Coverage Report

Created: 2022-12-08 06:10

/src/libgcrypt/cipher/elgamal.c
Line
Count
Source (jump to first uncovered line)
1
/* Elgamal.c  -  Elgamal Public Key encryption
2
 * Copyright (C) 1998, 2000, 2001, 2002, 2003,
3
 *               2008  Free Software Foundation, Inc.
4
 * Copyright (C) 2013 g10 Code GmbH
5
 *
6
 * This file is part of Libgcrypt.
7
 *
8
 * Libgcrypt is free software; you can redistribute it and/or modify
9
 * it under the terms of the GNU Lesser General Public License as
10
 * published by the Free Software Foundation; either version 2.1 of
11
 * the License, or (at your option) any later version.
12
 *
13
 * Libgcrypt is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
20
 *
21
 * For a description of the algorithm, see:
22
 *   Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
23
 *   ISBN 0-471-11709-9. Pages 476 ff.
24
 */
25
26
#include <config.h>
27
#include <stdio.h>
28
#include <stdlib.h>
29
#include <string.h>
30
#include "g10lib.h"
31
#include "mpi.h"
32
#include "cipher.h"
33
#include "pubkey-internal.h"
34
35
36
/* Blinding is used to mitigate side-channel attacks.  You may undef
37
   this to speed up the operation in case the system is secured
38
   against physical and network mounted side-channel attacks.  */
39
#define USE_BLINDING 1
40
41
42
typedef struct
43
{
44
  gcry_mpi_t p;     /* prime */
45
  gcry_mpi_t g;     /* group generator */
46
  gcry_mpi_t y;     /* g^x mod p */
47
} ELG_public_key;
48
49
50
typedef struct
51
{
52
  gcry_mpi_t p;     /* prime */
53
  gcry_mpi_t g;     /* group generator */
54
  gcry_mpi_t y;     /* g^x mod p */
55
  gcry_mpi_t x;     /* secret exponent */
56
} ELG_secret_key;
57
58
59
static const char *elg_names[] =
60
  {
61
    "elg",
62
    "openpgp-elg",
63
    "openpgp-elg-sig",
64
    NULL,
65
  };
66
67
68
static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie);
69
static gcry_mpi_t gen_k (gcry_mpi_t p);
70
static gcry_err_code_t generate (ELG_secret_key *sk, unsigned nbits,
71
                                 gcry_mpi_t **factors);
72
static int  check_secret_key (ELG_secret_key *sk);
73
static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
74
                        ELG_public_key *pkey);
75
static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b,
76
                     ELG_secret_key *skey);
77
static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
78
                  ELG_secret_key *skey);
79
static int  verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
80
                    ELG_public_key *pkey);
81
static unsigned int elg_get_nbits (gcry_sexp_t parms);
82
83
84
static void (*progress_cb) (void *, const char *, int, int, int);
85
static void *progress_cb_data;
86
87
void
88
_gcry_register_pk_elg_progress (void (*cb) (void *, const char *,
89
                                            int, int, int),
90
        void *cb_data)
91
0
{
92
0
  progress_cb = cb;
93
0
  progress_cb_data = cb_data;
94
0
}
95
96
97
static void
98
progress (int c)
99
0
{
100
0
  if (progress_cb)
101
0
    progress_cb (progress_cb_data, "pk_elg", c, 0, 0);
102
0
}
103
104
105
/****************
106
 * Michael Wiener's table on subgroup sizes to match field sizes.
107
 * (floating around somewhere, probably based on the paper from
108
 * Eurocrypt 96, page 332)
109
 */
110
static unsigned int
111
wiener_map( unsigned int n )
112
0
{
113
0
  static struct { unsigned int p_n, q_n; } t[] =
114
0
    { /*   p    q  attack cost */
115
0
      {  512, 119 },  /* 9 x 10^17 */
116
0
      {  768, 145 },  /* 6 x 10^21 */
117
0
      { 1024, 165 },  /* 7 x 10^24 */
118
0
      { 1280, 183 },  /* 3 x 10^27 */
119
0
      { 1536, 198 },  /* 7 x 10^29 */
120
0
      { 1792, 212 },  /* 9 x 10^31 */
121
0
      { 2048, 225 },  /* 8 x 10^33 */
122
0
      { 2304, 237 },  /* 5 x 10^35 */
123
0
      { 2560, 249 },  /* 3 x 10^37 */
124
0
      { 2816, 259 },  /* 1 x 10^39 */
125
0
      { 3072, 269 },  /* 3 x 10^40 */
126
0
      { 3328, 279 },  /* 8 x 10^41 */
127
0
      { 3584, 288 },  /* 2 x 10^43 */
128
0
      { 3840, 296 },  /* 4 x 10^44 */
129
0
      { 4096, 305 },  /* 7 x 10^45 */
130
0
      { 4352, 313 },  /* 1 x 10^47 */
131
0
      { 4608, 320 },  /* 2 x 10^48 */
132
0
      { 4864, 328 },  /* 2 x 10^49 */
133
0
      { 5120, 335 },  /* 3 x 10^50 */
134
0
      { 0, 0 }
135
0
    };
136
0
  int i;
137
138
0
  for(i=0; t[i].p_n; i++ )
139
0
    {
140
0
      if( n <= t[i].p_n )
141
0
        return t[i].q_n;
142
0
    }
143
  /* Not in table - use an arbitrary high number. */
144
0
  return  n / 8 + 200;
145
0
}
146
147
static int
148
test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie )
149
0
{
150
0
  ELG_public_key pk;
151
0
  gcry_mpi_t test   = mpi_new ( 0 );
152
0
  gcry_mpi_t out1_a = mpi_new ( nbits );
153
0
  gcry_mpi_t out1_b = mpi_new ( nbits );
154
0
  gcry_mpi_t out2   = mpi_new ( nbits );
155
0
  int failed = 0;
156
157
0
  pk.p = sk->p;
158
0
  pk.g = sk->g;
159
0
  pk.y = sk->y;
160
161
0
  _gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM );
162
163
0
  do_encrypt ( out1_a, out1_b, test, &pk );
164
0
  decrypt ( out2, out1_a, out1_b, sk );
165
0
  if ( mpi_cmp( test, out2 ) )
166
0
    failed |= 1;
167
168
0
  sign ( out1_a, out1_b, test, sk );
169
0
  if ( !verify( out1_a, out1_b, test, &pk ) )
170
0
    failed |= 2;
171
172
0
  _gcry_mpi_release ( test );
173
0
  _gcry_mpi_release ( out1_a );
174
0
  _gcry_mpi_release ( out1_b );
175
0
  _gcry_mpi_release ( out2 );
176
177
0
  if (failed && !nodie)
178
0
    log_fatal ("Elgamal test key for %s %s failed\n",
179
0
               (failed & 1)? "encrypt+decrypt":"",
180
0
               (failed & 2)? "sign+verify":"");
181
0
  if (failed && DBG_CIPHER)
182
0
    log_debug ("Elgamal test key for %s %s failed\n",
183
0
               (failed & 1)? "encrypt+decrypt":"",
184
0
               (failed & 2)? "sign+verify":"");
185
186
0
  return failed;
187
0
}
188
189
190
/****************
191
 * Generate a random secret exponent k from prime p, so that k is
192
 * relatively prime to p-1.
193
 */
194
static gcry_mpi_t
195
gen_k( gcry_mpi_t p )
196
0
{
197
0
  gcry_mpi_t k = mpi_alloc_secure( 0 );
198
0
  gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) );
199
0
  gcry_mpi_t p_1 = mpi_copy(p);
200
0
  unsigned int orig_nbits = mpi_get_nbits(p);
201
0
  unsigned int nbits, nbytes;
202
0
  char *rndbuf = NULL;
203
204
0
  nbits = orig_nbits;
205
206
0
  nbytes = (nbits+7)/8;
207
0
  if( DBG_CIPHER )
208
0
    log_debug("choosing a random k\n");
209
0
  mpi_sub_ui( p_1, p, 1);
210
0
  for(;;)
211
0
    {
212
0
      if( !rndbuf || nbits < 32 )
213
0
        {
214
0
          xfree(rndbuf);
215
0
          rndbuf = _gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM );
216
0
        }
217
0
      else
218
0
        {
219
          /* Change only some of the higher bits.  We could improve
220
             this by directly requesting more memory at the first call
221
             to get_random_bytes() and use this the here maybe it is
222
             easier to do this directly in random.c Anyway, it is
223
             highly inlikely that we will ever reach this code. */
224
0
          char *pp = _gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM );
225
0
          memcpy( rndbuf, pp, 4 );
226
0
          xfree(pp);
227
0
  }
228
0
      _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 );
229
230
0
      for(;;)
231
0
        {
232
0
          if( !(mpi_cmp( k, p_1 ) < 0) )  /* check: k < (p-1) */
233
0
            {
234
0
              if( DBG_CIPHER )
235
0
                progress('+');
236
0
              break; /* no  */
237
0
            }
238
0
          if( !(mpi_cmp_ui( k, 0 ) > 0) )  /* check: k > 0 */
239
0
            {
240
0
              if( DBG_CIPHER )
241
0
                progress('-');
242
0
              break; /* no */
243
0
            }
244
0
          if (mpi_gcd( temp, k, p_1 ))
245
0
            goto found;  /* okay, k is relative prime to (p-1) */
246
0
          mpi_add_ui( k, k, 1 );
247
0
          if( DBG_CIPHER )
248
0
            progress('.');
249
0
  }
250
0
    }
251
0
 found:
252
0
  xfree (rndbuf);
253
0
  if( DBG_CIPHER )
254
0
    progress('\n');
255
0
  mpi_free(p_1);
256
0
  mpi_free(temp);
257
258
0
  return k;
259
0
}
260
261
/****************
262
 * Generate a key pair with a key of size NBITS
263
 * Returns: 2 structures filled with all needed values
264
 *      and an array with n-1 factors of (p-1)
265
 */
266
static gcry_err_code_t
267
generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors )
268
0
{
269
0
  gcry_err_code_t rc;
270
0
  gcry_mpi_t p;    /* the prime */
271
0
  gcry_mpi_t p_min1;
272
0
  gcry_mpi_t g;
273
0
  gcry_mpi_t x;    /* the secret exponent */
274
0
  gcry_mpi_t y;
275
0
  unsigned int qbits;
276
0
  unsigned int xbits;
277
0
  byte *rndbuf;
278
279
0
  p_min1 = mpi_new ( nbits );
280
0
  qbits = wiener_map( nbits );
281
0
  if( qbits & 1 ) /* better have a even one */
282
0
    qbits++;
283
0
  g = mpi_alloc(1);
284
0
  rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors);
285
0
  if (rc)
286
0
    {
287
0
      mpi_free (p_min1);
288
0
      mpi_free (g);
289
0
      return rc;
290
0
    }
291
0
  mpi_sub_ui(p_min1, p, 1);
292
293
294
  /* Select a random number which has these properties:
295
   *   0 < x < p-1
296
   * This must be a very good random number because this is the
297
   * secret part.  The prime is public and may be shared anyway,
298
   * so a random generator level of 1 is used for the prime.
299
   *
300
   * I don't see a reason to have a x of about the same size
301
   * as the p.  It should be sufficient to have one about the size
302
   * of q or the later used k plus a large safety margin. Decryption
303
   * will be much faster with such an x.
304
   */
305
0
  xbits = qbits * 3 / 2;
306
0
  if( xbits >= nbits )
307
0
    BUG();
308
0
  x = mpi_snew ( xbits );
309
0
  if( DBG_CIPHER )
310
0
    log_debug("choosing a random x of size %u\n", xbits );
311
0
  rndbuf = NULL;
312
0
  do
313
0
    {
314
0
      if( DBG_CIPHER )
315
0
        progress('.');
316
0
      if( rndbuf )
317
0
        { /* Change only some of the higher bits */
318
0
          if( xbits < 16 ) /* should never happen ... */
319
0
            {
320
0
              xfree(rndbuf);
321
0
              rndbuf = _gcry_random_bytes_secure ((xbits+7)/8,
322
0
                                                  GCRY_VERY_STRONG_RANDOM);
323
0
            }
324
0
          else
325
0
            {
326
0
              char *r = _gcry_random_bytes_secure (2, GCRY_VERY_STRONG_RANDOM);
327
0
              memcpy(rndbuf, r, 2 );
328
0
              xfree (r);
329
0
            }
330
0
  }
331
0
      else
332
0
        {
333
0
          rndbuf = _gcry_random_bytes_secure ((xbits+7)/8,
334
0
                                              GCRY_VERY_STRONG_RANDOM );
335
0
  }
336
0
      _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
337
0
      mpi_clear_highbit( x, xbits+1 );
338
0
    }
339
0
  while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
340
0
  xfree(rndbuf);
341
342
0
  y = mpi_new (nbits);
343
0
  mpi_powm( y, g, x, p );
344
345
0
  if( DBG_CIPHER )
346
0
    {
347
0
      progress ('\n');
348
0
      log_mpidump ("elg  p", p );
349
0
      log_mpidump ("elg  g", g );
350
0
      log_mpidump ("elg  y", y );
351
0
      log_mpidump ("elg  x", x );
352
0
    }
353
354
  /* Copy the stuff to the key structures */
355
0
  sk->p = p;
356
0
  sk->g = g;
357
0
  sk->y = y;
358
0
  sk->x = x;
359
360
0
  _gcry_mpi_release ( p_min1 );
361
362
  /* Now we can test our keys (this should never fail!) */
363
0
  test_keys ( sk, nbits - 64, 0 );
364
365
0
  return 0;
366
0
}
367
368
369
/* Generate a key pair with a key of size NBITS not using a random
370
   value for the secret key but the one given as X.  This is useful to
371
   implement a passphrase based decryption for a public key based
372
   encryption.  It has appliactions in backup systems.
373
374
   Returns: A structure filled with all needed values and an array
375
      with n-1 factors of (p-1).  */
376
static gcry_err_code_t
377
generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x,
378
                  gcry_mpi_t **ret_factors )
379
0
{
380
0
  gcry_err_code_t rc;
381
0
  gcry_mpi_t p;      /* The prime.  */
382
0
  gcry_mpi_t p_min1; /* The prime minus 1.  */
383
0
  gcry_mpi_t g;      /* The generator.  */
384
0
  gcry_mpi_t y;      /* g^x mod p.  */
385
0
  unsigned int qbits;
386
0
  unsigned int xbits;
387
388
0
  sk->p = NULL;
389
0
  sk->g = NULL;
390
0
  sk->y = NULL;
391
0
  sk->x = NULL;
392
393
  /* Do a quick check to see whether X is suitable.  */
394
0
  xbits = mpi_get_nbits (x);
395
0
  if ( xbits < 64 || xbits >= nbits )
396
0
    return GPG_ERR_INV_VALUE;
397
398
0
  p_min1 = mpi_new ( nbits );
399
0
  qbits  = wiener_map ( nbits );
400
0
  if ( (qbits & 1) ) /* Better have an even one.  */
401
0
    qbits++;
402
0
  g = mpi_alloc (1);
403
0
  rc = _gcry_generate_elg_prime (0, nbits, qbits, g, &p, ret_factors );
404
0
  if (rc)
405
0
    {
406
0
      mpi_free (p_min1);
407
0
      mpi_free (g);
408
0
      return rc;
409
0
    }
410
0
  mpi_sub_ui (p_min1, p, 1);
411
412
0
  if (DBG_CIPHER)
413
0
    log_debug ("using a supplied x of size %u", xbits );
414
0
  if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) )
415
0
    {
416
0
      _gcry_mpi_release ( p_min1 );
417
0
      _gcry_mpi_release ( p );
418
0
      _gcry_mpi_release ( g );
419
0
      return GPG_ERR_INV_VALUE;
420
0
    }
421
422
0
  y = mpi_new (nbits);
423
0
  mpi_powm ( y, g, x, p );
424
425
0
  if ( DBG_CIPHER )
426
0
    {
427
0
      progress ('\n');
428
0
      log_mpidump ("elg  p", p );
429
0
      log_mpidump ("elg  g", g );
430
0
      log_mpidump ("elg  y", y );
431
0
      log_mpidump ("elg  x", x );
432
0
    }
433
434
  /* Copy the stuff to the key structures */
435
0
  sk->p = p;
436
0
  sk->g = g;
437
0
  sk->y = y;
438
0
  sk->x = mpi_copy (x);
439
440
0
  _gcry_mpi_release ( p_min1 );
441
442
  /* Now we can test our keys. */
443
0
  if ( test_keys ( sk, nbits - 64, 1 ) )
444
0
    {
445
0
      _gcry_mpi_release ( sk->p ); sk->p = NULL;
446
0
      _gcry_mpi_release ( sk->g ); sk->g = NULL;
447
0
      _gcry_mpi_release ( sk->y ); sk->y = NULL;
448
0
      _gcry_mpi_release ( sk->x ); sk->x = NULL;
449
0
      return GPG_ERR_BAD_SECKEY;
450
0
    }
451
452
0
  return 0;
453
0
}
454
455
456
/****************
457
 * Test whether the secret key is valid.
458
 * Returns: if this is a valid key.
459
 */
460
static int
461
check_secret_key( ELG_secret_key *sk )
462
0
{
463
0
  int rc;
464
0
  gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) );
465
466
0
  mpi_powm (y, sk->g, sk->x, sk->p);
467
0
  rc = !mpi_cmp( y, sk->y );
468
0
  mpi_free( y );
469
0
  return rc;
470
0
}
471
472
473
static void
474
do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
475
0
{
476
0
  gcry_mpi_t k;
477
478
  /* Note: maybe we should change the interface, so that it
479
   * is possible to check that input is < p and return an
480
   * error code.
481
   */
482
483
0
  k = gen_k( pkey->p );
484
0
  mpi_powm (a, pkey->g, k, pkey->p);
485
486
  /* b = (y^k * input) mod p
487
   *   = ((y^k mod p) * (input mod p)) mod p
488
   * and because input is < p
489
   *   = ((y^k mod p) * input) mod p
490
   */
491
0
  mpi_powm (b, pkey->y, k, pkey->p);
492
0
  mpi_mulm (b, b, input, pkey->p);
493
#if 0
494
  if( DBG_CIPHER )
495
    {
496
      log_mpidump("elg encrypted y", pkey->y);
497
      log_mpidump("elg encrypted p", pkey->p);
498
      log_mpidump("elg encrypted k", k);
499
      log_mpidump("elg encrypted M", input);
500
      log_mpidump("elg encrypted a", a);
501
      log_mpidump("elg encrypted b", b);
502
    }
503
#endif
504
0
  mpi_free(k);
505
0
}
506
507
508
509
510
static void
511
decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey )
512
0
{
513
0
  gcry_mpi_t t1, t2, r, r1, h;
514
0
  unsigned int nbits = mpi_get_nbits (skey->p);
515
0
  gcry_mpi_t x_blind;
516
517
0
  mpi_normalize (a);
518
0
  mpi_normalize (b);
519
520
0
  t1 = mpi_snew (nbits);
521
522
0
#ifdef USE_BLINDING
523
524
0
  t2 = mpi_snew (nbits);
525
0
  r  = mpi_new (nbits);
526
0
  r1 = mpi_new (nbits);
527
0
  h  = mpi_new (nbits);
528
0
  x_blind = mpi_snew (nbits);
529
530
  /* We need a random number of about the prime size.  The random
531
     number merely needs to be unpredictable; thus we use level 0.  */
532
0
  _gcry_mpi_randomize (r, nbits, GCRY_WEAK_RANDOM);
533
534
  /* Also, exponent blinding: x_blind = x + (p-1)*r1 */
535
0
  _gcry_mpi_randomize (r1, nbits, GCRY_WEAK_RANDOM);
536
0
  mpi_set_highbit (r1, nbits - 1);
537
0
  mpi_sub_ui (h, skey->p, 1);
538
0
  mpi_mul (x_blind, h, r1);
539
0
  mpi_add (x_blind, skey->x, x_blind);
540
541
  /* t1 = r^x mod p */
542
0
  mpi_powm (t1, r, x_blind, skey->p);
543
  /* t2 = (a * r)^-x mod p */
544
0
  mpi_mulm (t2, a, r, skey->p);
545
0
  mpi_powm (t2, t2, x_blind, skey->p);
546
0
  mpi_invm (t2, t2, skey->p);
547
  /* t1 = (t1 * t2) mod p*/
548
0
  mpi_mulm (t1, t1, t2, skey->p);
549
550
0
  mpi_free (x_blind);
551
0
  mpi_free (h);
552
0
  mpi_free (r1);
553
0
  mpi_free (r);
554
0
  mpi_free (t2);
555
556
#else /*!USE_BLINDING*/
557
558
  /* output = b/(a^x) mod p */
559
  mpi_powm (t1, a, skey->x, skey->p);
560
  mpi_invm (t1, t1, skey->p);
561
562
#endif /*!USE_BLINDING*/
563
564
0
  mpi_mulm (output, b, t1, skey->p);
565
566
#if 0
567
  if( DBG_CIPHER )
568
    {
569
      log_mpidump ("elg decrypted x", skey->x);
570
      log_mpidump ("elg decrypted p", skey->p);
571
      log_mpidump ("elg decrypted a", a);
572
      log_mpidump ("elg decrypted b", b);
573
      log_mpidump ("elg decrypted M", output);
574
    }
575
#endif
576
0
  mpi_free (t1);
577
0
}
578
579
580
/****************
581
 * Make an Elgamal signature out of INPUT
582
 */
583
584
static void
585
sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey )
586
0
{
587
0
    gcry_mpi_t k;
588
0
    gcry_mpi_t t   = mpi_alloc( mpi_get_nlimbs(a) );
589
0
    gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) );
590
0
    gcry_mpi_t p_1 = mpi_copy(skey->p);
591
592
   /*
593
    * b = (t * inv) mod (p-1)
594
    * b = (t * inv(k,(p-1),(p-1)) mod (p-1)
595
    * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1)
596
    *
597
    */
598
0
    mpi_sub_ui(p_1, p_1, 1);
599
0
    k = gen_k( skey->p );
600
0
    mpi_powm( a, skey->g, k, skey->p );
601
0
    mpi_mul(t, skey->x, a );
602
0
    mpi_subm(t, input, t, p_1 );
603
0
    mpi_invm(inv, k, p_1 );
604
0
    mpi_mulm(b, t, inv, p_1 );
605
606
#if 0
607
    if( DBG_CIPHER )
608
      {
609
  log_mpidump ("elg sign p", skey->p);
610
  log_mpidump ("elg sign g", skey->g);
611
  log_mpidump ("elg sign y", skey->y);
612
  log_mpidump ("elg sign x", skey->x);
613
  log_mpidump ("elg sign k", k);
614
  log_mpidump ("elg sign M", input);
615
  log_mpidump ("elg sign a", a);
616
  log_mpidump ("elg sign b", b);
617
      }
618
#endif
619
0
    mpi_free(k);
620
0
    mpi_free(t);
621
0
    mpi_free(inv);
622
0
    mpi_free(p_1);
623
0
}
624
625
626
/****************
627
 * Returns true if the signature composed of A and B is valid.
628
 */
629
static int
630
verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
631
655
{
632
655
  int rc;
633
655
  gcry_mpi_t t1;
634
655
  gcry_mpi_t t2;
635
655
  gcry_mpi_t base[4];
636
655
  gcry_mpi_t ex[4];
637
638
655
  if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) )
639
10
    return 0; /* assertion 0 < a < p  failed */
640
641
645
  t1 = mpi_alloc( mpi_get_nlimbs(a) );
642
645
  t2 = mpi_alloc( mpi_get_nlimbs(a) );
643
644
#if 0
645
  /* t1 = (y^a mod p) * (a^b mod p) mod p */
646
  gcry_mpi_powm( t1, pkey->y, a, pkey->p );
647
  gcry_mpi_powm( t2, a, b, pkey->p );
648
  mpi_mulm( t1, t1, t2, pkey->p );
649
650
  /* t2 = g ^ input mod p */
651
  gcry_mpi_powm( t2, pkey->g, input, pkey->p );
652
653
  rc = !mpi_cmp( t1, t2 );
654
#elif 0
655
  /* t1 = (y^a mod p) * (a^b mod p) mod p */
656
  base[0] = pkey->y; ex[0] = a;
657
  base[1] = a;       ex[1] = b;
658
  base[2] = NULL;    ex[2] = NULL;
659
  mpi_mulpowm( t1, base, ex, pkey->p );
660
661
  /* t2 = g ^ input mod p */
662
  gcry_mpi_powm( t2, pkey->g, input, pkey->p );
663
664
  rc = !mpi_cmp( t1, t2 );
665
#else
666
  /* t1 = g ^ - input * y ^ a * a ^ b  mod p */
667
645
  mpi_invm(t2, pkey->g, pkey->p );
668
645
  base[0] = t2     ; ex[0] = input;
669
645
  base[1] = pkey->y; ex[1] = a;
670
645
  base[2] = a;       ex[2] = b;
671
645
  base[3] = NULL;    ex[3] = NULL;
672
645
  mpi_mulpowm( t1, base, ex, pkey->p );
673
645
  rc = !mpi_cmp_ui( t1, 1 );
674
675
645
#endif
676
677
645
  mpi_free(t1);
678
645
  mpi_free(t2);
679
645
  return rc;
680
655
}
681
682
/*********************************************
683
 **************  interface  ******************
684
 *********************************************/
685
686
static gpg_err_code_t
687
elg_generate (const gcry_sexp_t genparms, gcry_sexp_t *r_skey)
688
0
{
689
0
  gpg_err_code_t rc;
690
0
  unsigned int nbits;
691
0
  ELG_secret_key sk;
692
0
  gcry_mpi_t xvalue = NULL;
693
0
  gcry_sexp_t l1;
694
0
  gcry_mpi_t *factors = NULL;
695
0
  gcry_sexp_t misc_info = NULL;
696
697
0
  memset (&sk, 0, sizeof sk);
698
699
0
  rc = _gcry_pk_util_get_nbits (genparms, &nbits);
700
0
  if (rc)
701
0
    return rc;
702
703
  /* Parse the optional xvalue element. */
704
0
  l1 = sexp_find_token (genparms, "xvalue", 0);
705
0
  if (l1)
706
0
    {
707
0
      xvalue = sexp_nth_mpi (l1, 1, 0);
708
0
      sexp_release (l1);
709
0
      if (!xvalue)
710
0
        return GPG_ERR_BAD_MPI;
711
0
    }
712
713
0
  if (xvalue)
714
0
    {
715
0
      rc = generate_using_x (&sk, nbits, xvalue, &factors);
716
0
      mpi_free (xvalue);
717
0
    }
718
0
  else
719
0
    {
720
0
      rc = generate (&sk, nbits, &factors);
721
0
    }
722
0
  if (rc)
723
0
    goto leave;
724
725
0
  if (factors && factors[0])
726
0
    {
727
0
      int nfac;
728
0
      void **arg_list;
729
0
      char *buffer, *p;
730
731
0
      for (nfac = 0; factors[nfac]; nfac++)
732
0
        ;
733
0
      arg_list = xtrycalloc (nfac+1, sizeof *arg_list);
734
0
      if (!arg_list)
735
0
        {
736
0
          rc = gpg_err_code_from_syserror ();
737
0
          goto leave;
738
0
        }
739
0
      buffer = xtrymalloc (30 + nfac*2 + 2 + 1);
740
0
      if (!buffer)
741
0
        {
742
0
          rc = gpg_err_code_from_syserror ();
743
0
          xfree (arg_list);
744
0
          goto leave;
745
0
        }
746
0
      p = stpcpy (buffer, "(misc-key-info(pm1-factors");
747
0
      for(nfac = 0; factors[nfac]; nfac++)
748
0
        {
749
0
          p = stpcpy (p, "%m");
750
0
          arg_list[nfac] = factors + nfac;
751
0
        }
752
0
      p = stpcpy (p, "))");
753
0
      rc = sexp_build_array (&misc_info, NULL, buffer, arg_list);
754
0
      xfree (arg_list);
755
0
      xfree (buffer);
756
0
      if (rc)
757
0
        goto leave;
758
0
    }
759
760
0
  rc = sexp_build (r_skey, NULL,
761
0
                   "(key-data"
762
0
                   " (public-key"
763
0
                   "  (elg(p%m)(g%m)(y%m)))"
764
0
                   " (private-key"
765
0
                   "  (elg(p%m)(g%m)(y%m)(x%m)))"
766
0
                   " %S)",
767
0
                   sk.p, sk.g, sk.y,
768
0
                   sk.p, sk.g, sk.y, sk.x,
769
0
                   misc_info);
770
771
0
 leave:
772
0
  mpi_free (sk.p);
773
0
  mpi_free (sk.g);
774
0
  mpi_free (sk.y);
775
0
  mpi_free (sk.x);
776
0
  sexp_release (misc_info);
777
0
  if (factors)
778
0
    {
779
0
      gcry_mpi_t *mp;
780
0
      for (mp = factors; *mp; mp++)
781
0
        mpi_free (*mp);
782
0
      xfree (factors);
783
0
    }
784
785
0
  return rc;
786
0
}
787
788
789
static gcry_err_code_t
790
elg_check_secret_key (gcry_sexp_t keyparms)
791
0
{
792
0
  gcry_err_code_t rc;
793
0
  ELG_secret_key sk = {NULL, NULL, NULL, NULL};
794
795
0
  rc = sexp_extract_param (keyparms, NULL, "pgyx",
796
0
                           &sk.p, &sk.g, &sk.y, &sk.x,
797
0
                           NULL);
798
0
  if (rc)
799
0
    goto leave;
800
801
0
  if (!check_secret_key (&sk))
802
0
    rc = GPG_ERR_BAD_SECKEY;
803
804
0
 leave:
805
0
  _gcry_mpi_release (sk.p);
806
0
  _gcry_mpi_release (sk.g);
807
0
  _gcry_mpi_release (sk.y);
808
0
  _gcry_mpi_release (sk.x);
809
0
  if (DBG_CIPHER)
810
0
    log_debug ("elg_testkey    => %s\n", gpg_strerror (rc));
811
0
  return rc;
812
0
}
813
814
815
static gcry_err_code_t
816
elg_encrypt (gcry_sexp_t *r_ciph, gcry_sexp_t s_data, gcry_sexp_t keyparms)
817
0
{
818
0
  gcry_err_code_t rc;
819
0
  struct pk_encoding_ctx ctx;
820
0
  gcry_mpi_t mpi_a = NULL;
821
0
  gcry_mpi_t mpi_b = NULL;
822
0
  gcry_mpi_t data = NULL;
823
0
  ELG_public_key pk = { NULL, NULL, NULL };
824
825
0
  _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_ENCRYPT,
826
0
                                   elg_get_nbits (keyparms));
827
828
  /* Extract the data.  */
829
0
  rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx);
830
0
  if (rc)
831
0
    goto leave;
832
0
  if (DBG_CIPHER)
833
0
    log_mpidump ("elg_encrypt data", data);
834
0
  if (mpi_is_opaque (data))
835
0
    {
836
0
      rc = GPG_ERR_INV_DATA;
837
0
      goto leave;
838
0
    }
839
840
  /* Extract the key.  */
841
0
  rc = sexp_extract_param (keyparms, NULL, "pgy",
842
0
                           &pk.p, &pk.g, &pk.y, NULL);
843
0
  if (rc)
844
0
    goto leave;
845
0
  if (DBG_CIPHER)
846
0
    {
847
0
      log_mpidump ("elg_encrypt  p", pk.p);
848
0
      log_mpidump ("elg_encrypt  g", pk.g);
849
0
      log_mpidump ("elg_encrypt  y", pk.y);
850
0
    }
851
852
  /* Do Elgamal computation and build result.  */
853
0
  mpi_a = mpi_new (0);
854
0
  mpi_b = mpi_new (0);
855
0
  do_encrypt (mpi_a, mpi_b, data, &pk);
856
0
  rc = sexp_build (r_ciph, NULL, "(enc-val(elg(a%m)(b%m)))", mpi_a, mpi_b);
857
858
0
 leave:
859
0
  _gcry_mpi_release (mpi_a);
860
0
  _gcry_mpi_release (mpi_b);
861
0
  _gcry_mpi_release (pk.p);
862
0
  _gcry_mpi_release (pk.g);
863
0
  _gcry_mpi_release (pk.y);
864
0
  _gcry_mpi_release (data);
865
0
  _gcry_pk_util_free_encoding_ctx (&ctx);
866
0
  if (DBG_CIPHER)
867
0
    log_debug ("elg_encrypt   => %s\n", gpg_strerror (rc));
868
0
  return rc;
869
0
}
870
871
872
static gcry_err_code_t
873
elg_decrypt (gcry_sexp_t *r_plain, gcry_sexp_t s_data, gcry_sexp_t keyparms)
874
0
{
875
0
  gpg_err_code_t rc;
876
0
  struct pk_encoding_ctx ctx;
877
0
  gcry_sexp_t l1 = NULL;
878
0
  gcry_mpi_t data_a = NULL;
879
0
  gcry_mpi_t data_b = NULL;
880
0
  ELG_secret_key sk = {NULL, NULL, NULL, NULL};
881
0
  gcry_mpi_t plain = NULL;
882
0
  unsigned char *unpad = NULL;
883
0
  size_t unpadlen = 0;
884
885
0
  _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_DECRYPT,
886
0
                                   elg_get_nbits (keyparms));
887
888
  /* Extract the data.  */
889
0
  rc = _gcry_pk_util_preparse_encval (s_data, elg_names, &l1, &ctx);
890
0
  if (rc)
891
0
    goto leave;
892
0
  rc = sexp_extract_param (l1, NULL, "ab", &data_a, &data_b, NULL);
893
0
  if (rc)
894
0
    goto leave;
895
0
  if (DBG_CIPHER)
896
0
    {
897
0
      log_printmpi ("elg_decrypt  d_a", data_a);
898
0
      log_printmpi ("elg_decrypt  d_b", data_b);
899
0
    }
900
0
  if (mpi_is_opaque (data_a) || mpi_is_opaque (data_b))
901
0
    {
902
0
      rc = GPG_ERR_INV_DATA;
903
0
      goto leave;
904
0
    }
905
906
  /* Extract the key.  */
907
0
  rc = sexp_extract_param (keyparms, NULL, "pgyx",
908
0
                           &sk.p, &sk.g, &sk.y, &sk.x,
909
0
                           NULL);
910
0
  if (rc)
911
0
    goto leave;
912
0
  if (DBG_CIPHER)
913
0
    {
914
0
      log_printmpi ("elg_decrypt    p", sk.p);
915
0
      log_printmpi ("elg_decrypt    g", sk.g);
916
0
      log_printmpi ("elg_decrypt    y", sk.y);
917
0
      if (!fips_mode ())
918
0
        log_printmpi ("elg_decrypt    x", sk.x);
919
0
    }
920
921
0
  plain = mpi_snew (ctx.nbits);
922
0
  decrypt (plain, data_a, data_b, &sk);
923
0
  if (DBG_CIPHER)
924
0
    log_printmpi ("elg_decrypt  res", plain);
925
926
  /* Reverse the encoding and build the s-expression.  */
927
0
  switch (ctx.encoding)
928
0
    {
929
0
    case PUBKEY_ENC_PKCS1:
930
0
      rc = _gcry_rsa_pkcs1_decode_for_enc (&unpad, &unpadlen, ctx.nbits, plain);
931
0
      mpi_free (plain); plain = NULL;
932
0
      if (!rc)
933
0
        rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad);
934
0
      break;
935
936
0
    case PUBKEY_ENC_OAEP:
937
0
      rc = _gcry_rsa_oaep_decode (&unpad, &unpadlen,
938
0
                                  ctx.nbits, ctx.hash_algo, plain,
939
0
                                  ctx.label, ctx.labellen);
940
0
      mpi_free (plain); plain = NULL;
941
0
      if (!rc)
942
0
        rc = sexp_build (r_plain, NULL, "(value %b)", (int)unpadlen, unpad);
943
0
      break;
944
945
0
    default:
946
      /* Raw format.  For backward compatibility we need to assume a
947
         signed mpi by using the sexp format string "%m".  */
948
0
      rc = sexp_build (r_plain, NULL,
949
0
                       (ctx.flags & PUBKEY_FLAG_LEGACYRESULT)
950
0
                       ? "%m" : "(value %m)",
951
0
                       plain);
952
0
      break;
953
0
    }
954
955
956
0
 leave:
957
0
  xfree (unpad);
958
0
  _gcry_mpi_release (plain);
959
0
  _gcry_mpi_release (sk.p);
960
0
  _gcry_mpi_release (sk.g);
961
0
  _gcry_mpi_release (sk.y);
962
0
  _gcry_mpi_release (sk.x);
963
0
  _gcry_mpi_release (data_a);
964
0
  _gcry_mpi_release (data_b);
965
0
  sexp_release (l1);
966
0
  _gcry_pk_util_free_encoding_ctx (&ctx);
967
0
  if (DBG_CIPHER)
968
0
    log_debug ("elg_decrypt    => %s\n", gpg_strerror (rc));
969
0
  return rc;
970
0
}
971
972
973
static gcry_err_code_t
974
elg_sign (gcry_sexp_t *r_sig, gcry_sexp_t s_data, gcry_sexp_t keyparms)
975
0
{
976
0
  gcry_err_code_t rc;
977
0
  struct pk_encoding_ctx ctx;
978
0
  gcry_mpi_t data = NULL;
979
0
  ELG_secret_key sk = {NULL, NULL, NULL, NULL};
980
0
  gcry_mpi_t sig_r = NULL;
981
0
  gcry_mpi_t sig_s = NULL;
982
983
0
  _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_SIGN,
984
0
                                   elg_get_nbits (keyparms));
985
986
  /* Extract the data.  */
987
0
  rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx);
988
0
  if (rc)
989
0
    goto leave;
990
0
  if (DBG_CIPHER)
991
0
    log_mpidump ("elg_sign   data", data);
992
0
  if (mpi_is_opaque (data))
993
0
    {
994
0
      rc = GPG_ERR_INV_DATA;
995
0
      goto leave;
996
0
    }
997
998
  /* Extract the key.  */
999
0
  rc = sexp_extract_param (keyparms, NULL, "pgyx",
1000
0
                           &sk.p, &sk.g, &sk.y, &sk.x, NULL);
1001
0
  if (rc)
1002
0
    goto leave;
1003
0
  if (DBG_CIPHER)
1004
0
    {
1005
0
      log_mpidump ("elg_sign      p", sk.p);
1006
0
      log_mpidump ("elg_sign      g", sk.g);
1007
0
      log_mpidump ("elg_sign      y", sk.y);
1008
0
      if (!fips_mode ())
1009
0
        log_mpidump ("elg_sign      x", sk.x);
1010
0
    }
1011
1012
0
  sig_r = mpi_new (0);
1013
0
  sig_s = mpi_new (0);
1014
0
  sign (sig_r, sig_s, data, &sk);
1015
0
  if (DBG_CIPHER)
1016
0
    {
1017
0
      log_mpidump ("elg_sign  sig_r", sig_r);
1018
0
      log_mpidump ("elg_sign  sig_s", sig_s);
1019
0
    }
1020
0
  rc = sexp_build (r_sig, NULL, "(sig-val(elg(r%M)(s%M)))", sig_r, sig_s);
1021
1022
0
 leave:
1023
0
  _gcry_mpi_release (sig_r);
1024
0
  _gcry_mpi_release (sig_s);
1025
0
  _gcry_mpi_release (sk.p);
1026
0
  _gcry_mpi_release (sk.g);
1027
0
  _gcry_mpi_release (sk.y);
1028
0
  _gcry_mpi_release (sk.x);
1029
0
  _gcry_mpi_release (data);
1030
0
  _gcry_pk_util_free_encoding_ctx (&ctx);
1031
0
  if (DBG_CIPHER)
1032
0
    log_debug ("elg_sign      => %s\n", gpg_strerror (rc));
1033
0
  return rc;
1034
0
}
1035
1036
1037
static gcry_err_code_t
1038
elg_verify (gcry_sexp_t s_sig, gcry_sexp_t s_data, gcry_sexp_t s_keyparms)
1039
655
{
1040
655
  gcry_err_code_t rc;
1041
655
  struct pk_encoding_ctx ctx;
1042
655
  gcry_sexp_t l1 = NULL;
1043
655
  gcry_mpi_t sig_r = NULL;
1044
655
  gcry_mpi_t sig_s = NULL;
1045
655
  gcry_mpi_t data = NULL;
1046
655
  ELG_public_key pk = { NULL, NULL, NULL };
1047
1048
655
  _gcry_pk_util_init_encoding_ctx (&ctx, PUBKEY_OP_VERIFY,
1049
655
                                   elg_get_nbits (s_keyparms));
1050
1051
  /* Extract the data.  */
1052
655
  rc = _gcry_pk_util_data_to_mpi (s_data, &data, &ctx);
1053
655
  if (rc)
1054
0
    goto leave;
1055
655
  if (DBG_CIPHER)
1056
0
    log_mpidump ("elg_verify data", data);
1057
655
  if (mpi_is_opaque (data))
1058
0
    {
1059
0
      rc = GPG_ERR_INV_DATA;
1060
0
      goto leave;
1061
0
    }
1062
1063
  /* Extract the signature value.  */
1064
655
  rc = _gcry_pk_util_preparse_sigval (s_sig, elg_names, &l1, NULL);
1065
655
  if (rc)
1066
0
    goto leave;
1067
655
  rc = sexp_extract_param (l1, NULL, "rs", &sig_r, &sig_s, NULL);
1068
655
  if (rc)
1069
0
    goto leave;
1070
655
  if (DBG_CIPHER)
1071
0
    {
1072
0
      log_mpidump ("elg_verify  s_r", sig_r);
1073
0
      log_mpidump ("elg_verify  s_s", sig_s);
1074
0
    }
1075
1076
  /* Extract the key.  */
1077
655
  rc = sexp_extract_param (s_keyparms, NULL, "pgy",
1078
655
                                 &pk.p, &pk.g, &pk.y, NULL);
1079
655
  if (rc)
1080
0
    goto leave;
1081
655
  if (DBG_CIPHER)
1082
0
    {
1083
0
      log_mpidump ("elg_verify    p", pk.p);
1084
0
      log_mpidump ("elg_verify    g", pk.g);
1085
0
      log_mpidump ("elg_verify    y", pk.y);
1086
0
    }
1087
1088
  /* Verify the signature.  */
1089
655
  if (!verify (sig_r, sig_s, data, &pk))
1090
655
    rc = GPG_ERR_BAD_SIGNATURE;
1091
1092
655
 leave:
1093
655
  _gcry_mpi_release (pk.p);
1094
655
  _gcry_mpi_release (pk.g);
1095
655
  _gcry_mpi_release (pk.y);
1096
655
  _gcry_mpi_release (data);
1097
655
  _gcry_mpi_release (sig_r);
1098
655
  _gcry_mpi_release (sig_s);
1099
655
  sexp_release (l1);
1100
655
  _gcry_pk_util_free_encoding_ctx (&ctx);
1101
655
  if (DBG_CIPHER)
1102
0
    log_debug ("elg_verify    => %s\n", rc?gpg_strerror (rc):"Good");
1103
655
  return rc;
1104
655
}
1105
1106
1107
/* Return the number of bits for the key described by PARMS.  On error
1108
 * 0 is returned.  The format of PARMS starts with the algorithm name;
1109
 * for example:
1110
 *
1111
 *   (dsa
1112
 *     (p <mpi>)
1113
 *     (g <mpi>)
1114
 *     (y <mpi>))
1115
 *
1116
 * More parameters may be given but we only need P here.
1117
 */
1118
static unsigned int
1119
elg_get_nbits (gcry_sexp_t parms)
1120
2.27k
{
1121
2.27k
  gcry_sexp_t l1;
1122
2.27k
  gcry_mpi_t p;
1123
2.27k
  unsigned int nbits;
1124
1125
2.27k
  l1 = sexp_find_token (parms, "p", 1);
1126
2.27k
  if (!l1)
1127
0
    return 0; /* Parameter P not found.  */
1128
1129
2.27k
  p= sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG);
1130
2.27k
  sexp_release (l1);
1131
2.27k
  nbits = p? mpi_get_nbits (p) : 0;
1132
2.27k
  _gcry_mpi_release (p);
1133
2.27k
  return nbits;
1134
2.27k
}
1135
1136
1137

1138
gcry_pk_spec_t _gcry_pubkey_spec_elg =
1139
  {
1140
    GCRY_PK_ELG, { 0, 0 },
1141
    (GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR),
1142
    "ELG", elg_names,
1143
    "pgy", "pgyx", "ab", "rs", "pgy",
1144
    elg_generate,
1145
    elg_check_secret_key,
1146
    elg_encrypt,
1147
    elg_decrypt,
1148
    elg_sign,
1149
    elg_verify,
1150
    elg_get_nbits,
1151
  };