Coverage Report

Created: 2024-11-25 06:27

/src/nettle/sha256-compress-n.c
Line
Count
Source
1
/* sha256-compress-n.c
2
3
   The compression function of the sha256 hash function.
4
5
   Copyright (C) 2001, 2010, 2022 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
#if HAVE_CONFIG_H
35
# include "config.h"
36
#endif
37
38
#ifndef SHA256_DEBUG
39
# define SHA256_DEBUG 0
40
#endif
41
42
#if SHA256_DEBUG
43
# include <stdio.h>
44
# define DEBUG(i) \
45
  fprintf(stderr, "%2d: %8x %8x %8x %8x %8x %8x %8x %8x\n", \
46
    i, A, B, C, D ,E, F, G, H)
47
#else
48
# define DEBUG(i)
49
#endif
50
51
#include <assert.h>
52
#include <stdlib.h>
53
#include <string.h>
54
55
#include "sha2.h"
56
#include "sha2-internal.h"
57
58
#include "macros.h"
59
60
/* A block, treated as a sequence of 32-bit words. */
61
273k
#define SHA256_DATA_LENGTH 16
62
63
/* The SHA256 functions. The Choice function is the same as the SHA1
64
   function f1, and the majority function is the same as the SHA1 f3
65
   function. They can be optimized to save one boolean operation each
66
   - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering
67
   this */
68
69
/* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */
70
1.03M
#define Choice(x,y,z)   ( (z) ^ ( (x) & ( (y) ^ (z) ) ) ) 
71
/* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */
72
1.03M
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
73
74
1.03M
#define S0(x) (ROTL32(30,(x)) ^ ROTL32(19,(x)) ^ ROTL32(10,(x))) 
75
1.03M
#define S1(x) (ROTL32(26,(x)) ^ ROTL32(21,(x)) ^ ROTL32(7,(x)))
76
77
#define s0(x) (ROTL32(25,(x)) ^ ROTL32(14,(x)) ^ ((x) >> 3))
78
#define s1(x) (ROTL32(15,(x)) ^ ROTL32(13,(x)) ^ ((x) >> 10))
79
80
/* The initial expanding function.  The hash function is defined over an
81
   64-word expanded input array W, where the first 16 are copies of the input
82
   data, and the remaining 64 are defined by
83
84
        W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]
85
86
   This implementation generates these values on the fly in a circular
87
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
88
   optimization.
89
*/
90
91
#define EXPAND(W,i) \
92
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )
93
94
/* The prototype SHA sub-round.  The fundamental sub-round is:
95
96
        T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
97
  T2 = S0(a) + Majority(a,b,c)
98
  a' = T1+T2
99
  b' = a
100
  c' = b
101
  d' = c
102
  e' = d + T1
103
  f' = e
104
  g' = f
105
  h' = g
106
107
   but this is implemented by unrolling the loop 8 times and renaming
108
   the variables
109
   ( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
110
   iteration. */
111
112
/* It's crucial that DATA is only used once, as that argument will
113
 * have side effects. */
114
1.03M
#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \
115
1.03M
    h += S1(e) + Choice(e,f,g) + k + data; \
116
1.03M
    d += h;         \
117
1.03M
    h += S0(a) + Majority(a,b,c);    \
118
1.03M
  } while (0)
119
120
/* For fat builds */
121
#if HAVE_NATIVE_sha256_compress_n
122
const uint8_t *
123
_nettle_sha256_compress_n_c(uint32_t *state, const uint32_t *table,
124
          size_t blocks, const uint8_t *input);
125
#define _nettle_sha256_compress_n _nettle_sha256_compress_n_c
126
#endif
127
128
const uint8_t *
129
_nettle_sha256_compress_n(uint32_t *state, const uint32_t *table,
130
        size_t blocks, const uint8_t *input)
131
26.0k
{
132
26.0k
  uint32_t A, B, C, D, E, F, G, H;     /* Local vars */
133
134
26.0k
  A = state[0];
135
26.0k
  B = state[1];
136
26.0k
  C = state[2];
137
26.0k
  D = state[3];
138
26.0k
  E = state[4];
139
26.0k
  F = state[5];
140
26.0k
  G = state[6];
141
26.0k
  H = state[7];
142
143
42.1k
  for (; blocks > 0; blocks--)
144
16.1k
    {
145
16.1k
      uint32_t data[SHA256_DATA_LENGTH];
146
16.1k
      unsigned i;
147
16.1k
      const uint32_t *k;
148
16.1k
      uint32_t *d;
149
273k
      for (i = 0; i < SHA256_DATA_LENGTH; i++, input+= 4)
150
257k
  {
151
257k
    data[i] = READ_UINT32(input);
152
257k
  }
153
154
      /* Heavy mangling */
155
      /* First 16 subrounds that act on the original data */
156
157
16.1k
      DEBUG(-1);
158
48.3k
      for (i = 0, d = data, k = table; i<16; i+=8, k += 8, d+= 8)
159
32.2k
  {
160
32.2k
    ROUND(A, B, C, D, E, F, G, H, k[0], d[0]); DEBUG(i);
161
32.2k
    ROUND(H, A, B, C, D, E, F, G, k[1], d[1]); DEBUG(i+1);
162
32.2k
    ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
163
32.2k
    ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
164
32.2k
    ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
165
32.2k
    ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
166
32.2k
    ROUND(C, D, E, F, G, H, A, B, k[6], d[6]); DEBUG(i+6);
167
32.2k
    ROUND(B, C, D, E, F, G, H, A, k[7], d[7]); DEBUG(i+7);
168
32.2k
  }
169
  
170
64.4k
      for (; i<64; i += 16, k+= 16)
171
48.3k
  {
172
48.3k
    ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data,  0)); DEBUG(i);
173
48.3k
    ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data,  1)); DEBUG(i+1);
174
48.3k
    ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data,  2)); DEBUG(i+2);
175
48.3k
    ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data,  3)); DEBUG(i+3);
176
48.3k
    ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data,  4)); DEBUG(i+4);
177
48.3k
    ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data,  5)); DEBUG(i+5);
178
48.3k
    ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data,  6)); DEBUG(i+6);
179
48.3k
    ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data,  7)); DEBUG(i+7);
180
48.3k
    ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data,  8)); DEBUG(i+8);
181
48.3k
    ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data,  9)); DEBUG(i+9);
182
48.3k
    ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10)); DEBUG(i+10);
183
48.3k
    ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11)); DEBUG(i+11);
184
48.3k
    ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12)); DEBUG(i+12);
185
48.3k
    ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13)); DEBUG(i+13);
186
48.3k
    ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14)); DEBUG(i+14);
187
48.3k
    ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15)); DEBUG(i+15);
188
48.3k
  }
189
190
      /* Update state */
191
16.1k
      state[0] = A = state[0] + A;
192
16.1k
      state[1] = B = state[1] + B;
193
16.1k
      state[2] = C = state[2] + C;
194
16.1k
      state[3] = D = state[3] + D;
195
16.1k
      state[4] = E = state[4] + E;
196
16.1k
      state[5] = F = state[5] + F;
197
16.1k
      state[6] = G = state[6] + G;
198
16.1k
      state[7] = H = state[7] + H;
199
#if SHA256_DEBUG
200
      fprintf(stderr, "99: %8x %8x %8x %8x %8x %8x %8x %8x\n",
201
        state[0], state[1], state[2], state[3],
202
        state[4], state[5], state[6], state[7]);
203
#endif
204
16.1k
    }
205
26.0k
  return input;
206
26.0k
}