Coverage Report

Created: 2024-11-25 06:31

/src/nettle/ccm.c
Line
Count
Source (jump to first uncovered line)
1
/* ccm.c
2
3
   Counter with CBC-MAC mode, specified by NIST,
4
   http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
5
6
   Copyright (C) 2014 Exegin Technologies Limited
7
   Copyright (C) 2014 Owen Kirby
8
9
   This file is part of GNU Nettle.
10
11
   GNU Nettle is free software: you can redistribute it and/or
12
   modify it under the terms of either:
13
14
     * the GNU Lesser General Public License as published by the Free
15
       Software Foundation; either version 3 of the License, or (at your
16
       option) any later version.
17
18
   or
19
20
     * the GNU General Public License as published by the Free
21
       Software Foundation; either version 2 of the License, or (at your
22
       option) any later version.
23
24
   or both in parallel, as here.
25
26
   GNU Nettle is distributed in the hope that it will be useful,
27
   but WITHOUT ANY WARRANTY; without even the implied warranty of
28
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
29
   General Public License for more details.
30
31
   You should have received copies of the GNU General Public License and
32
   the GNU Lesser General Public License along with this program.  If
33
   not, see http://www.gnu.org/licenses/.
34
*/
35
36
#if HAVE_CONFIG_H
37
# include "config.h"
38
#endif
39
40
#include <assert.h>
41
#include <stdlib.h>
42
#include <string.h>
43
44
#include "ccm.h"
45
#include "ctr.h"
46
47
#include "memops.h"
48
#include "nettle-internal.h"
49
#include "macros.h"
50
51
/*
52
 * The format of the CCM IV (for both CTR and CBC-MAC) is: flags | nonce | count
53
 *  flags = 1 octet
54
 *  nonce = N octets
55
 *  count >= 1 octet
56
 *
57
 * such that:
58
 *  sizeof(flags) + sizeof(nonce) + sizeof(count) == 1 block
59
 */
60
32.1k
#define CCM_FLAG_L          0x07
61
10.7k
#define CCM_FLAG_M          0x38
62
10.7k
#define CCM_FLAG_ADATA      0x40
63
#define CCM_FLAG_RESERVED   0x80
64
10.7k
#define CCM_FLAG_GET_L(_x_) (((_x_) & CCM_FLAG_L) + 1)
65
21.4k
#define CCM_FLAG_SET_L(_x_) (((_x_) - 1) & CCM_FLAG_L)
66
10.7k
#define CCM_FLAG_SET_M(_x_) ((((_x_) - 2) << 2) & CCM_FLAG_M)
67
68
32.1k
#define CCM_OFFSET_FLAGS    0
69
107k
#define CCM_OFFSET_NONCE    1
70
#define CCM_L_SIZE(_nlen_)  (CCM_BLOCK_SIZE - CCM_OFFSET_NONCE - (_nlen_))
71
72
/*
73
 * The data input to the CBC-MAC: L(a) | adata | padding | plaintext | padding
74
 *
75
 * blength is the length of data that has been added to the CBC-MAC modulus the
76
 * cipher block size. If the value of blength is non-zero then some data has
77
 * been XOR'ed into the CBC-MAC, and we will need to pad the block (XOR with 0),
78
 * and iterate the cipher one more time.
79
 *
80
 * The end of adata is detected implicitly by the first call to the encrypt()
81
 * and decrypt() functions, and will call ccm_pad() to insert the padding if
82
 * necessary. Because of the underlying CTR encryption, the encrypt() and
83
 * decrypt() functions must be called with a multiple of the block size and
84
 * therefore blength should be zero on all but the first call.
85
 *
86
 * Likewise, the end of the plaintext is implicitly determined by the first call
87
 * to the digest() function, which will pad if the final CTR encryption was not
88
 * a multiple of the block size.
89
 */
90
static void
91
ccm_pad(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f)
92
21.4k
{
93
21.4k
    if (ctx->blength) f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
94
21.4k
    ctx->blength = 0;
95
21.4k
}
96
97
static void
98
ccm_build_iv(uint8_t *iv, size_t noncelen, const uint8_t *nonce,
99
       uint8_t flags, size_t count)
100
21.4k
{
101
21.4k
  unsigned int i;
102
103
  /* Sanity check the nonce length. */
104
21.4k
  assert(noncelen >= CCM_MIN_NONCE_SIZE);
105
21.4k
  assert(noncelen <= CCM_MAX_NONCE_SIZE);
106
107
  /* Generate the IV */
108
21.4k
  iv[CCM_OFFSET_FLAGS] = flags | CCM_FLAG_SET_L(CCM_L_SIZE(noncelen));
109
21.4k
  memcpy(&iv[CCM_OFFSET_NONCE], nonce, noncelen);
110
85.7k
  for (i=(CCM_BLOCK_SIZE - 1); i >= (CCM_OFFSET_NONCE + noncelen); i--) {
111
64.2k
    iv[i] = count & 0xff;
112
64.2k
    count >>= 8;
113
64.2k
  }
114
115
  /* Ensure the count was not truncated. */
116
21.4k
  assert(!count);
117
21.4k
}
118
119
void
120
ccm_set_nonce(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
121
        size_t length, const uint8_t *nonce,
122
        size_t authlen, size_t msglen, size_t taglen)
123
10.7k
{
124
  /* Generate the IV for the CTR and CBC-MAC */
125
10.7k
  ctx->blength = 0;
126
10.7k
  ccm_build_iv(ctx->tag.b, length, nonce, CCM_FLAG_SET_M(taglen), msglen);
127
10.7k
  ccm_build_iv(ctx->ctr.b, length, nonce, 0, 1);
128
129
  /* If no auth data, encrypt B0 and skip L(a) */
130
10.7k
  if (!authlen) {
131
0
    f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
132
0
    return;
133
0
  }
134
135
  /* Encrypt B0 (with the adata flag), and input L(a) to the CBC-MAC. */
136
10.7k
  ctx->tag.b[CCM_OFFSET_FLAGS] |= CCM_FLAG_ADATA;
137
10.7k
  f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
138
10.7k
#if SIZEOF_SIZE_T > 4
139
10.7k
  if (authlen >= (0x01ULL << 32)) {
140
    /* Encode L(a) as 0xff || 0xff || <64-bit integer> */
141
0
    ctx->tag.b[ctx->blength++] ^= 0xff;
142
0
    ctx->tag.b[ctx->blength++] ^= 0xff;
143
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 56) & 0xff;
144
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 48) & 0xff;
145
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 40) & 0xff;
146
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 32) & 0xff;
147
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 24) & 0xff;
148
0
    ctx->tag.b[ctx->blength++] ^= (authlen >> 16) & 0xff;
149
0
  }
150
10.7k
  else
151
10.7k
#endif
152
10.7k
    if (authlen >= ((0x1ULL << 16) - (0x1ULL << 8))) {
153
      /* Encode L(a) as 0xff || 0xfe || <32-bit integer> */
154
0
      ctx->tag.b[ctx->blength++] ^= 0xff;
155
0
      ctx->tag.b[ctx->blength++] ^= 0xfe;
156
0
      ctx->tag.b[ctx->blength++] ^= (authlen >> 24) & 0xff;
157
0
      ctx->tag.b[ctx->blength++] ^= (authlen >> 16) & 0xff;
158
0
    }
159
10.7k
  ctx->tag.b[ctx->blength++] ^= (authlen >> 8) & 0xff;
160
10.7k
  ctx->tag.b[ctx->blength++] ^= (authlen >> 0) & 0xff;
161
10.7k
}
162
163
void
164
ccm_update(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
165
     size_t length, const uint8_t *data)
166
21.4k
{
167
21.4k
  const uint8_t *end = data + length;
168
169
  /* If we don't have enough to fill a block, save the data for later. */
170
21.4k
  if ((ctx->blength + length) < CCM_BLOCK_SIZE) {
171
18.5k
    memxor(&ctx->tag.b[ctx->blength], data, length);
172
18.5k
    ctx->blength += length;
173
18.5k
    return;
174
18.5k
  }
175
176
  /* Process a partially filled block. */
177
2.83k
  if (ctx->blength) {
178
0
    memxor(&ctx->tag.b[ctx->blength], data, CCM_BLOCK_SIZE - ctx->blength);
179
0
    data += (CCM_BLOCK_SIZE - ctx->blength);
180
0
    f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
181
0
  }
182
183
  /* Process full blocks. */
184
43.3k
  while ((data + CCM_BLOCK_SIZE) < end) {
185
40.5k
    memxor(ctx->tag.b, data, CCM_BLOCK_SIZE);
186
40.5k
    f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
187
40.5k
    data += CCM_BLOCK_SIZE;
188
40.5k
  } /* while */
189
190
  /* Save leftovers for later. */
191
2.83k
  ctx->blength = (end - data);
192
2.83k
  if (ctx->blength) memxor(&ctx->tag.b, data, ctx->blength);
193
2.83k
}
194
195
/*
196
 * Because of the underlying CTR mode encryption, when called multiple times
197
 * the data in intermediate calls must be provided in multiples of the block
198
 * size.
199
 */
200
void
201
ccm_encrypt(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
202
      size_t length, uint8_t *dst, const uint8_t *src)
203
1.42k
{
204
1.42k
  ccm_pad(ctx, cipher, f);
205
1.42k
  ccm_update(ctx, cipher, f, length, src);
206
1.42k
  ctr_crypt(cipher, f, CCM_BLOCK_SIZE, ctx->ctr.b, length, dst, src);
207
1.42k
}
208
209
/*
210
 * Because of the underlying CTR mode decryption, when called multiple times
211
 * the data in intermediate calls must be provided in multiples of the block
212
 * size.
213
 */
214
void
215
ccm_decrypt(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
216
      size_t length, uint8_t *dst, const uint8_t *src)
217
9.29k
{
218
9.29k
  ctr_crypt(cipher, f, CCM_BLOCK_SIZE, ctx->ctr.b, length, dst, src);
219
9.29k
  ccm_pad(ctx, cipher, f);
220
9.29k
  ccm_update(ctx, cipher, f, length, dst);
221
9.29k
}
222
223
void
224
ccm_digest(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
225
     size_t length, uint8_t *digest)
226
10.7k
{
227
10.7k
  int i = CCM_BLOCK_SIZE - CCM_FLAG_GET_L(ctx->ctr.b[CCM_OFFSET_FLAGS]);
228
10.7k
  assert(length <= CCM_BLOCK_SIZE);
229
42.8k
  while (i < CCM_BLOCK_SIZE)  ctx->ctr.b[i++] = 0;
230
10.7k
  ccm_pad(ctx, cipher, f);
231
10.7k
  ctr_crypt(cipher, f, CCM_BLOCK_SIZE, ctx->ctr.b, length, digest, ctx->tag.b);
232
10.7k
}
233
234
void
235
ccm_encrypt_message(const void *cipher, nettle_cipher_func *f,
236
        size_t nlength, const uint8_t *nonce,
237
        size_t alength, const uint8_t *adata, size_t tlength,
238
        size_t clength, uint8_t *dst, const uint8_t *src)
239
1.42k
{
240
1.42k
  struct ccm_ctx ctx;
241
1.42k
  uint8_t *tag = dst + (clength-tlength);
242
1.42k
  assert(clength >= tlength);
243
1.42k
  ccm_set_nonce(&ctx, cipher, f, nlength, nonce, alength, clength-tlength, tlength);
244
1.42k
  ccm_update(&ctx, cipher, f, alength, adata);
245
1.42k
  ccm_encrypt(&ctx, cipher, f, clength-tlength, dst, src);
246
1.42k
  ccm_digest(&ctx, cipher, f, tlength, tag);
247
1.42k
}
248
249
int
250
ccm_decrypt_message(const void *cipher, nettle_cipher_func *f,
251
        size_t nlength, const uint8_t *nonce,
252
        size_t alength, const uint8_t *adata, size_t tlength,
253
        size_t mlength, uint8_t *dst, const uint8_t *src)
254
9.29k
{
255
9.29k
  struct ccm_ctx ctx;
256
9.29k
  uint8_t tag[CCM_BLOCK_SIZE];
257
9.29k
  ccm_set_nonce(&ctx, cipher, f, nlength, nonce, alength, mlength, tlength);
258
9.29k
  ccm_update(&ctx, cipher, f, alength, adata);
259
9.29k
  ccm_decrypt(&ctx, cipher, f, mlength, dst, src);
260
9.29k
  ccm_digest(&ctx, cipher, f, tlength, tag);
261
9.29k
  return memeql_sec(tag, src + mlength, tlength);
262
9.29k
}