Coverage Report

Created: 2024-11-25 06:29

/src/nettle/memxor3.c
Line
Count
Source (jump to first uncovered line)
1
/* memxor3.c
2
3
   Copyright (C) 2010, 2014 Niels Möller
4
5
   This file is part of GNU Nettle.
6
7
   GNU Nettle is free software: you can redistribute it and/or
8
   modify it under the terms of either:
9
10
     * the GNU Lesser General Public License as published by the Free
11
       Software Foundation; either version 3 of the License, or (at your
12
       option) any later version.
13
14
   or
15
16
     * the GNU General Public License as published by the Free
17
       Software Foundation; either version 2 of the License, or (at your
18
       option) any later version.
19
20
   or both in parallel, as here.
21
22
   GNU Nettle is distributed in the hope that it will be useful,
23
   but WITHOUT ANY WARRANTY; without even the implied warranty of
24
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25
   General Public License for more details.
26
27
   You should have received copies of the GNU General Public License and
28
   the GNU Lesser General Public License along with this program.  If
29
   not, see http://www.gnu.org/licenses/.
30
*/
31
32
/* Implementation inspired by memcmp in glibc, contributed to the FSF
33
   by Torbjorn Granlund.
34
 */
35
36
#if HAVE_CONFIG_H
37
# include "config.h"
38
#endif
39
40
#include <assert.h>
41
#include <limits.h>
42
43
#include "memxor.h"
44
#include "memxor-internal.h"
45
46
11.2k
#define WORD_T_THRESH 16
47
48
/* For fat builds */
49
#if HAVE_NATIVE_memxor3
50
void *
51
_nettle_memxor3_c(void *dst_in, const void *a_in, const void *b_in, size_t n);
52
# define nettle_memxor3 _nettle_memxor3_c
53
#endif
54
55
/* XOR word-aligned areas. n is the number of words, not bytes. */
56
static void
57
memxor3_common_alignment (word_t *dst,
58
        const word_t *a, const word_t *b, size_t n)
59
4.75k
{
60
  /* FIXME: Require n > 0? */
61
4.75k
  if (n & 1)
62
177
    {
63
177
      n--;
64
177
      dst[n] = a[n] ^ b[n];
65
177
    }
66
20.6k
  while (n > 0)
67
15.9k
    {
68
15.9k
      n -= 2;
69
15.9k
      dst[n+1] = a[n+1] ^ b[n+1];
70
15.9k
      dst[n] = a[n] ^ b[n];
71
15.9k
    }
72
4.75k
}
73
74
static void
75
memxor3_different_alignment_b (word_t *dst,
76
             const word_t *a, const unsigned char *b,
77
             unsigned offset, size_t n)
78
33
{
79
33
  int shl, shr;
80
33
  const word_t *b_word;
81
82
33
  word_t s0, s1;
83
84
33
  assert (n > 0);
85
86
33
  shl = CHAR_BIT * offset;
87
33
  shr = CHAR_BIT * (sizeof(word_t) - offset);
88
89
33
  b_word = (const word_t *) ((uintptr_t) b & -sizeof(word_t));
90
91
  /* Read top offset bytes, in native byte order. */
92
33
  READ_PARTIAL (s0, (unsigned char *) &b_word[n], offset);
93
#ifdef WORDS_BIGENDIAN
94
  s0 <<= shr;
95
#endif
96
97
33
  if (n & 1)
98
0
    s1 = s0;
99
33
  else
100
33
    {
101
33
      n--;
102
33
      s1 = b_word[n];
103
33
      dst[n] = a[n] ^ MERGE (s1, shl, s0, shr);
104
33
    }
105
106
132
  while (n > 2)
107
99
    {
108
99
      n -= 2;
109
99
      s0 = b_word[n+1];
110
99
      dst[n+1] = a[n+1] ^ MERGE(s0, shl, s1, shr);
111
99
      s1 = b_word[n];
112
99
      dst[n] = a[n] ^ MERGE(s1, shl, s0, shr);
113
99
    }
114
33
  assert (n == 1);
115
  /* Read low wordsize - offset bytes */
116
33
  READ_PARTIAL (s0, b, sizeof(word_t) - offset);
117
33
#ifndef WORDS_BIGENDIAN
118
33
  s0 <<= shl;
119
33
#endif /* !WORDS_BIGENDIAN */
120
121
33
  dst[0] = a[0] ^ MERGE(s0, shl, s1, shr);
122
33
}
123
124
static void
125
memxor3_different_alignment_ab (word_t *dst,
126
        const unsigned char *a, const unsigned char *b,
127
        unsigned offset, size_t n)
128
377
{
129
377
  int shl, shr;
130
377
  const word_t *a_word;
131
377
  const word_t *b_word;
132
133
377
  word_t s0, s1, t;
134
135
377
  assert (n > 0);
136
137
377
  shl = CHAR_BIT * offset;
138
377
  shr = CHAR_BIT * (sizeof(word_t) - offset);
139
140
377
  a_word = (const word_t *) ((uintptr_t) a & -sizeof(word_t));
141
377
  b_word = (const word_t *) ((uintptr_t) b & -sizeof(word_t));
142
143
  /* Read top offset bytes, in native byte order. */
144
377
  READ_PARTIAL (s0, (unsigned char *) &a_word[n], offset);
145
377
  READ_PARTIAL (t,  (unsigned char *) &b_word[n], offset);
146
377
  s0 ^= t;
147
#ifdef WORDS_BIGENDIAN
148
  s0 <<= shr;
149
#endif
150
151
377
  if (n & 1)
152
377
    s1 = s0;
153
0
  else
154
0
    {
155
0
      n--;
156
0
      s1 = a_word[n] ^ b_word[n];
157
0
      dst[n] = MERGE (s1, shl, s0, shr);
158
0
    }
159
160
377
  while (n > 2)
161
0
    {
162
0
      n -= 2;
163
0
      s0 = a_word[n+1] ^ b_word[n+1];
164
0
      dst[n+1] = MERGE(s0, shl, s1, shr);
165
0
      s1 = a_word[n] ^ b_word[n];
166
0
      dst[n] = MERGE(s1, shl, s0, shr);
167
0
    }
168
377
  assert (n == 1);
169
  /* Read low wordsize - offset bytes */
170
377
  READ_PARTIAL (s0, a, sizeof(word_t) - offset);
171
377
  READ_PARTIAL (t,  b, sizeof(word_t) - offset);
172
377
  s0 ^= t;
173
377
#ifndef WORDS_BIGENDIAN
174
377
  s0 <<= shl;
175
377
#endif /* !WORDS_BIGENDIAN */
176
177
377
  dst[0] = MERGE(s0, shl, s1, shr);
178
377
}
179
180
static void
181
memxor3_different_alignment_all (word_t *dst,
182
         const unsigned char *a, const unsigned char *b,
183
         unsigned a_offset, unsigned b_offset,
184
         size_t n)
185
0
{
186
0
  int al, ar, bl, br;
187
0
  const word_t *a_word;
188
0
  const word_t *b_word;
189
190
0
  word_t a0, a1, b0, b1;
191
192
0
  al = CHAR_BIT * a_offset;
193
0
  ar = CHAR_BIT * (sizeof(word_t) - a_offset);
194
0
  bl = CHAR_BIT * b_offset;
195
0
  br = CHAR_BIT * (sizeof(word_t) - b_offset);
196
197
0
  a_word = (const word_t *) ((uintptr_t) a & -sizeof(word_t));
198
0
  b_word = (const word_t *) ((uintptr_t) b & -sizeof(word_t));
199
200
  /* Read top offset bytes, in native byte order. */
201
0
  READ_PARTIAL (a0, (unsigned char *) &a_word[n], a_offset);
202
0
  READ_PARTIAL (b0, (unsigned char *) &b_word[n], b_offset);
203
#ifdef WORDS_BIGENDIAN
204
  a0 <<= ar;
205
  b0 <<= br;
206
#endif
207
208
0
  if (n & 1)
209
0
    {
210
0
      a1 = a0; b1 = b0;
211
0
    }
212
0
  else
213
0
    {
214
0
      n--;
215
0
      a1 = a_word[n];
216
0
      b1 = b_word[n];
217
218
0
      dst[n] = MERGE (a1, al, a0, ar) ^ MERGE (b1, bl, b0, br);
219
0
    }
220
0
  while (n > 2)
221
0
    {
222
0
      n -= 2;
223
0
      a0 = a_word[n+1]; b0 = b_word[n+1];
224
0
      dst[n+1] = MERGE(a0, al, a1, ar) ^ MERGE(b0, bl, b1, br);
225
0
      a1 = a_word[n]; b1 = b_word[n];
226
0
      dst[n] = MERGE(a1, al, a0, ar) ^ MERGE(b1, bl, b0, br);
227
0
    }
228
0
  assert (n == 1);
229
  /* Read low wordsize - offset bytes */
230
0
  READ_PARTIAL (a0, a, sizeof(word_t) - a_offset);
231
0
  READ_PARTIAL (b0, b, sizeof(word_t) - b_offset);
232
0
#ifndef WORDS_BIGENDIAN
233
0
  a0 <<= al;
234
0
  b0 <<= bl;
235
0
#endif /* !WORDS_BIGENDIAN */
236
237
0
  dst[0] = MERGE(a0, al, a1, ar) ^ MERGE(b0, bl, b1, br);
238
0
}
239
240
/* Current implementation processes data in descending order, to
241
   support overlapping operation with one of the sources overlapping
242
   the start of the destination area. This feature is used only
243
   internally by cbc decrypt, and it is not advertised or documented
244
   to nettle users. */
245
void *
246
nettle_memxor3(void *dst_in, const void *a_in, 
247
         const void *b_in, size_t n)
248
11.2k
{
249
11.2k
  unsigned char *dst = dst_in;
250
11.2k
  const unsigned char *a = a_in;
251
11.2k
  const unsigned char *b = b_in;
252
253
11.2k
  if (n >= WORD_T_THRESH)
254
5.16k
    {
255
5.16k
      unsigned i;
256
5.16k
      unsigned a_offset;
257
5.16k
      unsigned b_offset;
258
5.16k
      size_t nwords;
259
260
8.22k
      for (i = ALIGN_OFFSET(dst + n); i > 0; i--)
261
3.06k
  {
262
3.06k
    n--;
263
3.06k
    dst[n] = a[n] ^ b[n];
264
3.06k
  }
265
266
5.16k
      a_offset = ALIGN_OFFSET(a + n);
267
5.16k
      b_offset = ALIGN_OFFSET(b + n);
268
269
5.16k
      nwords = n / sizeof (word_t);
270
5.16k
      n %= sizeof (word_t);
271
272
5.16k
      if (a_offset == b_offset)
273
5.13k
  {
274
5.13k
    if (!a_offset)
275
4.75k
      memxor3_common_alignment((word_t *) (dst + n),
276
4.75k
             (const word_t *) (a + n),
277
4.75k
             (const word_t *) (b + n), nwords);
278
377
    else
279
377
      memxor3_different_alignment_ab((word_t *) (dst + n),
280
377
             a + n, b + n, a_offset,
281
377
             nwords);
282
5.13k
  }
283
33
      else if (!a_offset)
284
0
  memxor3_different_alignment_b((word_t *) (dst + n),
285
0
              (const word_t *) (a + n), b + n,
286
0
              b_offset, nwords);
287
33
      else if (!b_offset)
288
33
  memxor3_different_alignment_b((word_t *) (dst + n),
289
33
              (const word_t *) (b + n), a + n,
290
33
              a_offset, nwords);
291
0
      else
292
0
  memxor3_different_alignment_all((word_t *) (dst + n), a + n, b + n,
293
0
          a_offset, b_offset, nwords);
294
295
5.16k
    }
296
25.3k
  while (n-- > 0)
297
14.1k
    dst[n] = a[n] ^ b[n];
298
299
11.2k
  return dst;
300
11.2k
}