |
639 | 10 | return 0; /* assertion 0 < a < p failed */ |
640 | | |
641 | 645 | t1 = mpi_alloc( mpi_get_nlimbs(a) ); |
642 | 645 | t2 = mpi_alloc( mpi_get_nlimbs(a) ); |
643 | | |
644 | | #if 0 |
645 | | /* t1 = (y^a mod p) * (a^b mod p) mod p */ |
646 | | gcry_mpi_powm( t1, pkey->y, a, pkey->p ); |
647 | | gcry_mpi_powm( t2, a, b, pkey->p ); |
648 | | mpi_mulm( t1, t1, t2, pkey->p ); |
649 | | |
650 | | /* t2 = g ^ input mod p */ |
651 | | gcry_mpi_powm( t2, pkey->g, input, pkey->p ); |
652 | | |
653 | | rc = !mpi_cmp( t1, t2 ); |
654 | | #elif 0 |
655 | | /* t1 = (y^a mod p) * (a^b mod p) mod p */ |
656 | | base[0] = pkey->y; ex[0] = a; |
657 | | base[1] = a; ex[1] = b; |
658 | | base[2] = NULL; ex[2] = NULL; |
659 | | mpi_mulpowm( t1, base, ex, pkey->p ); |
660 | | |
661 | | /* t2 = g ^ input mod p */ |
662 | | gcry_mpi_powm( t2, pkey->g, input, pkey->p ); |
663 | | |
664 | | rc = !mpi_cmp( t1, t2 ); |
665 | | #else |
666 | | /* t1 = g ^ - input * y ^ a * a ^ b mod p */ |
667 | 645 | mpi_invm(t2, pkey->g, pkey->p ); |
668 | 645 | base[0] = t2 ; ex[0] = input; |
669 | 645 | base[1] = pkey->y; ex[1] = a; |
670 | 645 | base[2] = a; ex[2] = b; |
671 | 645 | base[3] = NULL; ex[3] = NULL; |
672 | 645 | mpi_mulpowm( t1, base, ex, pkey->p ); |
673 | 645 | rc = !mpi_cmp_ui( t1, 1 ); |
674 | | |
675 | 645 | #endif |
676 | | |
677 | 645 | mpi_free(t1); |
678 | 645 | mpi_free(t2); |
679 | 645 | return rc; |
680 | 655 | } |
681 | | |
682 | | /********************************************* |
683 | | ************** interface ****************** |
684 | | *********************************************/ |
685 | | |
686 | | static gpg_err_code_t |
687 | | elg_generate (const gcry_sexp_t genparms, gcry_sexp_t *r_skey) |
688 | 0 | { |
689 | 0 | gpg_err_code_t rc; |
690 | 0 | unsigned int nbits; |
691 | 0 | ELG_secret_key sk; |
692 | 0 | gcry_mpi_t xvalue = NULL; |
693 | 0 | gcry_sexp_t l1; |
694 | 0 | gcry_mpi_t *factors = NULL; |
695 | 0 | gcry_sexp_t misc_info = NULL; |
696 | |
|
697 | 0 | memset (&sk, 0, sizeof sk); |
698 | |
|
699 | 0 | rc = _gcry_pk_util_get_nbits (genparms, &nbits); |
700 | 0 | if (rc) |
701 | 0 | return rc; |
702 | | |
703 | | /* Parse the optional xvalue element. */ |
704 | 0 | l1 = sexp_find_token (genparms, "xvalue", 0); |
705 | 0 | if (l1) |
706 | 0 | { |
707 | 0 | xvalue = sexp_nth_mpi (l1, 1, 0); |
708 | 0 | sexp_release (l1); |
709 | 0 | if (!xvalue) |
710 | 0 | return GPG_ERR_BAD_MPI; |
711 | 0 | } |
712 | | |
713 | 0 | if (xvalue) |
714 | 0 | { |
715 | 0 | rc = generate_using_x (&sk, nbits, xvalue, &factors); |
716 | 0 | mpi_free (xvalue); |
717 | 0 | } |
718 | 0 | else |
719 | 0 | { |
720 | 0 | rc = generate (&sk, nbits, &factors); |
721 | 0 | } |
722 | 0 | if (rc) |
723 | 0 | goto leave; |
724 | | |
725 | 0 | if (factors && factors[0]) |
726 | 0 | { |
727 | 0 | int nfac; |
728 | 0 | void **arg_list; |
729 | 0 | char *buffer, *p; |
730 | |
|
731 | 0 | for (nfac = 0; factors[nfac]; nfac++) |
732 | 0 | ; |
733 | 0 | arg_list = xtrycalloc (nfac+1, sizeof *arg_list); |
734 | 0 | if (!arg_list) |
735 | 0 | { |
736 | 0 | rc = gpg_err_code_from_syserror (); |
737 | 0 | goto leave; |
738 | 0 | } |
739 | 0 | buffer = xtrymalloc (30 + nfac*2 + 2 + 1); |
740 | 0 | if (!buffer) |
741 | 0 | { |
742 | 0 | rc = gpg_err_code_from_syserror (); |
743 | 0 | xfree (arg_list); |
744 | 0 | goto leave; |
745 | 0 | } |
746 | 0 | p = stpcpy (buffer, "(misc-key-info(pm1-factors"); |
747 | 0 | for(nfac = 0; factors[nfac]; nfac++) |
748 | 0 | { |
749 | 0 | p = stpcpy (p, "%m"); |
750 | 0 | arg_list[nfac] = factors + nfac; |
751 | 0 | } |
752 | 0 | p = stpcpy (p, "))"); |
753 | 0 | rc = sexp_build_array (&misc_info, NULL, buffer, arg_list); |
754 | 0 | xfree (arg_list); |
755 | 0 | xfree (buffer); |
756 | 0 | if (rc) |
757 | 0 | goto leave; |
758 | 0 | } |
759 | | |
760 | 0 | rc = sexp_build (r_skey, NULL, |
761 | 0 | "(key-data" |
762 | 0 | " (public-key" |
763 | 0 | " (elg(p%m)(g%m)(y%m)))" |
764 | 0 | " (private-key" |
765 | 0 | " (elg(p%m)(g%m)(y%m)(x%m)))" |
766 | 0 | " %S)", |
767 | 0 | sk.p, sk.g, sk.y, |
768 | 0 | sk.p, sk.g, sk.y, sk.x, |
769 | 0 | misc_info); |
770 | |
|
771 | 0 | leave: |
772 | 0 | mpi_free (sk.p); |
773 | 0 | mpi_free (sk.g); |
774 | 0 | mpi_free (sk.y); |
775 | 0 | mpi_free (sk.x); |
776 | 0 | sexp_release (misc_info); |
777 | 0 | if (factors) |
778 | 0 | { |
779 | 0 | gcry_mpi_t *mp; |
780 | 0 | for (mp = factors; *mp; mp++) |
781 | 0 | mpi_free (*mp); |
782 | 0 | xfree (factors); |
783 | 0 | } |
784 | |
|
785 | 0 | return rc; |
786 | 0 | } |
787 | | |
788 | | |
789 | | static gcry_err_code_t |
790 | | elg_check_secret_key (gcry_sexp_t keyparms) |
791 | 0 | { |
792 | 0 | gcry_err_code_t rc; |
793 | 0 | ELG_secret_key sk = {NULL, NULL, NULL, NULL}; |
794 | |
|
795 | 0 | rc = sexp_extract_param (keyparms, NULL, "pgyx", |
796 | 0 | &sk.p, &sk.g, &sk.y, &sk.x, |
797 | 0 | NULL); |
798 | 0 | if (rc) |
799 | 0 | goto leave; |
800 | | |
801 | 0 | if (!check_secret_key (&sk)) |
802 | 0 | rc = GPG_ERR_BAD_SECKEY; |
803 | |
|
804 | 0 | leave: |
805 | 0 | _gcry_mpi_release (sk.p); |
806 | 0 | _gcry_mpi_release (sk.g); |
807 | 0 | _gcry_mpi_release (sk.y); |
808 | 0 | _gcry_mpi_release (sk.x); |
809 | 0 | if (DBG_CIPHER) |
810 | 0 | log_debug ("elg_testkey => %s\n", gpg_strerror (rc)); |
811 | 0 | return rc; |
812 | 0 | } |
813 | | |
814 | | |
815 | | static gcry_err_code_t |
816 | | elg_encrypt (gcry_sexp_t *r_ciph, gcry_sexp_t s_data, gcry_sexp_t keyparms) |
817 | 0 | { |
818 | 0 | gcry_err_code_t rc; |
819 | 0 | struct pk_encoding_ctx ctx; |
820 | 0 | gcry_mpi_t mpi_a = NULL; |
821 | 0 | gcry_mpi_t mpi_b = NULL; |
822 | 0 | gcry_mpi_t data = NULL; |
823 | 0 | ELG_public_key pk = { NULL, NULL, NULL }; |
824 | |
|
825 | 0 | _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_ENCRYPT, |
826 | 0 | elg_get_nbits (keyparms)); |
827 | | |
828 | | /* Extract the data. */ |
829 | 0 | rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); |
830 | 0 | if (rc) |
831 | 0 | goto leave; |
832 | 0 | if (DBG_CIPHER) |
833 | 0 | log_mpidump ("elg_encrypt data", data); |
834 | 0 | if (mpi_is_opaque (data)) |
835 | 0 | { |
836 | 0 | rc = GPG_ERR_INV_DATA; |
837 | 0 | goto leave; |
838 | 0 | } |
839 | | |
840 | | /* Extract the key. */ |
841 | 0 | rc = sexp_extract_param (keyparms, NULL, "pgy", |
842 | 0 | &pk.p, &pk.g, &pk.y, NULL); |
843 | 0 | if (rc) |
844 | 0 | goto leave; |
845 | 0 | if (DBG_CIPHER) |
846 | 0 | { |
847 | 0 | log_mpidump ("elg_encrypt p", pk.p); |
848 | 0 | log_mpidump ("elg_encrypt g", pk.g); |
849 | 0 | log_mpidump ("elg_encrypt y", pk.y); |
850 | 0 | } |
851 | | |
852 | | /* Do Elgamal computation and build result. */ |
853 | 0 | mpi_a = mpi_new (0); |
854 | 0 | mpi_b = mpi_new (0); |
855 | 0 | do_encrypt (mpi_a, mpi_b, data, &pk); |
856 | 0 | rc = sexp_build (r_ciph, NULL, "(enc-val(elg(a%m)(b%m)))", mpi_a, mpi_b); |
857 | |
|
858 | 0 | leave: |
859 | 0 | _gcry_mpi_release (mpi_a); |
860 | 0 | _gcry_mpi_release (mpi_b); |
861 | 0 | _gcry_mpi_release (pk.p); |
862 | 0 | _gcry_mpi_release (pk.g); |
863 | 0 | _gcry_mpi_release (pk.y); |
864 | 0 | _gcry_mpi_release (data); |
865 | 0 | _gcry_pk_util_free_encoding_ctx (&ctx); |
866 | 0 | if (DBG_CIPHER) |
867 | 0 | log_debug ("elg_encrypt => %s\n", gpg_strerror (rc)); |
868 | 0 | return rc; |
869 | 0 | } |
870 | | |
871 | | |
872 | | static gcry_err_code_t |
873 | | elg_decrypt (gcry_sexp_t *r_plain, gcry_sexp_t s_data, gcry_sexp_t keyparms) |
874 | 0 | { |
875 | 0 | gpg_err_code_t rc; |
876 | 0 | struct pk_encoding_ctx ctx; |
877 | 0 | gcry_sexp_t l1 = NULL; |
878 | 0 | gcry_mpi_t data_a = NULL; |
879 | 0 | gcry_mpi_t data_b = NULL; |
880 | 0 | ELG_secret_key sk = {NULL, NULL, NULL, NULL}; |
881 | 0 | gcry_mpi_t plain = NULL; |
882 | 0 | unsigned char *unpad = NULL; |
883 | 0 | size_t unpadlen = 0; |
884 | |
|
885 | 0 | _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_DECRYPT, |
886 | 0 | elg_get_nbits (keyparms)); |
887 | | |
888 | | /* Extract the data. */ |
889 | 0 | rc = _gcry_pk_util_preparse_encval (s_data, elg_names, &l1, &ctx); |
890 | 0 | if (rc) |
891 | 0 | goto leave; |
892 | 0 | rc = sexp_extract_param (l1, NULL, "ab", &data_a, &data_b, NULL); |
893 | 0 | if (rc) |
894 | 0 | goto leave; |
895 | 0 | if (DBG_CIPHER) |
896 | 0 | { |
897 | 0 | log_printmpi ("elg_decrypt d_a", data_a); |
898 | 0 | log_printmpi ("elg_decrypt d_b", data_b); |
899 | 0 | } |
900 | 0 | if (mpi_is_opaque (data_a) || mpi_is_opaque (data_b)) |
901 | 0 | { |
902 | 0 | rc = GPG_ERR_INV_DATA; |
903 | 0 | goto leave; |
904 | 0 | } |
905 | | |
906 | | /* Extract the key. */ |
907 | 0 | rc = sexp_extract_param (keyparms, NULL, "pgyx", |
908 | 0 | &sk.p, &sk.g, &sk.y, &sk.x, |
909 | 0 | NULL); |
910 | 0 | if (rc) |
911 | 0 | goto leave; |
912 | 0 | if (DBG_CIPHER) |
913 | 0 | { |
914 | 0 | log_printmpi ("elg_decrypt p", sk.p); |
915 | 0 | log_printmpi ("elg_decrypt g", sk.g); |
916 | 0 | log_printmpi ("elg_decrypt y", sk.y); |
917 | 0 | if (!fips_mode ()) |
918 | 0 | log_printmpi ("elg_decrypt x", sk.x); |
919 | 0 | } |
920 | |
|
921 | 0 | plain = mpi_snew (ctx.nbits); |
922 | 0 | decrypt (plain, data_a, data_b, &sk); |
923 | 0 | if (DBG_CIPHER) |
924 | 0 | log_printmpi ("elg_decrypt res", plain); |
925 | | |
926 | | /* Reverse the encoding and build the s-expression. */ |
927 | 0 | switch (ctx.encoding) |
928 | 0 | { |
929 | 0 | case PUBKEY_ENC_PKCS1: |
930 | 0 | rc = _gcry_rsa_pkcs1_decode_for_enc (&unpad, &unpadlen, ctx.nbits, plain); |
931 | 0 | mpi_free (plain); plain = NULL; |
932 | 0 | if (!rc) |
933 | 0 | rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); |
934 | 0 | break; |
935 | | |
936 | 0 | case PUBKEY_ENC_OAEP: |
937 | 0 | rc = _gcry_rsa_oaep_decode (&unpad, &unpadlen, |
938 | 0 | ctx.nbits, ctx.hash_algo, plain, |
939 | 0 | ctx.label, ctx.labellen); |
940 | 0 | mpi_free (plain); plain = NULL; |
941 | 0 | if (!rc) |
942 | 0 | rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad); |
943 | 0 | break; |
944 | | |
945 | 0 | default: |
946 | | /* Raw format. For backward compatibility we need to assume a |
947 | | signed mpi by using the sexp format string "%m". */ |
948 | 0 | rc = sexp_build (r_plain, NULL, |
949 | 0 | (ctx.flags & PUBKEY_FLAG_LEGACYRESULT) |
950 | 0 | ? "%m" : "(value %m)", |
951 | 0 | plain); |
952 | 0 | break; |
953 | 0 | } |
954 | | |
955 | | |
956 | 0 | leave: |
957 | 0 | xfree (unpad); |
958 | 0 | _gcry_mpi_release (plain); |
959 | 0 | _gcry_mpi_release (sk.p); |
960 | 0 | _gcry_mpi_release (sk.g); |
961 | 0 | _gcry_mpi_release (sk.y); |
962 | 0 | _gcry_mpi_release (sk.x); |
963 | 0 | _gcry_mpi_release (data_a); |
964 | 0 | _gcry_mpi_release (data_b); |
965 | 0 | sexp_release (l1); |
966 | 0 | _gcry_pk_util_free_encoding_ctx (&ctx); |
967 | 0 | if (DBG_CIPHER) |
968 | 0 | log_debug ("elg_decrypt => %s\n", gpg_strerror (rc)); |
969 | 0 | return rc; |
970 | 0 | } |
971 | | |
972 | | |
973 | | static gcry_err_code_t |
974 | | elg_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms) |
975 | 0 | { |
976 | 0 | gcry_err_code_t rc; |
977 | 0 | struct pk_encoding_ctx ctx; |
978 | 0 | gcry_mpi_t data = NULL; |
979 | 0 | ELG_secret_key sk = {NULL, NULL, NULL, NULL}; |
980 | 0 | gcry_mpi_t sig_r = NULL; |
981 | 0 | gcry_mpi_t sig_s = NULL; |
982 | |
|
983 | 0 | _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_SIGN, |
984 | 0 | elg_get_nbits (keyparms)); |
985 | | |
986 | | /* Extract the data. */ |
987 | 0 | rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); |
988 | 0 | if (rc) |
989 | 0 | goto leave; |
990 | 0 | if (DBG_CIPHER) |
991 | 0 | log_mpidump ("elg_sign data", data); |
992 | 0 | if (mpi_is_opaque (data)) |
993 | 0 | { |
994 | 0 | rc = GPG_ERR_INV_DATA; |
995 | 0 | goto leave; |
996 | 0 | } |
997 | | |
998 | | /* Extract the key. */ |
999 | 0 | rc = sexp_extract_param (keyparms, NULL, "pgyx", |
1000 | 0 | &sk.p, &sk.g, &sk.y, &sk.x, NULL); |
1001 | 0 | if (rc) |
1002 | 0 | goto leave; |
1003 | 0 | if (DBG_CIPHER) |
1004 | 0 | { |
1005 | 0 | log_mpidump ("elg_sign p", sk.p); |
1006 | 0 | log_mpidump ("elg_sign g", sk.g); |
1007 | 0 | log_mpidump ("elg_sign y", sk.y); |
1008 | 0 | if (!fips_mode ()) |
1009 | 0 | log_mpidump ("elg_sign x", sk.x); |
1010 | 0 | } |
1011 | |
|
1012 | 0 | sig_r = mpi_new (0); |
1013 | 0 | sig_s = mpi_new (0); |
1014 | 0 | sign (sig_r, sig_s, data, &sk); |
1015 | 0 | if (DBG_CIPHER) |
1016 | 0 | { |
1017 | 0 | log_mpidump ("elg_sign sig_r", sig_r); |
1018 | 0 | log_mpidump ("elg_sign sig_s", sig_s); |
1019 | 0 | } |
1020 | 0 | rc = sexp_build (r_sig, NULL, "(sig-val(elg(r%M)(s%M)))", sig_r, sig_s); |
1021 | |
|
1022 | 0 | leave: |
1023 | 0 | _gcry_mpi_release (sig_r); |
1024 | 0 | _gcry_mpi_release (sig_s); |
1025 | 0 | _gcry_mpi_release (sk.p); |
1026 | 0 | _gcry_mpi_release (sk.g); |
1027 | 0 | _gcry_mpi_release (sk.y); |
1028 | 0 | _gcry_mpi_release (sk.x); |
1029 | 0 | _gcry_mpi_release (data); |
1030 | 0 | _gcry_pk_util_free_encoding_ctx (&ctx); |
1031 | 0 | if (DBG_CIPHER) |
1032 | 0 | log_debug ("elg_sign => %s\n", gpg_strerror (rc)); |
1033 | 0 | return rc; |
1034 | 0 | } |
1035 | | |
1036 | | |
1037 | | static gcry_err_code_t |
1038 | | elg_verify (gcry_sexp_t s_sig, gcry_sexp_t s_data, gcry_sexp_t s_keyparms) |
1039 | 655 | { |
1040 | 655 | gcry_err_code_t rc; |
1041 | 655 | struct pk_encoding_ctx ctx; |
1042 | 655 | gcry_sexp_t l1 = NULL; |
1043 | 655 | gcry_mpi_t sig_r = NULL; |
1044 | 655 | gcry_mpi_t sig_s = NULL; |
1045 | 655 | gcry_mpi_t data = NULL; |
1046 | 655 | ELG_public_key pk = { NULL, NULL, NULL }; |
1047 | | |
1048 | 655 | _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY, |
1049 | 655 | elg_get_nbits (s_keyparms)); |
1050 | | |
1051 | | /* Extract the data. */ |
1052 | 655 | rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx); |
1053 | 655 | if (rc) |
1054 | 0 | goto leave; |
1055 | 655 | if (DBG_CIPHER) |
1056 | 0 | log_mpidump ("elg_verify data", data); |
1057 | 655 | if (mpi_is_opaque (data)) |
1058 | 0 | { |
1059 | 0 | rc = GPG_ERR_INV_DATA; |
1060 | 0 | goto leave; |
1061 | 0 | } |
1062 | | |
1063 | | /* Extract the signature value. */ |
1064 | 655 | rc = _gcry_pk_util_preparse_sigval (s_sig, elg_names, &l1, NULL); |
1065 | 655 | if (rc) |
1066 | 0 | goto leave; |
1067 | 655 | rc = sexp_extract_param (l1, NULL, "rs", &sig_r, &sig_s, NULL); |
1068 | 655 | if (rc) |
1069 | 0 | goto leave; |
1070 | 655 | if (DBG_CIPHER) |
1071 | 0 | { |
1072 | 0 | log_mpidump ("elg_verify s_r", sig_r); |
1073 | 0 | log_mpidump ("elg_verify s_s", sig_s); |
1074 | 0 | } |
1075 | | |
1076 | | /* Extract the key. */ |
1077 | 655 | rc = sexp_extract_param (s_keyparms, NULL, "pgy", |
1078 | 655 | &pk.p, &pk.g, &pk.y, NULL); |
1079 | 655 | if (rc) |
1080 | 0 | goto leave; |
1081 | 655 | if (DBG_CIPHER) |
1082 | 0 | { |
1083 | 0 | log_mpidump ("elg_verify p", pk.p); |
1084 | 0 | log_mpidump ("elg_verify g", pk.g); |
1085 | 0 | log_mpidump ("elg_verify y", pk.y); |
1086 | 0 | } |
1087 | | |
1088 | | /* Verify the signature. */ |
1089 | 655 | if (!verify (sig_r, sig_s, data, &pk)) |
1090 | 655 | rc = GPG_ERR_BAD_SIGNATURE; |
1091 | | |
1092 | 655 | leave: |
1093 | 655 | _gcry_mpi_release (pk.p); |
1094 | 655 | _gcry_mpi_release (pk.g); |
1095 | 655 | _gcry_mpi_release (pk.y); |
1096 | 655 | _gcry_mpi_release (data); |
1097 | 655 | _gcry_mpi_release (sig_r); |
1098 | 655 | _gcry_mpi_release (sig_s); |
1099 | 655 | sexp_release (l1); |
1100 | 655 | _gcry_pk_util_free_encoding_ctx (&ctx); |
1101 | 655 | if (DBG_CIPHER) |
1102 | 0 | log_debug ("elg_verify => %s\n", rc?gpg_strerror (rc):"Good"); |
1103 | 655 | return rc; |
1104 | 655 | } |
1105 | | |
1106 | | |
1107 | | /* Return the number of bits for the key described by PARMS. On error |
1108 | | * 0 is returned. The format of PARMS starts with the algorithm name; |
1109 | | * for example: |
1110 | | * |
1111 | | * (dsa |
1112 | | * (p <mpi>) |
1113 | | * (g <mpi>) |
1114 | | * (y <mpi>)) |
1115 | | * |
1116 | | * More parameters may be given but we only need P here. |
1117 | | */ |
1118 | | static unsigned int |
1119 | | elg_get_nbits (gcry_sexp_t parms) |
1120 | 2.27k | { |
1121 | 2.27k | gcry_sexp_t l1; |
1122 | 2.27k | gcry_mpi_t p; |
1123 | 2.27k | unsigned int nbits; |
1124 | | |
1125 | 2.27k | l1 = sexp_find_token (parms, "p", 1); |
1126 | 2.27k | if (!l1) |
1127 | 0 | return 0; /* Parameter P not found. */ |
1128 | | |
1129 | 2.27k | p= sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG); |
1130 | 2.27k | sexp_release (l1); |
1131 | 2.27k | nbits = p? mpi_get_nbits (p) : 0; |
1132 | 2.27k | _gcry_mpi_release (p); |
1133 | 2.27k | return nbits; |
1134 | 2.27k | } |
1135 | | |
1136 | | |
1137 | | |
1138 | | gcry_pk_spec_t _gcry_pubkey_spec_elg = |
1139 | | { |
1140 | | GCRY_PK_ELG, { 0, 0 }, |
1141 | | (GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR), |
1142 | | "ELG", elg_names, |
1143 | | "pgy", "pgyx", "ab", "rs", "pgy", |
1144 | | elg_generate, |
1145 | | elg_check_secret_key, |
1146 | | elg_encrypt, |
1147 | | elg_decrypt, |
1148 | | elg_sign, |
1149 | | elg_verify, |
1150 | | elg_get_nbits, |
1151 | | }; |