Coverage Report

Created: 2024-11-25 06:27

/src/nettle/ecc-mod-arith.c
Line
Count
Source (jump to first uncovered line)
1
/* ecc-mod-arith.c
2
3
   Copyright (C) 2013, 2014 Niels Möller
4
5
   This file is part of GNU Nettle.
6
7
   GNU Nettle is free software: you can redistribute it and/or
8
   modify it under the terms of either:
9
10
     * the GNU Lesser General Public License as published by the Free
11
       Software Foundation; either version 3 of the License, or (at your
12
       option) any later version.
13
14
   or
15
16
     * the GNU General Public License as published by the Free
17
       Software Foundation; either version 2 of the License, or (at your
18
       option) any later version.
19
20
   or both in parallel, as here.
21
22
   GNU Nettle is distributed in the hope that it will be useful,
23
   but WITHOUT ANY WARRANTY; without even the implied warranty of
24
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25
   General Public License for more details.
26
27
   You should have received copies of the GNU General Public License and
28
   the GNU Lesser General Public License along with this program.  If
29
   not, see http://www.gnu.org/licenses/.
30
*/
31
32
/* Development of Nettle's ECC support was funded by the .SE Internet Fund. */
33
34
#if HAVE_CONFIG_H
35
# include "config.h"
36
#endif
37
38
#include <assert.h>
39
40
#include "ecc-internal.h"
41
42
/* Routines for modp arithmetic. All values are ecc->size limbs, but
43
   not necessarily < p. */
44
45
int
46
ecc_mod_zero_p (const struct ecc_modulo *m, const mp_limb_t *xp_in)
47
0
{
48
0
  volatile mp_limb_t is_non_zero, is_not_p;
49
0
  const volatile mp_limb_t *xp;
50
0
  mp_size_t i;
51
52
0
  for (xp = xp_in, i = 0, is_non_zero = is_not_p = 0; i < m->size; i++)
53
0
    {
54
0
      is_non_zero |= xp[i];
55
0
      is_not_p |= (xp[i] ^ m->m[i]);
56
0
    }
57
58
0
  return is_zero_limb (is_non_zero) | is_zero_limb (is_not_p);
59
0
}
60
61
int
62
ecc_mod_equal_p (const struct ecc_modulo *m, const mp_limb_t *a,
63
     const mp_limb_t *ref, mp_limb_t *scratch)
64
0
{
65
0
  mp_limb_t cy;
66
0
  cy = mpn_sub_n (scratch, a, ref, m->size);
67
  /* If cy > 0, i.e., a < ref, then they can't be equal mod m. */
68
0
  return (1 - cy) & ecc_mod_zero_p (m, scratch);
69
0
}
70
71
void
72
ecc_mod_add (const struct ecc_modulo *m, mp_limb_t *rp,
73
       const mp_limb_t *ap, const mp_limb_t *bp)
74
61.6k
{
75
61.6k
  mp_limb_t cy;
76
61.6k
  cy = mpn_add_n (rp, ap, bp, m->size);
77
61.6k
  cy = mpn_cnd_add_n (cy, rp, rp, m->B, m->size);
78
61.6k
  cy = mpn_cnd_add_n (cy, rp, rp, m->B, m->size);
79
61.6k
  assert_maybe (cy == 0);
80
61.6k
}
81
82
void
83
ecc_mod_sub (const struct ecc_modulo *m, mp_limb_t *rp,
84
       const mp_limb_t *ap, const mp_limb_t *bp)
85
72.3k
{
86
72.3k
  mp_limb_t cy;
87
72.3k
  cy = mpn_sub_n (rp, ap, bp, m->size);
88
  /* The adjustments for this function work differently depending on
89
     the value of the most significant bit of m.
90
91
     If m has a most significant bit of zero, then the first
92
     adjustment step conditionally adds 2m. If in addition, inputs are
93
     in the 0 <= a,b < 2m range, then the first adjustment guarantees
94
     that result is in that same range. The second adjustment step is
95
     needed only if b > 2m, it then ensures output is correct modulo
96
     m, but nothing more.
97
98
     If m has a most significant bit of one, Bm2m and B are the same,
99
     and this function works analogously to ecc_mod_add.
100
   */
101
72.3k
  cy = mpn_cnd_sub_n (cy, rp, rp, m->Bm2m, m->size);
102
72.3k
  cy = mpn_cnd_sub_n (cy, rp, rp, m->B, m->size);
103
72.3k
  assert_maybe (cy == 0);
104
72.3k
}
105
106
void
107
ecc_mod_mul_1 (const struct ecc_modulo *m, mp_limb_t *rp,
108
         const mp_limb_t *ap, mp_limb_t b)
109
0
{
110
0
  mp_limb_t hi;
111
112
0
  assert (b <= 0xffffffff);
113
0
  hi = mpn_mul_1 (rp, ap, m->size, b);
114
0
  hi = mpn_addmul_1 (rp, m->B, m->size, hi);
115
0
  assert_maybe (hi <= 1);
116
0
  hi = mpn_cnd_add_n (hi, rp, rp, m->B, m->size);
117
  /* Sufficient if b < B^size / p */
118
0
  assert_maybe (hi == 0);
119
0
}
120
121
void
122
ecc_mod_addmul_1 (const struct ecc_modulo *m, mp_limb_t *rp,
123
      const mp_limb_t *ap, mp_limb_t b)
124
0
{
125
0
  mp_limb_t hi;
126
127
0
  assert (b <= 0xffffffff);
128
0
  hi = mpn_addmul_1 (rp, ap, m->size, b);
129
0
  hi = mpn_addmul_1 (rp, m->B, m->size, hi);
130
0
  assert_maybe (hi <= 1);
131
0
  hi = mpn_cnd_add_n (hi, rp, rp, m->B, m->size);
132
  /* Sufficient roughly if b < B^size / p */
133
0
  assert_maybe (hi == 0);
134
0
}
135
  
136
void
137
ecc_mod_submul_1 (const struct ecc_modulo *m, mp_limb_t *rp,
138
      const mp_limb_t *ap, mp_limb_t b)
139
0
{
140
0
  mp_limb_t hi;
141
142
0
  assert (b <= 0xffffffff);
143
0
  hi = mpn_submul_1 (rp, ap, m->size, b);
144
0
  hi = mpn_submul_1 (rp, m->B, m->size, hi);
145
0
  assert_maybe (hi <= 1);
146
0
  hi = mpn_cnd_sub_n (hi, rp, rp, m->B, m->size);
147
  /* Sufficient roughly if b < B^size / p */
148
0
  assert_maybe (hi == 0);
149
0
}
150
151
void
152
ecc_mod_mul (const struct ecc_modulo *m, mp_limb_t *rp,
153
       const mp_limb_t *ap, const mp_limb_t *bp, mp_limb_t *tp)
154
158k
{
155
158k
  mpn_mul_n (tp, ap, bp, m->size);
156
158k
  m->reduce (m, rp, tp);
157
158k
}
158
159
void
160
ecc_mod_sqr (const struct ecc_modulo *m, mp_limb_t *rp,
161
       const mp_limb_t *ap, mp_limb_t *tp)
162
119k
{
163
119k
  mpn_sqr (tp, ap, m->size);
164
119k
  m->reduce (m, rp, tp);
165
119k
}
166
167
void
168
ecc_mod_mul_canonical (const struct ecc_modulo *m, mp_limb_t *rp,
169
           const mp_limb_t *ap, const mp_limb_t *bp, mp_limb_t *tp)
170
342
{
171
342
  mp_limb_t cy;
172
342
  mpn_mul_n (tp, ap, bp, m->size);
173
342
  m->reduce (m, tp + m->size, tp);
174
175
342
  cy = mpn_sub_n (rp, tp + m->size, m->m, m->size);
176
342
  cnd_copy (cy, rp, tp + m->size, m->size);
177
342
}
178
179
void
180
ecc_mod_sqr_canonical (const struct ecc_modulo *m, mp_limb_t *rp,
181
           const mp_limb_t *ap, mp_limb_t *tp)
182
18
{
183
18
  mp_limb_t cy;
184
18
  mpn_sqr (tp, ap, m->size);
185
18
  m->reduce (m, tp + m->size, tp);
186
187
18
  cy = mpn_sub_n (rp, tp + m->size, m->m, m->size);
188
18
  cnd_copy (cy, rp, tp + m->size, m->size);
189
18
}
190
191
void
192
ecc_mod_pow_2k (const struct ecc_modulo *m,
193
    mp_limb_t *rp, const mp_limb_t *xp,
194
    unsigned k, mp_limb_t *tp)
195
1.51k
{
196
1.51k
  ecc_mod_sqr (m, rp, xp, tp);
197
78.5k
  while (--k > 0)
198
77.0k
    ecc_mod_sqr (m, rp, rp, tp);
199
1.51k
}
200
201
void
202
ecc_mod_pow_2k_mul (const struct ecc_modulo *m,
203
        mp_limb_t *rp, const mp_limb_t *xp,
204
        unsigned k, const mp_limb_t *yp,
205
        mp_limb_t *tp)
206
871
{
207
871
  ecc_mod_pow_2k (m, rp, xp, k, tp);
208
871
  ecc_mod_mul (m, rp, rp, yp, tp);
209
871
}