Coverage Report

Created: 2025-07-23 06:43

/src/gmp/mpn/mulmod_bnm1.c
Line
Count
Source (jump to first uncovered line)
1
/* mulmod_bnm1.c -- multiplication mod B^n-1.
2
3
   Contributed to the GNU project by Niels Möller, Torbjorn Granlund and
4
   Marco Bodrato.
5
6
   THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
7
   SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
8
   GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
9
10
Copyright 2009, 2010, 2012, 2013, 2020, 2022 Free Software Foundation, Inc.
11
12
This file is part of the GNU MP Library.
13
14
The GNU MP Library is free software; you can redistribute it and/or modify
15
it under the terms of either:
16
17
  * the GNU Lesser General Public License as published by the Free
18
    Software Foundation; either version 3 of the License, or (at your
19
    option) any later version.
20
21
or
22
23
  * the GNU General Public License as published by the Free Software
24
    Foundation; either version 2 of the License, or (at your option) any
25
    later version.
26
27
or both in parallel, as here.
28
29
The GNU MP Library is distributed in the hope that it will be useful, but
30
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32
for more details.
33
34
You should have received copies of the GNU General Public License and the
35
GNU Lesser General Public License along with the GNU MP Library.  If not,
36
see https://www.gnu.org/licenses/.  */
37
38
39
#include "gmp-impl.h"
40
#include "longlong.h"
41
42
/* Inputs are {ap,rn} and {bp,rn}; output is {rp,rn}, computation is
43
   mod B^rn - 1, and values are semi-normalised; zero is represented
44
   as either 0 or B^n - 1.  Needs a scratch of 2rn limbs at tp.
45
   tp==rp is allowed. */
46
void
47
mpn_bc_mulmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,
48
        mp_ptr tp)
49
2.82M
{
50
2.82M
  mp_limb_t cy;
51
52
2.82M
  ASSERT (0 < rn);
53
54
2.82M
  mpn_mul_n (tp, ap, bp, rn);
55
2.82M
  cy = mpn_add_n (rp, tp, tp + rn, rn);
56
  /* If cy == 1, then the value of rp is at most B^rn - 2, so there can
57
   * be no overflow when adding in the carry. */
58
2.82M
  MPN_INCR_U (rp, rn, cy);
59
2.82M
}
60
61
62
/* Inputs are {ap,rn+1} and {bp,rn+1}; output is {rp,rn+1}, in
63
   normalised representation, computation is mod B^rn + 1. Needs
64
   a scratch area of 2rn limbs at tp; tp == rp is allowed.
65
   Output is normalised. */
66
static void
67
mpn_bc_mulmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,
68
        mp_ptr tp)
69
10.2M
{
70
10.2M
  mp_limb_t cy;
71
10.2M
  unsigned k;
72
73
10.2M
  ASSERT (0 < rn);
74
75
10.2M
  if (UNLIKELY (ap[rn] | bp [rn]))
76
11.0k
    {
77
11.0k
      if (ap[rn])
78
391
  cy = bp [rn] + mpn_neg (rp, bp, rn);
79
10.6k
      else /* ap[rn] == 0 */
80
10.6k
  cy = mpn_neg (rp, ap, rn);
81
11.0k
    }
82
10.2M
  else if (MPN_MULMOD_BKNP1_USABLE (rn, k, MUL_FFT_MODF_THRESHOLD))
83
2.84M
    {
84
2.84M
      mp_size_t n_k = rn / k;
85
2.84M
      TMP_DECL;
86
87
2.84M
      TMP_MARK;
88
2.84M
      mpn_mulmod_bknp1 (rp, ap, bp, n_k, k,
89
2.84M
                       TMP_ALLOC_LIMBS (mpn_mulmod_bknp1_itch (rn)));
90
2.84M
      TMP_FREE;
91
2.84M
      return;
92
2.84M
    }
93
7.36M
  else
94
7.36M
    {
95
7.36M
      mpn_mul_n (tp, ap, bp, rn);
96
7.36M
      cy = mpn_sub_n (rp, tp, tp + rn, rn);
97
7.36M
    }
98
7.37M
  rp[rn] = 0;
99
7.37M
  MPN_INCR_U (rp, rn + 1, cy);
100
7.37M
}
101
102
103
/* Computes {rp,MIN(rn,an+bn)} <- {ap,an}*{bp,bn} Mod(B^rn-1)
104
 *
105
 * The result is expected to be ZERO if and only if one of the operand
106
 * already is. Otherwise the class [0] Mod(B^rn-1) is represented by
107
 * B^rn-1. This should not be a problem if mulmod_bnm1 is used to
108
 * combine results and obtain a natural number when one knows in
109
 * advance that the final value is less than (B^rn-1).
110
 * Moreover it should not be a problem if mulmod_bnm1 is used to
111
 * compute the full product with an+bn <= rn, because this condition
112
 * implies (B^an-1)(B^bn-1) < (B^rn-1) .
113
 *
114
 * Requires 0 < bn <= an <= rn and an + bn > rn/2
115
 * Scratch need: rn + (need for recursive call OR rn + 4). This gives
116
 *
117
 * S(n) <= rn + MAX (rn + 4, S(n/2)) <= 2rn + 4
118
 */
119
void
120
mpn_mulmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn, mp_ptr tp)
121
13.0M
{
122
13.0M
  ASSERT (0 < bn);
123
13.0M
  ASSERT (bn <= an);
124
13.0M
  ASSERT (an <= rn);
125
126
13.0M
  if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, MULMOD_BNM1_THRESHOLD))
127
2.82M
    {
128
2.82M
      if (UNLIKELY (bn < rn))
129
0
  {
130
0
    if (UNLIKELY (an + bn <= rn))
131
0
      {
132
0
        mpn_mul (rp, ap, an, bp, bn);
133
0
      }
134
0
    else
135
0
      {
136
0
        mp_limb_t cy;
137
0
        mpn_mul (tp, ap, an, bp, bn);
138
0
        cy = mpn_add (rp, tp, rn, tp + rn, an + bn - rn);
139
0
        MPN_INCR_U (rp, rn, cy);
140
0
      }
141
0
  }
142
2.82M
      else
143
2.82M
  mpn_bc_mulmod_bnm1 (rp, ap, bp, rn, tp);
144
2.82M
    }
145
10.2M
  else
146
10.2M
    {
147
10.2M
      mp_size_t n;
148
10.2M
      mp_limb_t cy;
149
10.2M
      mp_limb_t hi;
150
151
10.2M
      n = rn >> 1;
152
153
      /* We need at least an + bn >= n, to be able to fit one of the
154
   recursive products at rp. Requiring strict inequality makes
155
   the code slightly simpler. If desired, we could avoid this
156
   restriction by initially halving rn as long as rn is even and
157
   an + bn <= rn/2. */
158
159
10.2M
      ASSERT (an + bn > n);
160
161
      /* Compute xm = a*b mod (B^n - 1), xp = a*b mod (B^n + 1)
162
   and crt together as
163
164
   x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)]
165
      */
166
167
20.4M
#define a0 ap
168
20.4M
#define a1 (ap + n)
169
40.8M
#define b0 bp
170
20.4M
#define b1 (bp + n)
171
172
91.9M
#define xp  tp  /* 2n + 2 */
173
      /* am1  maybe in {xp, n} */
174
      /* bm1  maybe in {xp + n, n} */
175
61.3M
#define sp1 (tp + 2*n + 2)
176
      /* ap1  maybe in {sp1, n + 1} */
177
      /* bp1  maybe in {sp1 + n + 1, n + 1} */
178
179
10.2M
      {
180
10.2M
  mp_srcptr am1, bm1;
181
10.2M
  mp_size_t anm, bnm;
182
10.2M
  mp_ptr so;
183
184
10.2M
  bm1 = b0;
185
10.2M
  bnm = bn;
186
10.2M
  if (LIKELY (an > n))
187
10.2M
    {
188
10.2M
      am1 = xp;
189
10.2M
      cy = mpn_add (xp, a0, n, a1, an - n);
190
10.2M
      MPN_INCR_U (xp, n, cy);
191
10.2M
      anm = n;
192
10.2M
      so = xp + n;
193
10.2M
      if (LIKELY (bn > n))
194
10.2M
        {
195
10.2M
    bm1 = so;
196
10.2M
    cy = mpn_add (so, b0, n, b1, bn - n);
197
10.2M
    MPN_INCR_U (so, n, cy);
198
10.2M
    bnm = n;
199
10.2M
    so += n;
200
10.2M
        }
201
10.2M
    }
202
0
  else
203
0
    {
204
0
      so = xp;
205
0
      am1 = a0;
206
0
      anm = an;
207
0
    }
208
209
10.2M
  mpn_mulmod_bnm1 (rp, n, am1, anm, bm1, bnm, so);
210
10.2M
      }
211
212
10.2M
      {
213
10.2M
  int       k;
214
10.2M
  mp_srcptr ap1, bp1;
215
10.2M
  mp_size_t anp, bnp;
216
217
10.2M
  bp1 = b0;
218
10.2M
  bnp = bn;
219
10.2M
  if (LIKELY (an > n)) {
220
10.2M
    ap1 = sp1;
221
10.2M
    cy = mpn_sub (sp1, a0, n, a1, an - n);
222
10.2M
    sp1[n] = 0;
223
10.2M
    MPN_INCR_U (sp1, n + 1, cy);
224
10.2M
    anp = n + ap1[n];
225
10.2M
    if (LIKELY (bn > n)) {
226
10.2M
      bp1 = sp1 + n + 1;
227
10.2M
      cy = mpn_sub (sp1 + n + 1, b0, n, b1, bn - n);
228
10.2M
      sp1[2*n+1] = 0;
229
10.2M
      MPN_INCR_U (sp1 + n + 1, n + 1, cy);
230
10.2M
      bnp = n + bp1[n];
231
10.2M
    }
232
10.2M
  } else {
233
0
    ap1 = a0;
234
0
    anp = an;
235
0
  }
236
237
10.2M
  if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD))
238
10.2M
    k=0;
239
0
  else
240
0
    {
241
0
      int mask;
242
0
      k = mpn_fft_best_k (n, 0);
243
0
      mask = (1<<k) - 1;
244
0
      while (n & mask) {k--; mask >>=1;};
245
0
    }
246
10.2M
  if (k >= FFT_FIRST_K)
247
0
    xp[n] = mpn_mul_fft (xp, n, ap1, anp, bp1, bnp, k);
248
10.2M
  else if (UNLIKELY (bp1 == b0))
249
0
    {
250
0
      ASSERT (anp + bnp <= 2*n+1);
251
0
      ASSERT (anp + bnp > n);
252
0
      ASSERT (anp >= bnp);
253
0
      mpn_mul (xp, ap1, anp, bp1, bnp);
254
0
      anp = anp + bnp - n;
255
0
      ASSERT (anp <= n || xp[2*n]==0);
256
0
      anp-= anp > n;
257
0
      cy = mpn_sub (xp, xp, n, xp + n, anp);
258
0
      xp[n] = 0;
259
0
      MPN_INCR_U (xp, n+1, cy);
260
0
    }
261
10.2M
  else
262
10.2M
    mpn_bc_mulmod_bnp1 (xp, ap1, bp1, n, xp);
263
10.2M
      }
264
265
      /* Here the CRT recomposition begins.
266
267
   xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1)
268
   Division by 2 is a bitwise rotation.
269
270
   Assumes xp normalised mod (B^n+1).
271
272
   The residue class [0] is represented by [B^n-1]; except when
273
   both input are ZERO.
274
      */
275
276
#if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc
277
#if HAVE_NATIVE_mpn_rsh1add_nc
278
      cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */
279
      hi = cy << (GMP_NUMB_BITS - 1);
280
      cy = 0;
281
      /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi
282
   overflows, i.e. a further increment will not overflow again. */
283
#else /* ! _nc */
284
      cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */
285
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
286
      cy >>= 1;
287
      /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that
288
   the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */
289
#endif
290
#if GMP_NAIL_BITS == 0
291
      add_ssaaaa(cy, rp[n-1], cy, rp[n-1], 0, hi);
292
#else
293
      cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1);
294
      rp[n-1] ^= hi;
295
#endif
296
#else /* ! HAVE_NATIVE_mpn_rsh1add_n */
297
#if HAVE_NATIVE_mpn_add_nc
298
      cy = mpn_add_nc(rp, rp, xp, n, xp[n]);
299
#else /* ! _nc */
300
10.2M
      cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */
301
10.2M
#endif
302
10.2M
      cy += (rp[0]&1);
303
10.2M
      mpn_rshift(rp, rp, n, 1);
304
10.2M
      ASSERT (cy <= 2);
305
10.2M
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
306
10.2M
      cy >>= 1;
307
      /* We can have cy != 0 only if hi = 0... */
308
10.2M
      ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0);
309
10.2M
      rp[n-1] |= hi;
310
      /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */
311
10.2M
#endif
312
10.2M
      ASSERT (cy <= 1);
313
      /* Next increment can not overflow, read the previous comments about cy. */
314
10.2M
      ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0));
315
10.2M
      MPN_INCR_U(rp, n, cy);
316
317
      /* Compute the highest half:
318
   ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n
319
       */
320
10.2M
      if (UNLIKELY (an + bn < rn))
321
0
  {
322
    /* Note that in this case, the only way the result can equal
323
       zero mod B^{rn} - 1 is if one of the inputs is zero, and
324
       then the output of both the recursive calls and this CRT
325
       reconstruction is zero, not B^{rn} - 1. Which is good,
326
       since the latter representation doesn't fit in the output
327
       area.*/
328
0
    cy = mpn_sub_n (rp + n, rp, xp, an + bn - n);
329
330
    /* FIXME: This subtraction of the high parts is not really
331
       necessary, we do it to get the carry out, and for sanity
332
       checking. */
333
0
    cy = xp[n] + mpn_sub_nc (xp + an + bn - n, rp + an + bn - n,
334
0
           xp + an + bn - n, rn - (an + bn), cy);
335
0
    ASSERT (an + bn == rn - 1 ||
336
0
      mpn_zero_p (xp + an + bn - n + 1, rn - 1 - (an + bn)));
337
0
    cy = mpn_sub_1 (rp, rp, an + bn, cy);
338
0
    ASSERT (cy == (xp + an + bn - n)[0]);
339
0
  }
340
10.2M
      else
341
10.2M
  {
342
10.2M
    cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n);
343
    /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO.
344
       DECR will affect _at most_ the lowest n limbs. */
345
10.2M
    MPN_DECR_U (rp, 2*n, cy);
346
10.2M
  }
347
10.2M
#undef a0
348
10.2M
#undef a1
349
10.2M
#undef b0
350
10.2M
#undef b1
351
10.2M
#undef xp
352
10.2M
#undef sp1
353
10.2M
    }
354
13.0M
}
355
356
mp_size_t
357
mpn_mulmod_bnm1_next_size (mp_size_t n)
358
2.87M
{
359
2.87M
  mp_size_t nh;
360
361
2.87M
  if (BELOW_THRESHOLD (n,     MULMOD_BNM1_THRESHOLD))
362
5.92k
    return n;
363
2.86M
  if (BELOW_THRESHOLD (n, 4 * (MULMOD_BNM1_THRESHOLD - 1) + 1))
364
39.7k
    return (n + (2-1)) & (-2);
365
2.82M
  if (BELOW_THRESHOLD (n, 8 * (MULMOD_BNM1_THRESHOLD - 1) + 1))
366
471k
    return (n + (4-1)) & (-4);
367
368
2.35M
  nh = (n + 1) >> 1;
369
370
2.35M
  if (BELOW_THRESHOLD (nh, MUL_FFT_MODF_THRESHOLD))
371
2.35M
    return (n + (8-1)) & (-8);
372
373
0
  return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 0));
374
2.35M
}