Coverage Report

Created: 2022-12-08 06:09

/src/libgcrypt/mpi/mpih-mul.c
Line
Count
Source (jump to first uncovered line)
1
/* mpih-mul.c  -  MPI helper functions
2
 * Copyright (C) 1994, 1996, 1998, 1999, 2000,
3
 *               2001, 2002 Free Software Foundation, Inc.
4
 *
5
 * This file is part of Libgcrypt.
6
 *
7
 * Libgcrypt is free software; you can redistribute it and/or modify
8
 * it under the terms of the GNU Lesser General Public License as
9
 * published by the Free Software Foundation; either version 2.1 of
10
 * the License, or (at your option) any later version.
11
 *
12
 * Libgcrypt is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 * GNU Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this program; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
20
 *
21
 * Note: This code is heavily based on the GNU MP Library.
22
 *   Actually it's the same code with only minor changes in the
23
 *   way the data is stored; this is to support the abstraction
24
 *   of an optional secure memory allocation which may be used
25
 *   to avoid revealing of sensitive data due to paging etc.
26
 */
27
28
#include <config.h>
29
#include <stdio.h>
30
#include <stdlib.h>
31
#include <string.h>
32
#include "mpi-internal.h"
33
#include "longlong.h"
34
#include "g10lib.h"
35
36
#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \
37
0
    do {           \
38
0
  if( (size) < KARATSUBA_THRESHOLD )    \
39
0
      mul_n_basecase (prodp, up, vp, size); \
40
0
  else            \
41
0
      mul_n (prodp, up, vp, size, tspace); \
42
0
    } while (0)
43
44
#define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \
45
0
    do {             \
46
0
  if ((size) < KARATSUBA_THRESHOLD)     \
47
0
      _gcry_mpih_sqr_n_basecase (prodp, up, size);  \
48
0
  else              \
49
0
      _gcry_mpih_sqr_n (prodp, up, size, tspace);  \
50
0
    } while (0)
51
52
53
54
55
/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
56
 * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
57
 * always stored.  Return the most significant limb.
58
 *
59
 * Argument constraints:
60
 * 1. PRODP != UP and PRODP != VP, i.e. the destination
61
 *    must be distinct from the multiplier and the multiplicand.
62
 *
63
 *
64
 * Handle simple cases with traditional multiplication.
65
 *
66
 * This is the most critical code of multiplication.  All multiplies rely
67
 * on this, both small and huge.  Small ones arrive here immediately.  Huge
68
 * ones arrive here as this is the base case for Karatsuba's recursive
69
 * algorithm below.
70
 */
71
72
static mpi_limb_t
73
mul_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up,
74
         mpi_ptr_t vp, mpi_size_t size)
75
0
{
76
0
    mpi_size_t i;
77
0
    mpi_limb_t cy;
78
0
    mpi_limb_t v_limb;
79
80
    /* Multiply by the first limb in V separately, as the result can be
81
     * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
82
0
    v_limb = vp[0];
83
0
    if( v_limb <= 1 ) {
84
0
  if( v_limb == 1 )
85
0
      MPN_COPY( prodp, up, size );
86
0
  else
87
0
      MPN_ZERO( prodp, size );
88
0
  cy = 0;
89
0
    }
90
0
    else
91
0
  cy = _gcry_mpih_mul_1( prodp, up, size, v_limb );
92
93
0
    prodp[size] = cy;
94
0
    prodp++;
95
96
    /* For each iteration in the outer loop, multiply one limb from
97
     * U with one limb from V, and add it to PROD.  */
98
0
    for( i = 1; i < size; i++ ) {
99
0
  v_limb = vp[i];
100
0
  if( v_limb <= 1 ) {
101
0
      cy = 0;
102
0
      if( v_limb == 1 )
103
0
         cy = _gcry_mpih_add_n(prodp, prodp, up, size);
104
0
  }
105
0
  else
106
0
      cy = _gcry_mpih_addmul_1(prodp, up, size, v_limb);
107
108
0
  prodp[size] = cy;
109
0
  prodp++;
110
0
    }
111
112
0
    return cy;
113
0
}
114
115
116
static void
117
mul_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
118
      mpi_size_t size, mpi_ptr_t tspace )
119
0
{
120
0
    if( size & 1 ) {
121
      /* The size is odd, and the code below doesn't handle that.
122
       * Multiply the least significant (size - 1) limbs with a recursive
123
       * call, and handle the most significant limb of S1 and S2
124
       * separately.
125
       * A slightly faster way to do this would be to make the Karatsuba
126
       * code below behave as if the size were even, and let it check for
127
       * odd size in the end.  I.e., in essence move this code to the end.
128
       * Doing so would save us a recursive call, and potentially make the
129
       * stack grow a lot less.
130
       */
131
0
      mpi_size_t esize = size - 1;   /* even size */
132
0
      mpi_limb_t cy_limb;
133
134
0
      MPN_MUL_N_RECURSE( prodp, up, vp, esize, tspace );
135
0
      cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, esize, vp[esize] );
136
0
      prodp[esize + esize] = cy_limb;
137
0
      cy_limb = _gcry_mpih_addmul_1( prodp + esize, vp, size, up[esize] );
138
0
      prodp[esize + size] = cy_limb;
139
0
    }
140
0
    else {
141
  /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
142
   *
143
   * Split U in two pieces, U1 and U0, such that
144
   * U = U0 + U1*(B**n),
145
   * and V in V1 and V0, such that
146
   * V = V0 + V1*(B**n).
147
   *
148
   * UV is then computed recursively using the identity
149
   *
150
   *    2n   n    n     n
151
   * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
152
   *      1 1      1  0   0  1        0 0
153
   *
154
   * Where B = 2**BITS_PER_MP_LIMB.
155
   */
156
0
  mpi_size_t hsize = size >> 1;
157
0
  mpi_limb_t cy;
158
0
  int negflg;
159
160
  /* Product H.    ________________  ________________
161
   *      |_____U1 x V1____||____U0 x V0_____|
162
   * Put result in upper part of PROD and pass low part of TSPACE
163
   * as new TSPACE.
164
   */
165
0
  MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, tspace);
166
167
  /* Product M.    ________________
168
   *      |_(U1-U0)(V0-V1)_|
169
   */
170
0
  if( _gcry_mpih_cmp(up + hsize, up, hsize) >= 0 ) {
171
0
      _gcry_mpih_sub_n(prodp, up + hsize, up, hsize);
172
0
      negflg = 0;
173
0
  }
174
0
  else {
175
0
      _gcry_mpih_sub_n(prodp, up, up + hsize, hsize);
176
0
      negflg = 1;
177
0
  }
178
0
  if( _gcry_mpih_cmp(vp + hsize, vp, hsize) >= 0 ) {
179
0
      _gcry_mpih_sub_n(prodp + hsize, vp + hsize, vp, hsize);
180
0
      negflg ^= 1;
181
0
  }
182
0
  else {
183
0
      _gcry_mpih_sub_n(prodp + hsize, vp, vp + hsize, hsize);
184
      /* No change of NEGFLG.  */
185
0
  }
186
  /* Read temporary operands from low part of PROD.
187
   * Put result in low part of TSPACE using upper part of TSPACE
188
   * as new TSPACE.
189
   */
190
0
  MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, tspace + size);
191
192
  /* Add/copy product H. */
193
0
  MPN_COPY (prodp + hsize, prodp + size, hsize);
194
0
  cy = _gcry_mpih_add_n( prodp + size, prodp + size,
195
0
          prodp + size + hsize, hsize);
196
197
  /* Add product M (if NEGFLG M is a negative number) */
198
0
  if(negflg)
199
0
      cy -= _gcry_mpih_sub_n(prodp + hsize, prodp + hsize, tspace, size);
200
0
  else
201
0
      cy += _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace, size);
202
203
  /* Product L.    ________________  ________________
204
   *      |________________||____U0 x V0_____|
205
   * Read temporary operands from low part of PROD.
206
   * Put result in low part of TSPACE using upper part of TSPACE
207
   * as new TSPACE.
208
   */
209
0
  MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
210
211
  /* Add/copy Product L (twice) */
212
213
0
  cy += _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace, size);
214
0
  if( cy )
215
0
    _gcry_mpih_add_1(prodp + hsize + size, prodp + hsize + size, hsize, cy);
216
217
0
  MPN_COPY(prodp, tspace, hsize);
218
0
  cy = _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace + hsize, hsize);
219
0
  if( cy )
220
0
      _gcry_mpih_add_1(prodp + size, prodp + size, size, 1);
221
0
    }
222
0
}
223
224
225
void
226
_gcry_mpih_sqr_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size )
227
0
{
228
0
    mpi_size_t i;
229
0
    mpi_limb_t cy_limb;
230
0
    mpi_limb_t v_limb;
231
232
    /* Multiply by the first limb in V separately, as the result can be
233
     * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
234
0
    v_limb = up[0];
235
0
    if( v_limb <= 1 ) {
236
0
  if( v_limb == 1 )
237
0
      MPN_COPY( prodp, up, size );
238
0
  else
239
0
      MPN_ZERO(prodp, size);
240
0
  cy_limb = 0;
241
0
    }
242
0
    else
243
0
  cy_limb = _gcry_mpih_mul_1( prodp, up, size, v_limb );
244
245
0
    prodp[size] = cy_limb;
246
0
    prodp++;
247
248
    /* For each iteration in the outer loop, multiply one limb from
249
     * U with one limb from V, and add it to PROD.  */
250
0
    for( i=1; i < size; i++) {
251
0
  v_limb = up[i];
252
0
  if( v_limb <= 1 ) {
253
0
      cy_limb = 0;
254
0
      if( v_limb == 1 )
255
0
    cy_limb = _gcry_mpih_add_n(prodp, prodp, up, size);
256
0
  }
257
0
  else
258
0
      cy_limb = _gcry_mpih_addmul_1(prodp, up, size, v_limb);
259
260
0
  prodp[size] = cy_limb;
261
0
  prodp++;
262
0
    }
263
0
}
264
265
266
void
267
_gcry_mpih_sqr_n( mpi_ptr_t prodp,
268
                  mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
269
0
{
270
0
    if( size & 1 ) {
271
  /* The size is odd, and the code below doesn't handle that.
272
   * Multiply the least significant (size - 1) limbs with a recursive
273
   * call, and handle the most significant limb of S1 and S2
274
   * separately.
275
   * A slightly faster way to do this would be to make the Karatsuba
276
   * code below behave as if the size were even, and let it check for
277
   * odd size in the end.  I.e., in essence move this code to the end.
278
   * Doing so would save us a recursive call, and potentially make the
279
   * stack grow a lot less.
280
   */
281
0
  mpi_size_t esize = size - 1;     /* even size */
282
0
  mpi_limb_t cy_limb;
283
284
0
  MPN_SQR_N_RECURSE( prodp, up, esize, tspace );
285
0
  cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, esize, up[esize] );
286
0
  prodp[esize + esize] = cy_limb;
287
0
  cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, size, up[esize] );
288
289
0
  prodp[esize + size] = cy_limb;
290
0
    }
291
0
    else {
292
0
  mpi_size_t hsize = size >> 1;
293
0
  mpi_limb_t cy;
294
295
  /* Product H.    ________________  ________________
296
   *      |_____U1 x U1____||____U0 x U0_____|
297
   * Put result in upper part of PROD and pass low part of TSPACE
298
   * as new TSPACE.
299
   */
300
0
  MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
301
302
  /* Product M.    ________________
303
   *      |_(U1-U0)(U0-U1)_|
304
   */
305
0
  if( _gcry_mpih_cmp( up + hsize, up, hsize) >= 0 )
306
0
      _gcry_mpih_sub_n( prodp, up + hsize, up, hsize);
307
0
  else
308
0
      _gcry_mpih_sub_n (prodp, up, up + hsize, hsize);
309
310
  /* Read temporary operands from low part of PROD.
311
   * Put result in low part of TSPACE using upper part of TSPACE
312
   * as new TSPACE.  */
313
0
  MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
314
315
  /* Add/copy product H  */
316
0
  MPN_COPY(prodp + hsize, prodp + size, hsize);
317
0
  cy = _gcry_mpih_add_n(prodp + size, prodp + size,
318
0
         prodp + size + hsize, hsize);
319
320
  /* Add product M (if NEGFLG M is a negative number).  */
321
0
  cy -= _gcry_mpih_sub_n (prodp + hsize, prodp + hsize, tspace, size);
322
323
  /* Product L.    ________________  ________________
324
   *      |________________||____U0 x U0_____|
325
   * Read temporary operands from low part of PROD.
326
   * Put result in low part of TSPACE using upper part of TSPACE
327
   * as new TSPACE.  */
328
0
  MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
329
330
  /* Add/copy Product L (twice).  */
331
0
  cy += _gcry_mpih_add_n (prodp + hsize, prodp + hsize, tspace, size);
332
0
  if( cy )
333
0
      _gcry_mpih_add_1(prodp + hsize + size, prodp + hsize + size,
334
0
                  hsize, cy);
335
336
0
  MPN_COPY(prodp, tspace, hsize);
337
0
  cy = _gcry_mpih_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
338
0
  if( cy )
339
0
      _gcry_mpih_add_1 (prodp + size, prodp + size, size, 1);
340
0
    }
341
0
}
342
343
344
/* This should be made into an inline function in gmp.h.  */
345
void
346
_gcry_mpih_mul_n( mpi_ptr_t prodp,
347
                     mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
348
0
{
349
0
    int secure;
350
351
0
    if( up == vp ) {
352
0
  if( size < KARATSUBA_THRESHOLD )
353
0
      _gcry_mpih_sqr_n_basecase( prodp, up, size );
354
0
  else {
355
0
      mpi_ptr_t tspace;
356
0
      secure = _gcry_is_secure( up );
357
0
      tspace = mpi_alloc_limb_space( 2 * size, secure );
358
0
      _gcry_mpih_sqr_n( prodp, up, size, tspace );
359
0
      _gcry_mpi_free_limb_space (tspace, 2 * size );
360
0
  }
361
0
    }
362
0
    else {
363
0
  if( size < KARATSUBA_THRESHOLD )
364
0
      mul_n_basecase( prodp, up, vp, size );
365
0
  else {
366
0
      mpi_ptr_t tspace;
367
0
      secure = _gcry_is_secure( up ) || _gcry_is_secure( vp );
368
0
      tspace = mpi_alloc_limb_space( 2 * size, secure );
369
0
      mul_n (prodp, up, vp, size, tspace);
370
0
      _gcry_mpi_free_limb_space (tspace, 2 * size );
371
0
  }
372
0
    }
373
0
}
374
375
376
377
void
378
_gcry_mpih_mul_karatsuba_case( mpi_ptr_t prodp,
379
                                  mpi_ptr_t up, mpi_size_t usize,
380
                                  mpi_ptr_t vp, mpi_size_t vsize,
381
                                  struct karatsuba_ctx *ctx )
382
0
{
383
0
    mpi_limb_t cy;
384
385
0
    if( !ctx->tspace || ctx->tspace_size < vsize ) {
386
0
  if( ctx->tspace )
387
0
      _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs );
388
0
        ctx->tspace_nlimbs = 2 * vsize;
389
0
  ctx->tspace = mpi_alloc_limb_space (2 * vsize,
390
0
                    (_gcry_is_secure (up)
391
0
                                             || _gcry_is_secure (vp)));
392
0
  ctx->tspace_size = vsize;
393
0
    }
394
395
0
    MPN_MUL_N_RECURSE( prodp, up, vp, vsize, ctx->tspace );
396
397
0
    prodp += vsize;
398
0
    up += vsize;
399
0
    usize -= vsize;
400
0
    if( usize >= vsize ) {
401
0
  if( !ctx->tp || ctx->tp_size < vsize ) {
402
0
      if( ctx->tp )
403
0
    _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs );
404
0
            ctx->tp_nlimbs = 2 * vsize;
405
0
      ctx->tp = mpi_alloc_limb_space (2 * vsize,
406
0
                                            (_gcry_is_secure (up)
407
0
                                             || _gcry_is_secure (vp)));
408
0
      ctx->tp_size = vsize;
409
0
  }
410
411
0
  do {
412
0
      MPN_MUL_N_RECURSE( ctx->tp, up, vp, vsize, ctx->tspace );
413
0
      cy = _gcry_mpih_add_n( prodp, prodp, ctx->tp, vsize );
414
0
      _gcry_mpih_add_1( prodp + vsize, ctx->tp + vsize, vsize, cy );
415
0
      prodp += vsize;
416
0
      up += vsize;
417
0
      usize -= vsize;
418
0
  } while( usize >= vsize );
419
0
    }
420
421
0
    if( usize ) {
422
0
  if( usize < KARATSUBA_THRESHOLD ) {
423
0
      _gcry_mpih_mul( ctx->tspace, vp, vsize, up, usize );
424
0
  }
425
0
  else {
426
0
      if( !ctx->next ) {
427
0
    ctx->next = xcalloc( 1, sizeof *ctx );
428
0
      }
429
0
      _gcry_mpih_mul_karatsuba_case( ctx->tspace,
430
0
          vp, vsize,
431
0
          up, usize,
432
0
          ctx->next );
433
0
  }
434
435
0
  cy = _gcry_mpih_add_n( prodp, prodp, ctx->tspace, vsize);
436
0
  _gcry_mpih_add_1( prodp + vsize, ctx->tspace + vsize, usize, cy );
437
0
    }
438
0
}
439
440
441
void
442
_gcry_mpih_release_karatsuba_ctx( struct karatsuba_ctx *ctx )
443
0
{
444
0
    struct karatsuba_ctx *ctx2;
445
446
0
    if( ctx->tp )
447
0
  _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs );
448
0
    if( ctx->tspace )
449
0
  _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs );
450
0
    for( ctx=ctx->next; ctx; ctx = ctx2 ) {
451
0
  ctx2 = ctx->next;
452
0
  if( ctx->tp )
453
0
            _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs );
454
0
  if( ctx->tspace )
455
0
      _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs );
456
0
  xfree( ctx );
457
0
    }
458
0
}
459
460
/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
461
 * and v (pointed to by VP, with VSIZE limbs), and store the result at
462
 * PRODP.  USIZE + VSIZE limbs are always stored, but if the input
463
 * operands are normalized.  Return the most significant limb of the
464
 * result.
465
 *
466
 * NOTE: The space pointed to by PRODP is overwritten before finished
467
 * with U and V, so overlap is an error.
468
 *
469
 * Argument constraints:
470
 * 1. USIZE >= VSIZE.
471
 * 2. PRODP != UP and PRODP != VP, i.e. the destination
472
 *    must be distinct from the multiplier and the multiplicand.
473
 */
474
475
mpi_limb_t
476
_gcry_mpih_mul( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
477
                   mpi_ptr_t vp, mpi_size_t vsize)
478
0
{
479
0
    mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
480
0
    mpi_limb_t cy;
481
0
    struct karatsuba_ctx ctx;
482
483
0
    if( vsize < KARATSUBA_THRESHOLD ) {
484
0
  mpi_size_t i;
485
0
  mpi_limb_t v_limb;
486
487
0
  if( !vsize )
488
0
      return 0;
489
490
  /* Multiply by the first limb in V separately, as the result can be
491
   * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
492
0
  v_limb = vp[0];
493
0
  if( v_limb <= 1 ) {
494
0
      if( v_limb == 1 )
495
0
    MPN_COPY( prodp, up, usize );
496
0
      else
497
0
    MPN_ZERO( prodp, usize );
498
0
      cy = 0;
499
0
  }
500
0
  else
501
0
      cy = _gcry_mpih_mul_1( prodp, up, usize, v_limb );
502
503
0
  prodp[usize] = cy;
504
0
  prodp++;
505
506
  /* For each iteration in the outer loop, multiply one limb from
507
   * U with one limb from V, and add it to PROD.  */
508
0
  for( i = 1; i < vsize; i++ ) {
509
0
      v_limb = vp[i];
510
0
      if( v_limb <= 1 ) {
511
0
    cy = 0;
512
0
    if( v_limb == 1 )
513
0
       cy = _gcry_mpih_add_n(prodp, prodp, up, usize);
514
0
      }
515
0
      else
516
0
    cy = _gcry_mpih_addmul_1(prodp, up, usize, v_limb);
517
518
0
      prodp[usize] = cy;
519
0
      prodp++;
520
0
  }
521
522
0
  return cy;
523
0
    }
524
525
0
    memset( &ctx, 0, sizeof ctx );
526
0
    _gcry_mpih_mul_karatsuba_case( prodp, up, usize, vp, vsize, &ctx );
527
0
    _gcry_mpih_release_karatsuba_ctx( &ctx );
528
0
    return *prod_endp;
529
0
}