Coverage Report

Created: 2024-11-25 06:29

/src/nettle/sha256-compress-n.c
Line
Count
Source
1
/* sha256-compress-n.c
2
3
   The compression function of the sha256 hash function.
4
5
   Copyright (C) 2001, 2010, 2022 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
#if HAVE_CONFIG_H
35
# include "config.h"
36
#endif
37
38
#ifndef SHA256_DEBUG
39
# define SHA256_DEBUG 0
40
#endif
41
42
#if SHA256_DEBUG
43
# include <stdio.h>
44
# define DEBUG(i) \
45
  fprintf(stderr, "%2d: %8x %8x %8x %8x %8x %8x %8x %8x\n", \
46
    i, A, B, C, D ,E, F, G, H)
47
#else
48
# define DEBUG(i)
49
#endif
50
51
#include <assert.h>
52
#include <stdlib.h>
53
#include <string.h>
54
55
#include "sha2.h"
56
#include "sha2-internal.h"
57
58
#include "macros.h"
59
60
/* A block, treated as a sequence of 32-bit words. */
61
3.92M
#define SHA256_DATA_LENGTH 16
62
63
/* The SHA256 functions. The Choice function is the same as the SHA1
64
   function f1, and the majority function is the same as the SHA1 f3
65
   function. They can be optimized to save one boolean operation each
66
   - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering
67
   this */
68
69
/* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */
70
14.7M
#define Choice(x,y,z)   ( (z) ^ ( (x) & ( (y) ^ (z) ) ) ) 
71
/* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */
72
14.7M
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
73
74
14.7M
#define S0(x) (ROTL32(30,(x)) ^ ROTL32(19,(x)) ^ ROTL32(10,(x))) 
75
14.7M
#define S1(x) (ROTL32(26,(x)) ^ ROTL32(21,(x)) ^ ROTL32(7,(x)))
76
77
#define s0(x) (ROTL32(25,(x)) ^ ROTL32(14,(x)) ^ ((x) >> 3))
78
#define s1(x) (ROTL32(15,(x)) ^ ROTL32(13,(x)) ^ ((x) >> 10))
79
80
/* The initial expanding function.  The hash function is defined over an
81
   64-word expanded input array W, where the first 16 are copies of the input
82
   data, and the remaining 64 are defined by
83
84
        W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]
85
86
   This implementation generates these values on the fly in a circular
87
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
88
   optimization.
89
*/
90
91
#define EXPAND(W,i) \
92
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )
93
94
/* The prototype SHA sub-round.  The fundamental sub-round is:
95
96
        T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
97
  T2 = S0(a) + Majority(a,b,c)
98
  a' = T1+T2
99
  b' = a
100
  c' = b
101
  d' = c
102
  e' = d + T1
103
  f' = e
104
  g' = f
105
  h' = g
106
107
   but this is implemented by unrolling the loop 8 times and renaming
108
   the variables
109
   ( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
110
   iteration. */
111
112
/* It's crucial that DATA is only used once, as that argument will
113
 * have side effects. */
114
14.7M
#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \
115
14.7M
    h += S1(e) + Choice(e,f,g) + k + data; \
116
14.7M
    d += h;         \
117
14.7M
    h += S0(a) + Majority(a,b,c);    \
118
14.7M
  } while (0)
119
120
/* For fat builds */
121
#if HAVE_NATIVE_sha256_compress_n
122
const uint8_t *
123
_nettle_sha256_compress_n_c(uint32_t *state, const uint32_t *table,
124
          size_t blocks, const uint8_t *input);
125
#define _nettle_sha256_compress_n _nettle_sha256_compress_n_c
126
#endif
127
128
const uint8_t *
129
_nettle_sha256_compress_n(uint32_t *state, const uint32_t *table,
130
        size_t blocks, const uint8_t *input)
131
390k
{
132
390k
  uint32_t A, B, C, D, E, F, G, H;     /* Local vars */
133
134
390k
  A = state[0];
135
390k
  B = state[1];
136
390k
  C = state[2];
137
390k
  D = state[3];
138
390k
  E = state[4];
139
390k
  F = state[5];
140
390k
  G = state[6];
141
390k
  H = state[7];
142
143
621k
  for (; blocks > 0; blocks--)
144
230k
    {
145
230k
      uint32_t data[SHA256_DATA_LENGTH];
146
230k
      unsigned i;
147
230k
      const uint32_t *k;
148
230k
      uint32_t *d;
149
3.92M
      for (i = 0; i < SHA256_DATA_LENGTH; i++, input+= 4)
150
3.69M
  {
151
3.69M
    data[i] = READ_UINT32(input);
152
3.69M
  }
153
154
      /* Heavy mangling */
155
      /* First 16 subrounds that act on the original data */
156
157
230k
      DEBUG(-1);
158
692k
      for (i = 0, d = data, k = table; i<16; i+=8, k += 8, d+= 8)
159
461k
  {
160
461k
    ROUND(A, B, C, D, E, F, G, H, k[0], d[0]); DEBUG(i);
161
461k
    ROUND(H, A, B, C, D, E, F, G, k[1], d[1]); DEBUG(i+1);
162
461k
    ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
163
461k
    ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
164
461k
    ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
165
461k
    ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
166
461k
    ROUND(C, D, E, F, G, H, A, B, k[6], d[6]); DEBUG(i+6);
167
461k
    ROUND(B, C, D, E, F, G, H, A, k[7], d[7]); DEBUG(i+7);
168
461k
  }
169
  
170
923k
      for (; i<64; i += 16, k+= 16)
171
692k
  {
172
692k
    ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data,  0)); DEBUG(i);
173
692k
    ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data,  1)); DEBUG(i+1);
174
692k
    ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data,  2)); DEBUG(i+2);
175
692k
    ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data,  3)); DEBUG(i+3);
176
692k
    ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data,  4)); DEBUG(i+4);
177
692k
    ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data,  5)); DEBUG(i+5);
178
692k
    ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data,  6)); DEBUG(i+6);
179
692k
    ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data,  7)); DEBUG(i+7);
180
692k
    ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data,  8)); DEBUG(i+8);
181
692k
    ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data,  9)); DEBUG(i+9);
182
692k
    ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10)); DEBUG(i+10);
183
692k
    ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11)); DEBUG(i+11);
184
692k
    ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12)); DEBUG(i+12);
185
692k
    ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13)); DEBUG(i+13);
186
692k
    ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14)); DEBUG(i+14);
187
692k
    ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15)); DEBUG(i+15);
188
692k
  }
189
190
      /* Update state */
191
230k
      state[0] = A = state[0] + A;
192
230k
      state[1] = B = state[1] + B;
193
230k
      state[2] = C = state[2] + C;
194
230k
      state[3] = D = state[3] + D;
195
230k
      state[4] = E = state[4] + E;
196
230k
      state[5] = F = state[5] + F;
197
230k
      state[6] = G = state[6] + G;
198
230k
      state[7] = H = state[7] + H;
199
#if SHA256_DEBUG
200
      fprintf(stderr, "99: %8x %8x %8x %8x %8x %8x %8x %8x\n",
201
        state[0], state[1], state[2], state[3],
202
        state[4], state[5], state[6], state[7]);
203
#endif
204
230k
    }
205
390k
  return input;
206
390k
}