Coverage Report

Created: 2024-11-25 06:31

/src/gmp/mpn/mulmod_bnm1.c
Line
Count
Source (jump to first uncovered line)
1
/* mulmod_bnm1.c -- multiplication mod B^n-1.
2
3
   Contributed to the GNU project by Niels Möller, Torbjorn Granlund and
4
   Marco Bodrato.
5
6
   THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
7
   SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
8
   GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
9
10
Copyright 2009, 2010, 2012, 2013, 2020, 2022 Free Software Foundation, Inc.
11
12
This file is part of the GNU MP Library.
13
14
The GNU MP Library is free software; you can redistribute it and/or modify
15
it under the terms of either:
16
17
  * the GNU Lesser General Public License as published by the Free
18
    Software Foundation; either version 3 of the License, or (at your
19
    option) any later version.
20
21
or
22
23
  * the GNU General Public License as published by the Free Software
24
    Foundation; either version 2 of the License, or (at your option) any
25
    later version.
26
27
or both in parallel, as here.
28
29
The GNU MP Library is distributed in the hope that it will be useful, but
30
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32
for more details.
33
34
You should have received copies of the GNU General Public License and the
35
GNU Lesser General Public License along with the GNU MP Library.  If not,
36
see https://www.gnu.org/licenses/.  */
37
38
39
#include "gmp-impl.h"
40
#include "longlong.h"
41
42
/* Inputs are {ap,rn} and {bp,rn}; output is {rp,rn}, computation is
43
   mod B^rn - 1, and values are semi-normalised; zero is represented
44
   as either 0 or B^n - 1.  Needs a scratch of 2rn limbs at tp.
45
   tp==rp is allowed. */
46
void
47
mpn_bc_mulmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,
48
        mp_ptr tp)
49
5.12M
{
50
5.12M
  mp_limb_t cy;
51
52
5.12M
  ASSERT (0 < rn);
53
54
5.12M
  mpn_mul_n (tp, ap, bp, rn);
55
5.12M
  cy = mpn_add_n (rp, tp, tp + rn, rn);
56
  /* If cy == 1, then the value of rp is at most B^rn - 2, so there can
57
   * be no overflow when adding in the carry. */
58
5.12M
  MPN_INCR_U (rp, rn, cy);
59
5.12M
}
60
61
62
/* Inputs are {ap,rn+1} and {bp,rn+1}; output is {rp,rn+1}, in
63
   normalised representation, computation is mod B^rn + 1. Needs
64
   a scratch area of 2rn limbs at tp; tp == rp is allowed.
65
   Output is normalised. */
66
static void
67
mpn_bc_mulmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,
68
        mp_ptr tp)
69
19.4M
{
70
19.4M
  mp_limb_t cy;
71
19.4M
  unsigned k;
72
73
19.4M
  ASSERT (0 < rn);
74
75
19.4M
  if (UNLIKELY (ap[rn] | bp [rn]))
76
12.5k
    {
77
12.5k
      if (ap[rn])
78
323
  cy = bp [rn] + mpn_neg (rp, bp, rn);
79
12.1k
      else /* ap[rn] == 0 */
80
12.1k
  cy = mpn_neg (rp, ap, rn);
81
12.5k
    }
82
19.4M
  else if (MPN_MULMOD_BKNP1_USABLE (rn, k, MUL_FFT_MODF_THRESHOLD))
83
2.92M
    {
84
2.92M
      mp_size_t n_k = rn / k;
85
2.92M
      TMP_DECL;
86
87
2.92M
      TMP_MARK;
88
2.92M
      mpn_mulmod_bknp1 (rp, ap, bp, n_k, k,
89
2.92M
                       TMP_ALLOC_LIMBS (mpn_mulmod_bknp1_itch (rn)));
90
2.92M
      TMP_FREE;
91
2.92M
      return;
92
2.92M
    }
93
16.4M
  else
94
16.4M
    {
95
16.4M
      mpn_mul_n (tp, ap, bp, rn);
96
16.4M
      cy = mpn_sub_n (rp, tp, tp + rn, rn);
97
16.4M
    }
98
16.4M
  rp[rn] = 0;
99
16.4M
  MPN_INCR_U (rp, rn + 1, cy);
100
16.4M
}
101
102
103
/* Computes {rp,MIN(rn,an+bn)} <- {ap,an}*{bp,bn} Mod(B^rn-1)
104
 *
105
 * The result is expected to be ZERO if and only if one of the operand
106
 * already is. Otherwise the class [0] Mod(B^rn-1) is represented by
107
 * B^rn-1. This should not be a problem if mulmod_bnm1 is used to
108
 * combine results and obtain a natural number when one knows in
109
 * advance that the final value is less than (B^rn-1).
110
 * Moreover it should not be a problem if mulmod_bnm1 is used to
111
 * compute the full product with an+bn <= rn, because this condition
112
 * implies (B^an-1)(B^bn-1) < (B^rn-1) .
113
 *
114
 * Requires 0 < bn <= an <= rn and an + bn > rn/2
115
 * Scratch need: rn + (need for recursive call OR rn + 4). This gives
116
 *
117
 * S(n) <= rn + MAX (rn + 4, S(n/2)) <= 2rn + 4
118
 */
119
void
120
mpn_mulmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn, mp_ptr tp)
121
24.5M
{
122
24.5M
  ASSERT (0 < bn);
123
24.5M
  ASSERT (bn <= an);
124
24.5M
  ASSERT (an <= rn);
125
126
24.5M
  if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, MULMOD_BNM1_THRESHOLD))
127
5.12M
    {
128
5.12M
      if (UNLIKELY (bn < rn))
129
0
  {
130
0
    if (UNLIKELY (an + bn <= rn))
131
0
      {
132
0
        mpn_mul (rp, ap, an, bp, bn);
133
0
      }
134
0
    else
135
0
      {
136
0
        mp_limb_t cy;
137
0
        mpn_mul (tp, ap, an, bp, bn);
138
0
        cy = mpn_add (rp, tp, rn, tp + rn, an + bn - rn);
139
0
        MPN_INCR_U (rp, rn, cy);
140
0
      }
141
0
  }
142
5.12M
      else
143
5.12M
  mpn_bc_mulmod_bnm1 (rp, ap, bp, rn, tp);
144
5.12M
    }
145
19.4M
  else
146
19.4M
    {
147
19.4M
      mp_size_t n;
148
19.4M
      mp_limb_t cy;
149
19.4M
      mp_limb_t hi;
150
151
19.4M
      n = rn >> 1;
152
153
      /* We need at least an + bn >= n, to be able to fit one of the
154
   recursive products at rp. Requiring strict inequality makes
155
   the code slightly simpler. If desired, we could avoid this
156
   restriction by initially halving rn as long as rn is even and
157
   an + bn <= rn/2. */
158
159
19.4M
      ASSERT (an + bn > n);
160
161
      /* Compute xm = a*b mod (B^n - 1), xp = a*b mod (B^n + 1)
162
   and crt together as
163
164
   x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)]
165
      */
166
167
38.8M
#define a0 ap
168
38.8M
#define a1 (ap + n)
169
77.6M
#define b0 bp
170
38.8M
#define b1 (bp + n)
171
172
174M
#define xp  tp  /* 2n + 2 */
173
      /* am1  maybe in {xp, n} */
174
      /* bm1  maybe in {xp + n, n} */
175
116M
#define sp1 (tp + 2*n + 2)
176
      /* ap1  maybe in {sp1, n + 1} */
177
      /* bp1  maybe in {sp1 + n + 1, n + 1} */
178
179
19.4M
      {
180
19.4M
  mp_srcptr am1, bm1;
181
19.4M
  mp_size_t anm, bnm;
182
19.4M
  mp_ptr so;
183
184
19.4M
  bm1 = b0;
185
19.4M
  bnm = bn;
186
19.4M
  if (LIKELY (an > n))
187
19.4M
    {
188
19.4M
      am1 = xp;
189
19.4M
      cy = mpn_add (xp, a0, n, a1, an - n);
190
19.4M
      MPN_INCR_U (xp, n, cy);
191
19.4M
      anm = n;
192
19.4M
      so = xp + n;
193
19.4M
      if (LIKELY (bn > n))
194
19.4M
        {
195
19.4M
    bm1 = so;
196
19.4M
    cy = mpn_add (so, b0, n, b1, bn - n);
197
19.4M
    MPN_INCR_U (so, n, cy);
198
19.4M
    bnm = n;
199
19.4M
    so += n;
200
19.4M
        }
201
19.4M
    }
202
0
  else
203
0
    {
204
0
      so = xp;
205
0
      am1 = a0;
206
0
      anm = an;
207
0
    }
208
209
19.4M
  mpn_mulmod_bnm1 (rp, n, am1, anm, bm1, bnm, so);
210
19.4M
      }
211
212
19.4M
      {
213
19.4M
  int       k;
214
19.4M
  mp_srcptr ap1, bp1;
215
19.4M
  mp_size_t anp, bnp;
216
217
19.4M
  bp1 = b0;
218
19.4M
  bnp = bn;
219
19.4M
  if (LIKELY (an > n)) {
220
19.4M
    ap1 = sp1;
221
19.4M
    cy = mpn_sub (sp1, a0, n, a1, an - n);
222
19.4M
    sp1[n] = 0;
223
19.4M
    MPN_INCR_U (sp1, n + 1, cy);
224
19.4M
    anp = n + ap1[n];
225
19.4M
    if (LIKELY (bn > n)) {
226
19.4M
      bp1 = sp1 + n + 1;
227
19.4M
      cy = mpn_sub (sp1 + n + 1, b0, n, b1, bn - n);
228
19.4M
      sp1[2*n+1] = 0;
229
19.4M
      MPN_INCR_U (sp1 + n + 1, n + 1, cy);
230
19.4M
      bnp = n + bp1[n];
231
19.4M
    }
232
19.4M
  } else {
233
0
    ap1 = a0;
234
0
    anp = an;
235
0
  }
236
237
19.4M
  if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD))
238
19.4M
    k=0;
239
0
  else
240
0
    {
241
0
      int mask;
242
0
      k = mpn_fft_best_k (n, 0);
243
0
      mask = (1<<k) - 1;
244
0
      while (n & mask) {k--; mask >>=1;};
245
0
    }
246
19.4M
  if (k >= FFT_FIRST_K)
247
0
    xp[n] = mpn_mul_fft (xp, n, ap1, anp, bp1, bnp, k);
248
19.4M
  else if (UNLIKELY (bp1 == b0))
249
0
    {
250
0
      ASSERT (anp + bnp <= 2*n+1);
251
0
      ASSERT (anp + bnp > n);
252
0
      ASSERT (anp >= bnp);
253
0
      mpn_mul (xp, ap1, anp, bp1, bnp);
254
0
      anp = anp + bnp - n;
255
0
      ASSERT (anp <= n || xp[2*n]==0);
256
0
      anp-= anp > n;
257
0
      cy = mpn_sub (xp, xp, n, xp + n, anp);
258
0
      xp[n] = 0;
259
0
      MPN_INCR_U (xp, n+1, cy);
260
0
    }
261
19.4M
  else
262
19.4M
    mpn_bc_mulmod_bnp1 (xp, ap1, bp1, n, xp);
263
19.4M
      }
264
265
      /* Here the CRT recomposition begins.
266
267
   xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1)
268
   Division by 2 is a bitwise rotation.
269
270
   Assumes xp normalised mod (B^n+1).
271
272
   The residue class [0] is represented by [B^n-1]; except when
273
   both input are ZERO.
274
      */
275
276
#if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc
277
#if HAVE_NATIVE_mpn_rsh1add_nc
278
      cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */
279
      hi = cy << (GMP_NUMB_BITS - 1);
280
      cy = 0;
281
      /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi
282
   overflows, i.e. a further increment will not overflow again. */
283
#else /* ! _nc */
284
      cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */
285
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
286
      cy >>= 1;
287
      /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that
288
   the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */
289
#endif
290
#if GMP_NAIL_BITS == 0
291
      add_ssaaaa(cy, rp[n-1], cy, rp[n-1], 0, hi);
292
#else
293
      cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1);
294
      rp[n-1] ^= hi;
295
#endif
296
#else /* ! HAVE_NATIVE_mpn_rsh1add_n */
297
#if HAVE_NATIVE_mpn_add_nc
298
      cy = mpn_add_nc(rp, rp, xp, n, xp[n]);
299
#else /* ! _nc */
300
19.4M
      cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */
301
19.4M
#endif
302
19.4M
      cy += (rp[0]&1);
303
19.4M
      mpn_rshift(rp, rp, n, 1);
304
19.4M
      ASSERT (cy <= 2);
305
19.4M
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
306
19.4M
      cy >>= 1;
307
      /* We can have cy != 0 only if hi = 0... */
308
19.4M
      ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0);
309
19.4M
      rp[n-1] |= hi;
310
      /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */
311
19.4M
#endif
312
19.4M
      ASSERT (cy <= 1);
313
      /* Next increment can not overflow, read the previous comments about cy. */
314
19.4M
      ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0));
315
19.4M
      MPN_INCR_U(rp, n, cy);
316
317
      /* Compute the highest half:
318
   ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n
319
       */
320
19.4M
      if (UNLIKELY (an + bn < rn))
321
0
  {
322
    /* Note that in this case, the only way the result can equal
323
       zero mod B^{rn} - 1 is if one of the inputs is zero, and
324
       then the output of both the recursive calls and this CRT
325
       reconstruction is zero, not B^{rn} - 1. Which is good,
326
       since the latter representation doesn't fit in the output
327
       area.*/
328
0
    cy = mpn_sub_n (rp + n, rp, xp, an + bn - n);
329
330
    /* FIXME: This subtraction of the high parts is not really
331
       necessary, we do it to get the carry out, and for sanity
332
       checking. */
333
0
    cy = xp[n] + mpn_sub_nc (xp + an + bn - n, rp + an + bn - n,
334
0
           xp + an + bn - n, rn - (an + bn), cy);
335
0
    ASSERT (an + bn == rn - 1 ||
336
0
      mpn_zero_p (xp + an + bn - n + 1, rn - 1 - (an + bn)));
337
0
    cy = mpn_sub_1 (rp, rp, an + bn, cy);
338
0
    ASSERT (cy == (xp + an + bn - n)[0]);
339
0
  }
340
19.4M
      else
341
19.4M
  {
342
19.4M
    cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n);
343
    /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO.
344
       DECR will affect _at most_ the lowest n limbs. */
345
19.4M
    MPN_DECR_U (rp, 2*n, cy);
346
19.4M
  }
347
19.4M
#undef a0
348
19.4M
#undef a1
349
19.4M
#undef b0
350
19.4M
#undef b1
351
19.4M
#undef xp
352
19.4M
#undef sp1
353
19.4M
    }
354
24.5M
}
355
356
mp_size_t
357
mpn_mulmod_bnm1_next_size (mp_size_t n)
358
5.17M
{
359
5.17M
  mp_size_t nh;
360
361
5.17M
  if (BELOW_THRESHOLD (n,     MULMOD_BNM1_THRESHOLD))
362
5.73k
    return n;
363
5.16M
  if (BELOW_THRESHOLD (n, 4 * (MULMOD_BNM1_THRESHOLD - 1) + 1))
364
37.0k
    return (n + (2-1)) & (-2);
365
5.12M
  if (BELOW_THRESHOLD (n, 8 * (MULMOD_BNM1_THRESHOLD - 1) + 1))
366
436k
    return (n + (4-1)) & (-4);
367
368
4.69M
  nh = (n + 1) >> 1;
369
370
4.69M
  if (BELOW_THRESHOLD (nh, MUL_FFT_MODF_THRESHOLD))
371
4.69M
    return (n + (8-1)) & (-8);
372
373
0
  return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 0));
374
4.69M
}