Coverage Report

Created: 2024-11-25 06:29

/src/nettle/sha512-compress.c
Line
Count
Source
1
/* sha512-compress.c
2
3
   The compression function of the sha512 hash function.
4
5
   Copyright (C) 2001, 2010 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
#if HAVE_CONFIG_H
35
# include "config.h"
36
#endif
37
38
#ifndef SHA512_DEBUG
39
# define SHA512_DEBUG 0
40
#endif
41
42
#if SHA512_DEBUG
43
# include <stdio.h>
44
# define DEBUG(i) \
45
  fprintf(stderr, "%2d: %8lx %8lx %8lx %8lx\n    %8lx %8lx %8lx %8lx\n", \
46
    i, A, B, C, D ,E, F, G, H)
47
#else
48
# define DEBUG(i)
49
#endif
50
51
#include <assert.h>
52
#include <stdlib.h>
53
#include <string.h>
54
55
#include "sha2.h"
56
#include "sha2-internal.h"
57
58
#include "macros.h"
59
60
/* A block, treated as a sequence of 64-bit words. */
61
1.59M
#define SHA512_DATA_LENGTH 16
62
63
/* For fat builds */
64
#if HAVE_NATIVE_sha512_compress
65
void
66
_nettle_sha512_compress_c (uint64_t *state, const uint8_t *input, const uint64_t *k);
67
#define _nettle_sha512_compress _nettle_sha512_compress_c
68
#endif
69
70
/* The SHA512 functions. The Choice function is the same as the SHA1
71
   function f1, and the majority function is the same as the SHA1 f3
72
   function, and the same as for SHA256. */
73
74
7.51M
#define Choice(x,y,z)   ( (z) ^ ( (x) & ( (y) ^ (z) ) ) ) 
75
7.51M
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
76
77
7.51M
#define S0(x) (ROTL64(36,(x)) ^ ROTL64(30,(x)) ^ ROTL64(25,(x))) 
78
7.51M
#define S1(x) (ROTL64(50,(x)) ^ ROTL64(46,(x)) ^ ROTL64(23,(x)))
79
80
#define s0(x) (ROTL64(63,(x)) ^ ROTL64(56,(x)) ^ ((x) >> 7))
81
#define s1(x) (ROTL64(45,(x)) ^ ROTL64(3,(x)) ^ ((x) >> 6))
82
83
/* The initial expanding function. The hash function is defined over
84
   an 64-word expanded input array W, where the first 16 are copies of
85
   the input data, and the remaining 64 are defined by
86
87
        W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]
88
89
   This implementation generates these values on the fly in a circular
90
   buffer.
91
*/
92
93
#define EXPAND(W,i) \
94
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )
95
96
/* The prototype SHA sub-round.  The fundamental sub-round is:
97
98
        T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
99
  T2 = S0(a) + Majority(a,b,c)
100
  a' = T1+T2
101
  b' = a
102
  c' = b
103
  d' = c
104
  e' = d + T1
105
  f' = e
106
  g' = f
107
  h' = g
108
109
   but this is implemented by unrolling the loop 8 times and renaming
110
   the variables
111
   ( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
112
   iteration. This code is then replicated 8, using the next 8 values
113
   from the W[] array each time */
114
115
/* It's crucial that DATA is only used once, as that argument will
116
 * have side effects. */
117
7.51M
#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \
118
7.51M
  h += S1(e) + Choice(e,f,g) + k + data; \
119
7.51M
  d += h;         \
120
7.51M
  h += S0(a) + Majority(a,b,c);      \
121
7.51M
} while (0)
122
123
void
124
_nettle_sha512_compress(uint64_t *state, const uint8_t *input, const uint64_t *k)
125
93.9k
{
126
93.9k
  uint64_t data[SHA512_DATA_LENGTH];
127
93.9k
  uint64_t A, B, C, D, E, F, G, H;     /* Local vars */
128
93.9k
  unsigned i;
129
93.9k
  uint64_t *d;
130
131
1.59M
  for (i = 0; i < SHA512_DATA_LENGTH; i++, input += 8)
132
1.50M
    {
133
1.50M
      data[i] = READ_UINT64(input);
134
1.50M
    }
135
136
  /* Set up first buffer and local data buffer */
137
93.9k
  A = state[0];
138
93.9k
  B = state[1];
139
93.9k
  C = state[2];
140
93.9k
  D = state[3];
141
93.9k
  E = state[4];
142
93.9k
  F = state[5];
143
93.9k
  G = state[6];
144
93.9k
  H = state[7];
145
  
146
  /* Heavy mangling */
147
  /* First 16 subrounds that act on the original data */
148
149
93.9k
  DEBUG(-1);
150
281k
  for (i = 0, d = data; i<16; i+=8, k += 8, d+= 8)
151
187k
    {
152
187k
      ROUND(A, B, C, D, E, F, G, H, k[0], d[0]); DEBUG(i);
153
187k
      ROUND(H, A, B, C, D, E, F, G, k[1], d[1]); DEBUG(i+1);
154
187k
      ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
155
187k
      ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
156
187k
      ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
157
187k
      ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
158
187k
      ROUND(C, D, E, F, G, H, A, B, k[6], d[6]); DEBUG(i+6);
159
187k
      ROUND(B, C, D, E, F, G, H, A, k[7], d[7]); DEBUG(i+7);
160
187k
    }
161
  
162
469k
  for (; i<80; i += 16, k+= 16)
163
375k
    {
164
375k
      ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data,  0)); DEBUG(i);
165
375k
      ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data,  1)); DEBUG(i+1);
166
375k
      ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data,  2)); DEBUG(i+2);
167
375k
      ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data,  3));
168
375k
      ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data,  4));
169
375k
      ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data,  5));
170
375k
      ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data,  6));
171
375k
      ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data,  7));
172
375k
      ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data,  8));
173
375k
      ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data,  9));
174
375k
      ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10));
175
375k
      ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11));
176
375k
      ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12));
177
375k
      ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13));
178
375k
      ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14)); DEBUG(i+14);
179
375k
      ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15)); DEBUG(i+15);
180
375k
    }
181
182
  /* Update state */
183
93.9k
  state[0] += A;
184
93.9k
  state[1] += B;
185
93.9k
  state[2] += C;
186
93.9k
  state[3] += D;
187
93.9k
  state[4] += E;
188
93.9k
  state[5] += F;
189
93.9k
  state[6] += G;
190
93.9k
  state[7] += H;
191
#if SHA512_DEBUG
192
  fprintf(stderr, "99: %8lx %8lx %8lx %8lx\n    %8lx %8lx %8lx %8lx\n",
193
    state[0], state[1], state[2], state[3],
194
    state[4], state[5], state[6], state[7]);
195
#endif
196
93.9k
}