Coverage Report

Created: 2024-11-25 06:27

/src/nettle/memxor3.c
Line
Count
Source (jump to first uncovered line)
1
/* memxor3.c
2
3
   Copyright (C) 2010, 2014 Niels Möller
4
5
   This file is part of GNU Nettle.
6
7
   GNU Nettle is free software: you can redistribute it and/or
8
   modify it under the terms of either:
9
10
     * the GNU Lesser General Public License as published by the Free
11
       Software Foundation; either version 3 of the License, or (at your
12
       option) any later version.
13
14
   or
15
16
     * the GNU General Public License as published by the Free
17
       Software Foundation; either version 2 of the License, or (at your
18
       option) any later version.
19
20
   or both in parallel, as here.
21
22
   GNU Nettle is distributed in the hope that it will be useful,
23
   but WITHOUT ANY WARRANTY; without even the implied warranty of
24
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25
   General Public License for more details.
26
27
   You should have received copies of the GNU General Public License and
28
   the GNU Lesser General Public License along with this program.  If
29
   not, see http://www.gnu.org/licenses/.
30
*/
31
32
/* Implementation inspired by memcmp in glibc, contributed to the FSF
33
   by Torbjorn Granlund.
34
 */
35
36
#if HAVE_CONFIG_H
37
# include "config.h"
38
#endif
39
40
#include <assert.h>
41
#include <limits.h>
42
43
#include "memxor.h"
44
#include "memxor-internal.h"
45
46
649
#define WORD_T_THRESH 16
47
48
/* For fat builds */
49
#if HAVE_NATIVE_memxor3
50
void *
51
_nettle_memxor3_c(void *dst_in, const void *a_in, const void *b_in, size_t n);
52
# define nettle_memxor3 _nettle_memxor3_c
53
#endif
54
55
/* XOR word-aligned areas. n is the number of words, not bytes. */
56
static void
57
memxor3_common_alignment (word_t *dst,
58
        const word_t *a, const word_t *b, size_t n)
59
603
{
60
  /* FIXME: Require n > 0? */
61
603
  if (n & 1)
62
8
    {
63
8
      n--;
64
8
      dst[n] = a[n] ^ b[n];
65
8
    }
66
2.93k
  while (n > 0)
67
2.33k
    {
68
2.33k
      n -= 2;
69
2.33k
      dst[n+1] = a[n+1] ^ b[n+1];
70
2.33k
      dst[n] = a[n] ^ b[n];
71
2.33k
    }
72
603
}
73
74
static void
75
memxor3_different_alignment_b (word_t *dst,
76
             const word_t *a, const unsigned char *b,
77
             unsigned offset, size_t n)
78
0
{
79
0
  int shl, shr;
80
0
  const word_t *b_word;
81
82
0
  word_t s0, s1;
83
84
0
  assert (n > 0);
85
86
0
  shl = CHAR_BIT * offset;
87
0
  shr = CHAR_BIT * (sizeof(word_t) - offset);
88
89
0
  b_word = (const word_t *) ((uintptr_t) b & -sizeof(word_t));
90
91
  /* Read top offset bytes, in native byte order. */
92
0
  READ_PARTIAL (s0, (unsigned char *) &b_word[n], offset);
93
#ifdef WORDS_BIGENDIAN
94
  s0 <<= shr;
95
#endif
96
97
0
  if (n & 1)
98
0
    s1 = s0;
99
0
  else
100
0
    {
101
0
      n--;
102
0
      s1 = b_word[n];
103
0
      dst[n] = a[n] ^ MERGE (s1, shl, s0, shr);
104
0
    }
105
106
0
  while (n > 2)
107
0
    {
108
0
      n -= 2;
109
0
      s0 = b_word[n+1];
110
0
      dst[n+1] = a[n+1] ^ MERGE(s0, shl, s1, shr);
111
0
      s1 = b_word[n];
112
0
      dst[n] = a[n] ^ MERGE(s1, shl, s0, shr);
113
0
    }
114
0
  assert (n == 1);
115
  /* Read low wordsize - offset bytes */
116
0
  READ_PARTIAL (s0, b, sizeof(word_t) - offset);
117
0
#ifndef WORDS_BIGENDIAN
118
0
  s0 <<= shl;
119
0
#endif /* !WORDS_BIGENDIAN */
120
121
0
  dst[0] = a[0] ^ MERGE(s0, shl, s1, shr);
122
0
}
123
124
static void
125
memxor3_different_alignment_ab (word_t *dst,
126
        const unsigned char *a, const unsigned char *b,
127
        unsigned offset, size_t n)
128
0
{
129
0
  int shl, shr;
130
0
  const word_t *a_word;
131
0
  const word_t *b_word;
132
133
0
  word_t s0, s1, t;
134
135
0
  assert (n > 0);
136
137
0
  shl = CHAR_BIT * offset;
138
0
  shr = CHAR_BIT * (sizeof(word_t) - offset);
139
140
0
  a_word = (const word_t *) ((uintptr_t) a & -sizeof(word_t));
141
0
  b_word = (const word_t *) ((uintptr_t) b & -sizeof(word_t));
142
143
  /* Read top offset bytes, in native byte order. */
144
0
  READ_PARTIAL (s0, (unsigned char *) &a_word[n], offset);
145
0
  READ_PARTIAL (t,  (unsigned char *) &b_word[n], offset);
146
0
  s0 ^= t;
147
#ifdef WORDS_BIGENDIAN
148
  s0 <<= shr;
149
#endif
150
151
0
  if (n & 1)
152
0
    s1 = s0;
153
0
  else
154
0
    {
155
0
      n--;
156
0
      s1 = a_word[n] ^ b_word[n];
157
0
      dst[n] = MERGE (s1, shl, s0, shr);
158
0
    }
159
160
0
  while (n > 2)
161
0
    {
162
0
      n -= 2;
163
0
      s0 = a_word[n+1] ^ b_word[n+1];
164
0
      dst[n+1] = MERGE(s0, shl, s1, shr);
165
0
      s1 = a_word[n] ^ b_word[n];
166
0
      dst[n] = MERGE(s1, shl, s0, shr);
167
0
    }
168
0
  assert (n == 1);
169
  /* Read low wordsize - offset bytes */
170
0
  READ_PARTIAL (s0, a, sizeof(word_t) - offset);
171
0
  READ_PARTIAL (t,  b, sizeof(word_t) - offset);
172
0
  s0 ^= t;
173
0
#ifndef WORDS_BIGENDIAN
174
0
  s0 <<= shl;
175
0
#endif /* !WORDS_BIGENDIAN */
176
177
0
  dst[0] = MERGE(s0, shl, s1, shr);
178
0
}
179
180
static void
181
memxor3_different_alignment_all (word_t *dst,
182
         const unsigned char *a, const unsigned char *b,
183
         unsigned a_offset, unsigned b_offset,
184
         size_t n)
185
0
{
186
0
  int al, ar, bl, br;
187
0
  const word_t *a_word;
188
0
  const word_t *b_word;
189
190
0
  word_t a0, a1, b0, b1;
191
192
0
  al = CHAR_BIT * a_offset;
193
0
  ar = CHAR_BIT * (sizeof(word_t) - a_offset);
194
0
  bl = CHAR_BIT * b_offset;
195
0
  br = CHAR_BIT * (sizeof(word_t) - b_offset);
196
197
0
  a_word = (const word_t *) ((uintptr_t) a & -sizeof(word_t));
198
0
  b_word = (const word_t *) ((uintptr_t) b & -sizeof(word_t));
199
200
  /* Read top offset bytes, in native byte order. */
201
0
  READ_PARTIAL (a0, (unsigned char *) &a_word[n], a_offset);
202
0
  READ_PARTIAL (b0, (unsigned char *) &b_word[n], b_offset);
203
#ifdef WORDS_BIGENDIAN
204
  a0 <<= ar;
205
  b0 <<= br;
206
#endif
207
208
0
  if (n & 1)
209
0
    {
210
0
      a1 = a0; b1 = b0;
211
0
    }
212
0
  else
213
0
    {
214
0
      n--;
215
0
      a1 = a_word[n];
216
0
      b1 = b_word[n];
217
218
0
      dst[n] = MERGE (a1, al, a0, ar) ^ MERGE (b1, bl, b0, br);
219
0
    }
220
0
  while (n > 2)
221
0
    {
222
0
      n -= 2;
223
0
      a0 = a_word[n+1]; b0 = b_word[n+1];
224
0
      dst[n+1] = MERGE(a0, al, a1, ar) ^ MERGE(b0, bl, b1, br);
225
0
      a1 = a_word[n]; b1 = b_word[n];
226
0
      dst[n] = MERGE(a1, al, a0, ar) ^ MERGE(b1, bl, b0, br);
227
0
    }
228
0
  assert (n == 1);
229
  /* Read low wordsize - offset bytes */
230
0
  READ_PARTIAL (a0, a, sizeof(word_t) - a_offset);
231
0
  READ_PARTIAL (b0, b, sizeof(word_t) - b_offset);
232
0
#ifndef WORDS_BIGENDIAN
233
0
  a0 <<= al;
234
0
  b0 <<= bl;
235
0
#endif /* !WORDS_BIGENDIAN */
236
237
0
  dst[0] = MERGE(a0, al, a1, ar) ^ MERGE(b0, bl, b1, br);
238
0
}
239
240
/* Current implementation processes data in descending order, to
241
   support overlapping operation with one of the sources overlapping
242
   the start of the destination area. This feature is used only
243
   internally by cbc decrypt, and it is not advertised or documented
244
   to nettle users. */
245
void *
246
nettle_memxor3(void *dst_in, const void *a_in, 
247
         const void *b_in, size_t n)
248
649
{
249
649
  unsigned char *dst = dst_in;
250
649
  const unsigned char *a = a_in;
251
649
  const unsigned char *b = b_in;
252
253
649
  if (n >= WORD_T_THRESH)
254
603
    {
255
603
      unsigned i;
256
603
      unsigned a_offset;
257
603
      unsigned b_offset;
258
603
      size_t nwords;
259
260
676
      for (i = ALIGN_OFFSET(dst + n); i > 0; i--)
261
73
  {
262
73
    n--;
263
73
    dst[n] = a[n] ^ b[n];
264
73
  }
265
266
603
      a_offset = ALIGN_OFFSET(a + n);
267
603
      b_offset = ALIGN_OFFSET(b + n);
268
269
603
      nwords = n / sizeof (word_t);
270
603
      n %= sizeof (word_t);
271
272
603
      if (a_offset == b_offset)
273
603
  {
274
603
    if (!a_offset)
275
603
      memxor3_common_alignment((word_t *) (dst + n),
276
603
             (const word_t *) (a + n),
277
603
             (const word_t *) (b + n), nwords);
278
0
    else
279
0
      memxor3_different_alignment_ab((word_t *) (dst + n),
280
0
             a + n, b + n, a_offset,
281
0
             nwords);
282
603
  }
283
0
      else if (!a_offset)
284
0
  memxor3_different_alignment_b((word_t *) (dst + n),
285
0
              (const word_t *) (a + n), b + n,
286
0
              b_offset, nwords);
287
0
      else if (!b_offset)
288
0
  memxor3_different_alignment_b((word_t *) (dst + n),
289
0
              (const word_t *) (b + n), a + n,
290
0
              a_offset, nwords);
291
0
      else
292
0
  memxor3_different_alignment_all((word_t *) (dst + n), a + n, b + n,
293
0
          a_offset, b_offset, nwords);
294
295
603
    }
296
972
  while (n-- > 0)
297
323
    dst[n] = a[n] ^ b[n];
298
299
649
  return dst;
300
649
}