Coverage Report

Created: 2024-11-25 06:27

/src/gmp/mpn/mulmod_bnm1.c
Line
Count
Source (jump to first uncovered line)
1
/* mulmod_bnm1.c -- multiplication mod B^n-1.
2
3
   Contributed to the GNU project by Niels Möller, Torbjorn Granlund and
4
   Marco Bodrato.
5
6
   THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
7
   SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
8
   GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
9
10
Copyright 2009, 2010, 2012, 2013, 2020, 2022 Free Software Foundation, Inc.
11
12
This file is part of the GNU MP Library.
13
14
The GNU MP Library is free software; you can redistribute it and/or modify
15
it under the terms of either:
16
17
  * the GNU Lesser General Public License as published by the Free
18
    Software Foundation; either version 3 of the License, or (at your
19
    option) any later version.
20
21
or
22
23
  * the GNU General Public License as published by the Free Software
24
    Foundation; either version 2 of the License, or (at your option) any
25
    later version.
26
27
or both in parallel, as here.
28
29
The GNU MP Library is distributed in the hope that it will be useful, but
30
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32
for more details.
33
34
You should have received copies of the GNU General Public License and the
35
GNU Lesser General Public License along with the GNU MP Library.  If not,
36
see https://www.gnu.org/licenses/.  */
37
38
39
#include "gmp-impl.h"
40
#include "longlong.h"
41
42
/* Inputs are {ap,rn} and {bp,rn}; output is {rp,rn}, computation is
43
   mod B^rn - 1, and values are semi-normalised; zero is represented
44
   as either 0 or B^n - 1.  Needs a scratch of 2rn limbs at tp.
45
   tp==rp is allowed. */
46
void
47
mpn_bc_mulmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,
48
        mp_ptr tp)
49
57.2k
{
50
57.2k
  mp_limb_t cy;
51
52
57.2k
  ASSERT (0 < rn);
53
54
57.2k
  mpn_mul_n (tp, ap, bp, rn);
55
57.2k
  cy = mpn_add_n (rp, tp, tp + rn, rn);
56
  /* If cy == 1, then the value of rp is at most B^rn - 2, so there can
57
   * be no overflow when adding in the carry. */
58
57.2k
  MPN_INCR_U (rp, rn, cy);
59
57.2k
}
60
61
62
/* Inputs are {ap,rn+1} and {bp,rn+1}; output is {rp,rn+1}, in
63
   normalised representation, computation is mod B^rn + 1. Needs
64
   a scratch area of 2rn limbs at tp; tp == rp is allowed.
65
   Output is normalised. */
66
static void
67
mpn_bc_mulmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,
68
        mp_ptr tp)
69
228k
{
70
228k
  mp_limb_t cy;
71
228k
  unsigned k;
72
73
228k
  ASSERT (0 < rn);
74
75
228k
  if (UNLIKELY (ap[rn] | bp [rn]))
76
0
    {
77
0
      if (ap[rn])
78
0
  cy = bp [rn] + mpn_neg (rp, bp, rn);
79
0
      else /* ap[rn] == 0 */
80
0
  cy = mpn_neg (rp, ap, rn);
81
0
    }
82
228k
  else if (MPN_MULMOD_BKNP1_USABLE (rn, k, MUL_FFT_MODF_THRESHOLD))
83
0
    {
84
0
      mp_size_t n_k = rn / k;
85
0
      TMP_DECL;
86
87
0
      TMP_MARK;
88
0
      mpn_mulmod_bknp1 (rp, ap, bp, n_k, k,
89
0
                       TMP_ALLOC_LIMBS (mpn_mulmod_bknp1_itch (rn)));
90
0
      TMP_FREE;
91
0
      return;
92
0
    }
93
228k
  else
94
228k
    {
95
228k
      mpn_mul_n (tp, ap, bp, rn);
96
228k
      cy = mpn_sub_n (rp, tp, tp + rn, rn);
97
228k
    }
98
228k
  rp[rn] = 0;
99
228k
  MPN_INCR_U (rp, rn + 1, cy);
100
228k
}
101
102
103
/* Computes {rp,MIN(rn,an+bn)} <- {ap,an}*{bp,bn} Mod(B^rn-1)
104
 *
105
 * The result is expected to be ZERO if and only if one of the operand
106
 * already is. Otherwise the class [0] Mod(B^rn-1) is represented by
107
 * B^rn-1. This should not be a problem if mulmod_bnm1 is used to
108
 * combine results and obtain a natural number when one knows in
109
 * advance that the final value is less than (B^rn-1).
110
 * Moreover it should not be a problem if mulmod_bnm1 is used to
111
 * compute the full product with an+bn <= rn, because this condition
112
 * implies (B^an-1)(B^bn-1) < (B^rn-1) .
113
 *
114
 * Requires 0 < bn <= an <= rn and an + bn > rn/2
115
 * Scratch need: rn + (need for recursive call OR rn + 4). This gives
116
 *
117
 * S(n) <= rn + MAX (rn + 4, S(n/2)) <= 2rn + 4
118
 */
119
void
120
mpn_mulmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn, mp_ptr tp)
121
286k
{
122
286k
  ASSERT (0 < bn);
123
286k
  ASSERT (bn <= an);
124
286k
  ASSERT (an <= rn);
125
126
286k
  if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, MULMOD_BNM1_THRESHOLD))
127
57.2k
    {
128
57.2k
      if (UNLIKELY (bn < rn))
129
0
  {
130
0
    if (UNLIKELY (an + bn <= rn))
131
0
      {
132
0
        mpn_mul (rp, ap, an, bp, bn);
133
0
      }
134
0
    else
135
0
      {
136
0
        mp_limb_t cy;
137
0
        mpn_mul (tp, ap, an, bp, bn);
138
0
        cy = mpn_add (rp, tp, rn, tp + rn, an + bn - rn);
139
0
        MPN_INCR_U (rp, rn, cy);
140
0
      }
141
0
  }
142
57.2k
      else
143
57.2k
  mpn_bc_mulmod_bnm1 (rp, ap, bp, rn, tp);
144
57.2k
    }
145
228k
  else
146
228k
    {
147
228k
      mp_size_t n;
148
228k
      mp_limb_t cy;
149
228k
      mp_limb_t hi;
150
151
228k
      n = rn >> 1;
152
153
      /* We need at least an + bn >= n, to be able to fit one of the
154
   recursive products at rp. Requiring strict inequality makes
155
   the code slightly simpler. If desired, we could avoid this
156
   restriction by initially halving rn as long as rn is even and
157
   an + bn <= rn/2. */
158
159
228k
      ASSERT (an + bn > n);
160
161
      /* Compute xm = a*b mod (B^n - 1), xp = a*b mod (B^n + 1)
162
   and crt together as
163
164
   x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)]
165
      */
166
167
457k
#define a0 ap
168
457k
#define a1 (ap + n)
169
915k
#define b0 bp
170
457k
#define b1 (bp + n)
171
172
2.06M
#define xp  tp  /* 2n + 2 */
173
      /* am1  maybe in {xp, n} */
174
      /* bm1  maybe in {xp + n, n} */
175
1.37M
#define sp1 (tp + 2*n + 2)
176
      /* ap1  maybe in {sp1, n + 1} */
177
      /* bp1  maybe in {sp1 + n + 1, n + 1} */
178
179
228k
      {
180
228k
  mp_srcptr am1, bm1;
181
228k
  mp_size_t anm, bnm;
182
228k
  mp_ptr so;
183
184
228k
  bm1 = b0;
185
228k
  bnm = bn;
186
228k
  if (LIKELY (an > n))
187
228k
    {
188
228k
      am1 = xp;
189
228k
      cy = mpn_add (xp, a0, n, a1, an - n);
190
228k
      MPN_INCR_U (xp, n, cy);
191
228k
      anm = n;
192
228k
      so = xp + n;
193
228k
      if (LIKELY (bn > n))
194
228k
        {
195
228k
    bm1 = so;
196
228k
    cy = mpn_add (so, b0, n, b1, bn - n);
197
228k
    MPN_INCR_U (so, n, cy);
198
228k
    bnm = n;
199
228k
    so += n;
200
228k
        }
201
228k
    }
202
0
  else
203
0
    {
204
0
      so = xp;
205
0
      am1 = a0;
206
0
      anm = an;
207
0
    }
208
209
228k
  mpn_mulmod_bnm1 (rp, n, am1, anm, bm1, bnm, so);
210
228k
      }
211
212
228k
      {
213
228k
  int       k;
214
228k
  mp_srcptr ap1, bp1;
215
228k
  mp_size_t anp, bnp;
216
217
228k
  bp1 = b0;
218
228k
  bnp = bn;
219
228k
  if (LIKELY (an > n)) {
220
228k
    ap1 = sp1;
221
228k
    cy = mpn_sub (sp1, a0, n, a1, an - n);
222
228k
    sp1[n] = 0;
223
228k
    MPN_INCR_U (sp1, n + 1, cy);
224
228k
    anp = n + ap1[n];
225
228k
    if (LIKELY (bn > n)) {
226
228k
      bp1 = sp1 + n + 1;
227
228k
      cy = mpn_sub (sp1 + n + 1, b0, n, b1, bn - n);
228
228k
      sp1[2*n+1] = 0;
229
228k
      MPN_INCR_U (sp1 + n + 1, n + 1, cy);
230
228k
      bnp = n + bp1[n];
231
228k
    }
232
228k
  } else {
233
0
    ap1 = a0;
234
0
    anp = an;
235
0
  }
236
237
228k
  if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD))
238
228k
    k=0;
239
0
  else
240
0
    {
241
0
      int mask;
242
0
      k = mpn_fft_best_k (n, 0);
243
0
      mask = (1<<k) - 1;
244
0
      while (n & mask) {k--; mask >>=1;};
245
0
    }
246
228k
  if (k >= FFT_FIRST_K)
247
0
    xp[n] = mpn_mul_fft (xp, n, ap1, anp, bp1, bnp, k);
248
228k
  else if (UNLIKELY (bp1 == b0))
249
0
    {
250
0
      ASSERT (anp + bnp <= 2*n+1);
251
0
      ASSERT (anp + bnp > n);
252
0
      ASSERT (anp >= bnp);
253
0
      mpn_mul (xp, ap1, anp, bp1, bnp);
254
0
      anp = anp + bnp - n;
255
0
      ASSERT (anp <= n || xp[2*n]==0);
256
0
      anp-= anp > n;
257
0
      cy = mpn_sub (xp, xp, n, xp + n, anp);
258
0
      xp[n] = 0;
259
0
      MPN_INCR_U (xp, n+1, cy);
260
0
    }
261
228k
  else
262
228k
    mpn_bc_mulmod_bnp1 (xp, ap1, bp1, n, xp);
263
228k
      }
264
265
      /* Here the CRT recomposition begins.
266
267
   xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1)
268
   Division by 2 is a bitwise rotation.
269
270
   Assumes xp normalised mod (B^n+1).
271
272
   The residue class [0] is represented by [B^n-1]; except when
273
   both input are ZERO.
274
      */
275
276
#if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc
277
#if HAVE_NATIVE_mpn_rsh1add_nc
278
      cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */
279
      hi = cy << (GMP_NUMB_BITS - 1);
280
      cy = 0;
281
      /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi
282
   overflows, i.e. a further increment will not overflow again. */
283
#else /* ! _nc */
284
      cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */
285
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
286
      cy >>= 1;
287
      /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that
288
   the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */
289
#endif
290
#if GMP_NAIL_BITS == 0
291
      add_ssaaaa(cy, rp[n-1], cy, rp[n-1], 0, hi);
292
#else
293
      cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1);
294
      rp[n-1] ^= hi;
295
#endif
296
#else /* ! HAVE_NATIVE_mpn_rsh1add_n */
297
#if HAVE_NATIVE_mpn_add_nc
298
      cy = mpn_add_nc(rp, rp, xp, n, xp[n]);
299
#else /* ! _nc */
300
228k
      cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */
301
228k
#endif
302
228k
      cy += (rp[0]&1);
303
228k
      mpn_rshift(rp, rp, n, 1);
304
228k
      ASSERT (cy <= 2);
305
228k
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
306
228k
      cy >>= 1;
307
      /* We can have cy != 0 only if hi = 0... */
308
228k
      ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0);
309
228k
      rp[n-1] |= hi;
310
      /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */
311
228k
#endif
312
228k
      ASSERT (cy <= 1);
313
      /* Next increment can not overflow, read the previous comments about cy. */
314
228k
      ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0));
315
228k
      MPN_INCR_U(rp, n, cy);
316
317
      /* Compute the highest half:
318
   ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n
319
       */
320
228k
      if (UNLIKELY (an + bn < rn))
321
0
  {
322
    /* Note that in this case, the only way the result can equal
323
       zero mod B^{rn} - 1 is if one of the inputs is zero, and
324
       then the output of both the recursive calls and this CRT
325
       reconstruction is zero, not B^{rn} - 1. Which is good,
326
       since the latter representation doesn't fit in the output
327
       area.*/
328
0
    cy = mpn_sub_n (rp + n, rp, xp, an + bn - n);
329
330
    /* FIXME: This subtraction of the high parts is not really
331
       necessary, we do it to get the carry out, and for sanity
332
       checking. */
333
0
    cy = xp[n] + mpn_sub_nc (xp + an + bn - n, rp + an + bn - n,
334
0
           xp + an + bn - n, rn - (an + bn), cy);
335
0
    ASSERT (an + bn == rn - 1 ||
336
0
      mpn_zero_p (xp + an + bn - n + 1, rn - 1 - (an + bn)));
337
0
    cy = mpn_sub_1 (rp, rp, an + bn, cy);
338
0
    ASSERT (cy == (xp + an + bn - n)[0]);
339
0
  }
340
228k
      else
341
228k
  {
342
228k
    cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n);
343
    /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO.
344
       DECR will affect _at most_ the lowest n limbs. */
345
228k
    MPN_DECR_U (rp, 2*n, cy);
346
228k
  }
347
228k
#undef a0
348
228k
#undef a1
349
228k
#undef b0
350
228k
#undef b1
351
228k
#undef xp
352
228k
#undef sp1
353
228k
    }
354
286k
}
355
356
mp_size_t
357
mpn_mulmod_bnm1_next_size (mp_size_t n)
358
59.3k
{
359
59.3k
  mp_size_t nh;
360
361
59.3k
  if (BELOW_THRESHOLD (n,     MULMOD_BNM1_THRESHOLD))
362
260
    return n;
363
59.1k
  if (BELOW_THRESHOLD (n, 4 * (MULMOD_BNM1_THRESHOLD - 1) + 1))
364
1.84k
    return (n + (2-1)) & (-2);
365
57.2k
  if (BELOW_THRESHOLD (n, 8 * (MULMOD_BNM1_THRESHOLD - 1) + 1))
366
18
    return (n + (4-1)) & (-4);
367
368
57.2k
  nh = (n + 1) >> 1;
369
370
57.2k
  if (BELOW_THRESHOLD (nh, MUL_FFT_MODF_THRESHOLD))
371
57.2k
    return (n + (8-1)) & (-8);
372
373
0
  return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 0));
374
57.2k
}