/src/libgcrypt/mpi/mpih-div.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* mpih-div.c - MPI helper functions |
2 | | * Copyright (C) 1994, 1996, 1998, 2000, |
3 | | * 2001, 2002 Free Software Foundation, Inc. |
4 | | * |
5 | | * This file is part of Libgcrypt. |
6 | | * |
7 | | * Libgcrypt is free software; you can redistribute it and/or modify |
8 | | * it under the terms of the GNU Lesser General Public License as |
9 | | * published by the Free Software Foundation; either version 2.1 of |
10 | | * the License, or (at your option) any later version. |
11 | | * |
12 | | * Libgcrypt is distributed in the hope that it will be useful, |
13 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | | * GNU Lesser General Public License for more details. |
16 | | * |
17 | | * You should have received a copy of the GNU Lesser General Public |
18 | | * License along with this program; if not, write to the Free Software |
19 | | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
20 | | * |
21 | | * Note: This code is heavily based on the GNU MP Library. |
22 | | * Actually it's the same code with only minor changes in the |
23 | | * way the data is stored; this is to support the abstraction |
24 | | * of an optional secure memory allocation which may be used |
25 | | * to avoid revealing of sensitive data due to paging etc. |
26 | | */ |
27 | | |
28 | | #include <config.h> |
29 | | #include <stdio.h> |
30 | | #include <stdlib.h> |
31 | | #include "mpi-internal.h" |
32 | | #include "longlong.h" |
33 | | |
34 | | #ifndef UMUL_TIME |
35 | | #define UMUL_TIME 1 |
36 | | #endif |
37 | | #ifndef UDIV_TIME |
38 | | #define UDIV_TIME UMUL_TIME |
39 | | #endif |
40 | | |
41 | | /* FIXME: We should be using invert_limb (or invert_normalized_limb) |
42 | | * here (not udiv_qrnnd). |
43 | | */ |
44 | | |
45 | | mpi_limb_t |
46 | | _gcry_mpih_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, |
47 | | mpi_limb_t divisor_limb) |
48 | 0 | { |
49 | 0 | mpi_size_t i; |
50 | 0 | mpi_limb_t n1, n0, r; |
51 | 0 | mpi_limb_t dummy GCC_ATTR_UNUSED; |
52 | | |
53 | | /* Botch: Should this be handled at all? Rely on callers? */ |
54 | 0 | if( !dividend_size ) |
55 | 0 | return 0; |
56 | | |
57 | | /* If multiplication is much faster than division, and the |
58 | | * dividend is large, pre-invert the divisor, and use |
59 | | * only multiplications in the inner loop. |
60 | | * |
61 | | * This test should be read: |
62 | | * Does it ever help to use udiv_qrnnd_preinv? |
63 | | * && Does what we save compensate for the inversion overhead? |
64 | | */ |
65 | 0 | if( UDIV_TIME > (2 * UMUL_TIME + 6) |
66 | 0 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME ) { |
67 | 0 | int normalization_steps; |
68 | |
|
69 | 0 | count_leading_zeros( normalization_steps, divisor_limb ); |
70 | 0 | if( normalization_steps ) { |
71 | 0 | mpi_limb_t divisor_limb_inverted; |
72 | |
|
73 | 0 | divisor_limb <<= normalization_steps; |
74 | | |
75 | | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
76 | | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
77 | | * most significant bit (with weight 2**N) implicit. |
78 | | * |
79 | | * Special case for DIVISOR_LIMB == 100...000. |
80 | | */ |
81 | 0 | if( !(divisor_limb << 1) ) |
82 | 0 | divisor_limb_inverted = ~(mpi_limb_t)0; |
83 | 0 | else |
84 | 0 | udiv_qrnnd(divisor_limb_inverted, dummy, |
85 | 0 | -divisor_limb, 0, divisor_limb); |
86 | |
|
87 | 0 | n1 = dividend_ptr[dividend_size - 1]; |
88 | 0 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
89 | | |
90 | | /* Possible optimization: |
91 | | * if (r == 0 |
92 | | * && divisor_limb > ((n1 << normalization_steps) |
93 | | * | (dividend_ptr[dividend_size - 2] >> ...))) |
94 | | * ...one division less... |
95 | | */ |
96 | 0 | for( i = dividend_size - 2; i >= 0; i--) { |
97 | 0 | n0 = dividend_ptr[i]; |
98 | 0 | UDIV_QRNND_PREINV(dummy, r, r, |
99 | 0 | ((n1 << normalization_steps) |
100 | 0 | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), |
101 | 0 | divisor_limb, divisor_limb_inverted); |
102 | 0 | n1 = n0; |
103 | 0 | } |
104 | 0 | UDIV_QRNND_PREINV(dummy, r, r, |
105 | 0 | n1 << normalization_steps, |
106 | 0 | divisor_limb, divisor_limb_inverted); |
107 | 0 | return r >> normalization_steps; |
108 | 0 | } |
109 | 0 | else { |
110 | 0 | mpi_limb_t divisor_limb_inverted; |
111 | | |
112 | | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
113 | | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
114 | | * most significant bit (with weight 2**N) implicit. |
115 | | * |
116 | | * Special case for DIVISOR_LIMB == 100...000. |
117 | | */ |
118 | 0 | if( !(divisor_limb << 1) ) |
119 | 0 | divisor_limb_inverted = ~(mpi_limb_t)0; |
120 | 0 | else |
121 | 0 | udiv_qrnnd(divisor_limb_inverted, dummy, |
122 | 0 | -divisor_limb, 0, divisor_limb); |
123 | |
|
124 | 0 | i = dividend_size - 1; |
125 | 0 | r = dividend_ptr[i]; |
126 | |
|
127 | 0 | if( r >= divisor_limb ) |
128 | 0 | r = 0; |
129 | 0 | else |
130 | 0 | i--; |
131 | |
|
132 | 0 | for( ; i >= 0; i--) { |
133 | 0 | n0 = dividend_ptr[i]; |
134 | 0 | UDIV_QRNND_PREINV(dummy, r, r, |
135 | 0 | n0, divisor_limb, divisor_limb_inverted); |
136 | 0 | } |
137 | 0 | return r; |
138 | 0 | } |
139 | 0 | } |
140 | 0 | else { |
141 | 0 | if( UDIV_NEEDS_NORMALIZATION ) { |
142 | 0 | int normalization_steps; |
143 | |
|
144 | 0 | count_leading_zeros(normalization_steps, divisor_limb); |
145 | 0 | if( normalization_steps ) { |
146 | 0 | divisor_limb <<= normalization_steps; |
147 | |
|
148 | 0 | n1 = dividend_ptr[dividend_size - 1]; |
149 | 0 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
150 | | |
151 | | /* Possible optimization: |
152 | | * if (r == 0 |
153 | | * && divisor_limb > ((n1 << normalization_steps) |
154 | | * | (dividend_ptr[dividend_size - 2] >> ...))) |
155 | | * ...one division less... |
156 | | */ |
157 | 0 | for(i = dividend_size - 2; i >= 0; i--) { |
158 | 0 | n0 = dividend_ptr[i]; |
159 | 0 | udiv_qrnnd (dummy, r, r, |
160 | 0 | ((n1 << normalization_steps) |
161 | 0 | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), |
162 | 0 | divisor_limb); |
163 | 0 | n1 = n0; |
164 | 0 | } |
165 | 0 | udiv_qrnnd (dummy, r, r, |
166 | 0 | n1 << normalization_steps, |
167 | 0 | divisor_limb); |
168 | 0 | return r >> normalization_steps; |
169 | 0 | } |
170 | 0 | } |
171 | | /* No normalization needed, either because udiv_qrnnd doesn't require |
172 | | * it, or because DIVISOR_LIMB is already normalized. */ |
173 | 0 | i = dividend_size - 1; |
174 | 0 | r = dividend_ptr[i]; |
175 | |
|
176 | 0 | if(r >= divisor_limb) |
177 | 0 | r = 0; |
178 | 0 | else |
179 | 0 | i--; |
180 | |
|
181 | 0 | for(; i >= 0; i--) { |
182 | 0 | n0 = dividend_ptr[i]; |
183 | 0 | udiv_qrnnd (dummy, r, r, n0, divisor_limb); |
184 | 0 | } |
185 | 0 | return r; |
186 | 0 | } |
187 | 0 | } |
188 | | |
189 | | /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write |
190 | | * the NSIZE-DSIZE least significant quotient limbs at QP |
191 | | * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is |
192 | | * non-zero, generate that many fraction bits and append them after the |
193 | | * other quotient limbs. |
194 | | * Return the most significant limb of the quotient, this is always 0 or 1. |
195 | | * |
196 | | * Preconditions: |
197 | | * 0. NSIZE >= DSIZE. |
198 | | * 1. The most significant bit of the divisor must be set. |
199 | | * 2. QP must either not overlap with the input operands at all, or |
200 | | * QP + DSIZE >= NP must hold true. (This means that it's |
201 | | * possible to put the quotient in the high part of NUM, right after the |
202 | | * remainder in NUM. |
203 | | * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero. |
204 | | */ |
205 | | |
206 | | mpi_limb_t |
207 | | _gcry_mpih_divrem( mpi_ptr_t qp, mpi_size_t qextra_limbs, |
208 | | mpi_ptr_t np, mpi_size_t nsize, |
209 | | mpi_ptr_t dp, mpi_size_t dsize) |
210 | 17.5k | { |
211 | 17.5k | mpi_limb_t most_significant_q_limb = 0; |
212 | | |
213 | 17.5k | switch(dsize) { |
214 | 0 | case 0: |
215 | 0 | _gcry_divide_by_zero(); |
216 | 0 | break; |
217 | | |
218 | 0 | case 1: |
219 | 0 | { |
220 | 0 | mpi_size_t i; |
221 | 0 | mpi_limb_t n1; |
222 | 0 | mpi_limb_t d; |
223 | |
|
224 | 0 | d = dp[0]; |
225 | 0 | n1 = np[nsize - 1]; |
226 | |
|
227 | 0 | if( n1 >= d ) { |
228 | 0 | n1 -= d; |
229 | 0 | most_significant_q_limb = 1; |
230 | 0 | } |
231 | |
|
232 | 0 | qp += qextra_limbs; |
233 | 0 | for( i = nsize - 2; i >= 0; i--) |
234 | 0 | udiv_qrnnd( qp[i], n1, n1, np[i], d ); |
235 | 0 | qp -= qextra_limbs; |
236 | |
|
237 | 0 | for( i = qextra_limbs - 1; i >= 0; i-- ) |
238 | 0 | udiv_qrnnd (qp[i], n1, n1, 0, d); |
239 | |
|
240 | 0 | np[0] = n1; |
241 | 0 | } |
242 | 0 | break; |
243 | | |
244 | 0 | case 2: |
245 | 0 | { |
246 | 0 | mpi_size_t i; |
247 | 0 | mpi_limb_t n1, n0, n2; |
248 | 0 | mpi_limb_t d1, d0; |
249 | |
|
250 | 0 | np += nsize - 2; |
251 | 0 | d1 = dp[1]; |
252 | 0 | d0 = dp[0]; |
253 | 0 | n1 = np[1]; |
254 | 0 | n0 = np[0]; |
255 | |
|
256 | 0 | if( n1 >= d1 && (n1 > d1 || n0 >= d0) ) { |
257 | 0 | sub_ddmmss (n1, n0, n1, n0, d1, d0); |
258 | 0 | most_significant_q_limb = 1; |
259 | 0 | } |
260 | |
|
261 | 0 | for( i = qextra_limbs + nsize - 2 - 1; i >= 0; i-- ) { |
262 | 0 | mpi_limb_t q; |
263 | 0 | mpi_limb_t r; |
264 | |
|
265 | 0 | if( i >= qextra_limbs ) |
266 | 0 | np--; |
267 | 0 | else |
268 | 0 | np[0] = 0; |
269 | |
|
270 | 0 | if( n1 == d1 ) { |
271 | | /* Q should be either 111..111 or 111..110. Need special |
272 | | * treatment of this rare case as normal division would |
273 | | * give overflow. */ |
274 | 0 | q = ~(mpi_limb_t)0; |
275 | |
|
276 | 0 | r = n0 + d1; |
277 | 0 | if( r < d1 ) { /* Carry in the addition? */ |
278 | 0 | add_ssaaaa( n1, n0, r - d0, np[0], 0, d0 ); |
279 | 0 | qp[i] = q; |
280 | 0 | continue; |
281 | 0 | } |
282 | 0 | n1 = d0 - (d0 != 0?1:0); |
283 | 0 | n0 = -d0; |
284 | 0 | } |
285 | 0 | else { |
286 | 0 | udiv_qrnnd (q, r, n1, n0, d1); |
287 | 0 | umul_ppmm (n1, n0, d0, q); |
288 | 0 | } |
289 | | |
290 | 0 | n2 = np[0]; |
291 | 0 | q_test: |
292 | 0 | if( n1 > r || (n1 == r && n0 > n2) ) { |
293 | | /* The estimated Q was too large. */ |
294 | 0 | q--; |
295 | 0 | sub_ddmmss (n1, n0, n1, n0, 0, d0); |
296 | 0 | r += d1; |
297 | 0 | if( r >= d1 ) /* If not carry, test Q again. */ |
298 | 0 | goto q_test; |
299 | 0 | } |
300 | | |
301 | 0 | qp[i] = q; |
302 | 0 | sub_ddmmss (n1, n0, r, n2, n1, n0); |
303 | 0 | } |
304 | 0 | np[1] = n1; |
305 | 0 | np[0] = n0; |
306 | 0 | } |
307 | 0 | break; |
308 | | |
309 | 17.5k | default: |
310 | 17.5k | { |
311 | 17.5k | mpi_size_t i; |
312 | 17.5k | mpi_limb_t dX, d1, n0; |
313 | | |
314 | 17.5k | np += nsize - dsize; |
315 | 17.5k | dX = dp[dsize - 1]; |
316 | 17.5k | d1 = dp[dsize - 2]; |
317 | 17.5k | n0 = np[dsize - 1]; |
318 | | |
319 | 17.5k | if( n0 >= dX ) { |
320 | 0 | if(n0 > dX || _gcry_mpih_cmp(np, dp, dsize - 1) >= 0 ) { |
321 | 0 | _gcry_mpih_sub_n(np, np, dp, dsize); |
322 | 0 | n0 = np[dsize - 1]; |
323 | 0 | most_significant_q_limb = 1; |
324 | 0 | } |
325 | 0 | } |
326 | | |
327 | 71.6k | for( i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) { |
328 | 54.1k | mpi_limb_t q; |
329 | 54.1k | mpi_limb_t n1, n2; |
330 | 54.1k | mpi_limb_t cy_limb; |
331 | | |
332 | 54.1k | if( i >= qextra_limbs ) { |
333 | 54.1k | np--; |
334 | 54.1k | n2 = np[dsize]; |
335 | 54.1k | } |
336 | 0 | else { |
337 | 0 | n2 = np[dsize - 1]; |
338 | 0 | MPN_COPY_DECR (np + 1, np, dsize - 1); |
339 | 0 | np[0] = 0; |
340 | 0 | } |
341 | | |
342 | 54.1k | if( n0 == dX ) { |
343 | | /* This might over-estimate q, but it's probably not worth |
344 | | * the extra code here to find out. */ |
345 | 0 | q = ~(mpi_limb_t)0; |
346 | 0 | } |
347 | 54.1k | else { |
348 | 54.1k | mpi_limb_t r; |
349 | | |
350 | 54.1k | udiv_qrnnd(q, r, n0, np[dsize - 1], dX); |
351 | 54.1k | umul_ppmm(n1, n0, d1, q); |
352 | | |
353 | 56.9k | while( n1 > r || (n1 == r && n0 > np[dsize - 2])) { |
354 | 4.08k | q--; |
355 | 4.08k | r += dX; |
356 | 4.08k | if( r < dX ) /* I.e. "carry in previous addition?" */ |
357 | 1.29k | break; |
358 | 2.79k | n1 -= n0 < d1; |
359 | 2.79k | n0 -= d1; |
360 | 2.79k | } |
361 | 54.1k | } |
362 | | |
363 | | /* Possible optimization: We already have (q * n0) and (1 * n1) |
364 | | * after the calculation of q. Taking advantage of that, we |
365 | | * could make this loop make two iterations less. */ |
366 | 54.1k | cy_limb = _gcry_mpih_submul_1(np, dp, dsize, q); |
367 | | |
368 | 54.1k | if( n2 != cy_limb ) { |
369 | 0 | _gcry_mpih_add_n(np, np, dp, dsize); |
370 | 0 | q--; |
371 | 0 | } |
372 | | |
373 | 54.1k | qp[i] = q; |
374 | 54.1k | n0 = np[dsize - 1]; |
375 | 54.1k | } |
376 | 17.5k | } |
377 | 17.5k | } |
378 | | |
379 | 17.5k | return most_significant_q_limb; |
380 | 17.5k | } |
381 | | |
382 | | |
383 | | /**************** |
384 | | * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB. |
385 | | * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR. |
386 | | * Return the single-limb remainder. |
387 | | * There are no constraints on the value of the divisor. |
388 | | * |
389 | | * QUOT_PTR and DIVIDEND_PTR might point to the same limb. |
390 | | */ |
391 | | |
392 | | mpi_limb_t |
393 | | _gcry_mpih_divmod_1( mpi_ptr_t quot_ptr, |
394 | | mpi_ptr_t dividend_ptr, mpi_size_t dividend_size, |
395 | | mpi_limb_t divisor_limb) |
396 | 0 | { |
397 | 0 | mpi_size_t i; |
398 | 0 | mpi_limb_t n1, n0, r; |
399 | 0 | mpi_limb_t dummy GCC_ATTR_UNUSED; |
400 | |
|
401 | 0 | if( !dividend_size ) |
402 | 0 | return 0; |
403 | | |
404 | | /* If multiplication is much faster than division, and the |
405 | | * dividend is large, pre-invert the divisor, and use |
406 | | * only multiplications in the inner loop. |
407 | | * |
408 | | * This test should be read: |
409 | | * Does it ever help to use udiv_qrnnd_preinv? |
410 | | * && Does what we save compensate for the inversion overhead? |
411 | | */ |
412 | 0 | if( UDIV_TIME > (2 * UMUL_TIME + 6) |
413 | 0 | && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME ) { |
414 | 0 | int normalization_steps; |
415 | |
|
416 | 0 | count_leading_zeros( normalization_steps, divisor_limb ); |
417 | 0 | if( normalization_steps ) { |
418 | 0 | mpi_limb_t divisor_limb_inverted; |
419 | |
|
420 | 0 | divisor_limb <<= normalization_steps; |
421 | | |
422 | | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
423 | | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
424 | | * most significant bit (with weight 2**N) implicit. |
425 | | */ |
426 | | /* Special case for DIVISOR_LIMB == 100...000. */ |
427 | 0 | if( !(divisor_limb << 1) ) |
428 | 0 | divisor_limb_inverted = ~(mpi_limb_t)0; |
429 | 0 | else |
430 | 0 | udiv_qrnnd(divisor_limb_inverted, dummy, |
431 | 0 | -divisor_limb, 0, divisor_limb); |
432 | |
|
433 | 0 | n1 = dividend_ptr[dividend_size - 1]; |
434 | 0 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
435 | | |
436 | | /* Possible optimization: |
437 | | * if (r == 0 |
438 | | * && divisor_limb > ((n1 << normalization_steps) |
439 | | * | (dividend_ptr[dividend_size - 2] >> ...))) |
440 | | * ...one division less... |
441 | | */ |
442 | 0 | for( i = dividend_size - 2; i >= 0; i--) { |
443 | 0 | n0 = dividend_ptr[i]; |
444 | 0 | UDIV_QRNND_PREINV( quot_ptr[i + 1], r, r, |
445 | 0 | ((n1 << normalization_steps) |
446 | 0 | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), |
447 | 0 | divisor_limb, divisor_limb_inverted); |
448 | 0 | n1 = n0; |
449 | 0 | } |
450 | 0 | UDIV_QRNND_PREINV( quot_ptr[0], r, r, |
451 | 0 | n1 << normalization_steps, |
452 | 0 | divisor_limb, divisor_limb_inverted); |
453 | 0 | return r >> normalization_steps; |
454 | 0 | } |
455 | 0 | else { |
456 | 0 | mpi_limb_t divisor_limb_inverted; |
457 | | |
458 | | /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The |
459 | | * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the |
460 | | * most significant bit (with weight 2**N) implicit. |
461 | | */ |
462 | | /* Special case for DIVISOR_LIMB == 100...000. */ |
463 | 0 | if( !(divisor_limb << 1) ) |
464 | 0 | divisor_limb_inverted = ~(mpi_limb_t) 0; |
465 | 0 | else |
466 | 0 | udiv_qrnnd(divisor_limb_inverted, dummy, |
467 | 0 | -divisor_limb, 0, divisor_limb); |
468 | |
|
469 | 0 | i = dividend_size - 1; |
470 | 0 | r = dividend_ptr[i]; |
471 | |
|
472 | 0 | if( r >= divisor_limb ) |
473 | 0 | r = 0; |
474 | 0 | else |
475 | 0 | quot_ptr[i--] = 0; |
476 | |
|
477 | 0 | for( ; i >= 0; i-- ) { |
478 | 0 | n0 = dividend_ptr[i]; |
479 | 0 | UDIV_QRNND_PREINV( quot_ptr[i], r, r, |
480 | 0 | n0, divisor_limb, divisor_limb_inverted); |
481 | 0 | } |
482 | 0 | return r; |
483 | 0 | } |
484 | 0 | } |
485 | 0 | else { |
486 | 0 | if(UDIV_NEEDS_NORMALIZATION) { |
487 | 0 | int normalization_steps; |
488 | |
|
489 | 0 | count_leading_zeros (normalization_steps, divisor_limb); |
490 | 0 | if( normalization_steps ) { |
491 | 0 | divisor_limb <<= normalization_steps; |
492 | |
|
493 | 0 | n1 = dividend_ptr[dividend_size - 1]; |
494 | 0 | r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps); |
495 | | |
496 | | /* Possible optimization: |
497 | | * if (r == 0 |
498 | | * && divisor_limb > ((n1 << normalization_steps) |
499 | | * | (dividend_ptr[dividend_size - 2] >> ...))) |
500 | | * ...one division less... |
501 | | */ |
502 | 0 | for( i = dividend_size - 2; i >= 0; i--) { |
503 | 0 | n0 = dividend_ptr[i]; |
504 | 0 | udiv_qrnnd (quot_ptr[i + 1], r, r, |
505 | 0 | ((n1 << normalization_steps) |
506 | 0 | | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))), |
507 | 0 | divisor_limb); |
508 | 0 | n1 = n0; |
509 | 0 | } |
510 | 0 | udiv_qrnnd (quot_ptr[0], r, r, |
511 | 0 | n1 << normalization_steps, |
512 | 0 | divisor_limb); |
513 | 0 | return r >> normalization_steps; |
514 | 0 | } |
515 | 0 | } |
516 | | /* No normalization needed, either because udiv_qrnnd doesn't require |
517 | | * it, or because DIVISOR_LIMB is already normalized. */ |
518 | 0 | i = dividend_size - 1; |
519 | 0 | r = dividend_ptr[i]; |
520 | |
|
521 | 0 | if(r >= divisor_limb) |
522 | 0 | r = 0; |
523 | 0 | else |
524 | 0 | quot_ptr[i--] = 0; |
525 | |
|
526 | 0 | for(; i >= 0; i--) { |
527 | 0 | n0 = dividend_ptr[i]; |
528 | 0 | udiv_qrnnd( quot_ptr[i], r, r, n0, divisor_limb ); |
529 | 0 | } |
530 | 0 | return r; |
531 | 0 | } |
532 | 0 | } |