Coverage Report

Created: 2025-07-23 06:43

/src/gmp/mpn/sqrlo.c
Line
Count
Source (jump to first uncovered line)
1
/* mpn_sqrlo -- squares an n-limb number and returns the low n limbs
2
   of the result.
3
4
   Contributed to the GNU project by Torbjorn Granlund and Marco Bodrato.
5
6
   THIS IS (FOR NOW) AN INTERNAL FUNCTION.  IT IS ONLY SAFE TO REACH THIS
7
   FUNCTION THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST GUARANTEED
8
   THAT IT'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
9
10
Copyright 2004, 2005, 2009, 2010, 2012, 2015 Free Software Foundation, Inc.
11
12
This file is part of the GNU MP Library.
13
14
The GNU MP Library is free software; you can redistribute it and/or modify
15
it under the terms of either:
16
17
  * the GNU Lesser General Public License as published by the Free
18
    Software Foundation; either version 3 of the License, or (at your
19
    option) any later version.
20
21
or
22
23
  * the GNU General Public License as published by the Free Software
24
    Foundation; either version 2 of the License, or (at your option) any
25
    later version.
26
27
or both in parallel, as here.
28
29
The GNU MP Library is distributed in the hope that it will be useful, but
30
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32
for more details.
33
34
You should have received copies of the GNU General Public License and the
35
GNU Lesser General Public License along with the GNU MP Library.  If not,
36
see https://www.gnu.org/licenses/.  */
37
38
#include "gmp-impl.h"
39
40
#if TUNE_PROGRAM_BUILD || WANT_FAT_BINARY
41
#define MAYBE_range_basecase 1
42
#define MAYBE_range_toom22   1
43
#else
44
#define MAYBE_range_basecase                                           \
45
335k
  ((SQRLO_DC_THRESHOLD == 0 ? SQRLO_BASECASE_THRESHOLD : SQRLO_DC_THRESHOLD) < SQR_TOOM2_THRESHOLD*36/(36-11))
46
#define MAYBE_range_toom22                                             \
47
303k
  ((SQRLO_DC_THRESHOLD == 0 ? SQRLO_BASECASE_THRESHOLD : SQRLO_DC_THRESHOLD) < SQR_TOOM3_THRESHOLD*36/(36-11) )
48
#endif
49
50
/*  THINK: The DC strategy uses different constants in different Toom's
51
   ranges. Something smoother?
52
*/
53
54
/*
55
  Compute the least significant half of the product {xy,n}*{yp,n}, or
56
  formally {rp,n} = {xy,n}*{yp,n} Mod (B^n).
57
58
  Above the given threshold, the Divide and Conquer strategy is used.
59
  The operand is split in two, and a full square plus a mullo
60
  is used to obtain the final result. The more natural strategy is to
61
  split in two halves, but this is far from optimal when a
62
  sub-quadratic multiplication is used.
63
64
  Mulders suggests an unbalanced split in favour of the full product,
65
  split n = n1 + n2, where an = n1 <= n2 = (1-a)n; i.e. 0 < a <= 1/2.
66
67
  To compute the value of a, we assume that the cost of mullo for a
68
  given size ML(n) is a fraction of the cost of a full product with
69
  same size M(n), and the cost M(n)=n^e for some exponent 1 < e <= 2;
70
  then we can write:
71
72
  ML(n) = 2*ML(an) + M((1-a)n) => k*M(n) = 2*k*M(n)*a^e + M(n)*(1-a)^e
73
74
  Given a value for e, want to minimise the value of k, i.e. the
75
  function k=(1-a)^e/(1-2*a^e).
76
77
  With e=2, the exponent for schoolbook multiplication, the minimum is
78
  given by the values a=1-a=1/2.
79
80
  With e=log(3)/log(2), the exponent for Karatsuba (aka toom22),
81
  Mulders compute (1-a) = 0.694... and we approximate a with 11/36.
82
83
  Other possible approximations follow:
84
  e=log(5)/log(3) [Toom-3] -> a ~= 9/40
85
  e=log(7)/log(4) [Toom-4] -> a ~= 7/39
86
  e=log(11)/log(6) [Toom-6] -> a ~= 1/8
87
  e=log(15)/log(8) [Toom-8] -> a ~= 1/10
88
89
  The values above where obtained with the following trivial commands
90
  in the gp-pari shell:
91
92
fun(e,a)=(1-a)^e/(1-2*a^e)
93
mul(a,b,c)={local(m,x,p);if(b-c<1/10000,(b+c)/2,m=1;x=b;forstep(p=c,b,(b-c)/8,if(fun(a,p)<m,m=fun(a,p);x=p));mul(a,(b+x)/2,(c+x)/2))}
94
contfracpnqn(contfrac(mul(log(2*2-1)/log(2),1/2,0),5))
95
contfracpnqn(contfrac(mul(log(3*2-1)/log(3),1/2,0),5))
96
contfracpnqn(contfrac(mul(log(4*2-1)/log(4),1/2,0),5))
97
contfracpnqn(contfrac(mul(log(6*2-1)/log(6),1/2,0),3))
98
contfracpnqn(contfrac(mul(log(8*2-1)/log(8),1/2,0),3))
99
100
  ,
101
  |\
102
  | \
103
  +----,
104
  |    |
105
  |    |
106
  |    |\
107
  |    | \
108
  +----+--`
109
  ^ n2 ^n1^
110
111
  For an actual implementation, the assumption that M(n)=n^e is
112
  incorrect, as a consequence also the assumption that ML(n)=k*M(n)
113
  with a constant k is wrong.
114
115
  But theory suggest us two things:
116
  - the best the multiplication product is (lower e), the more k
117
    approaches 1, and a approaches 0.
118
119
  - A value for a smaller than optimal is probably less bad than a
120
    bigger one: e.g. let e=log(3)/log(2), a=0.3058_ the optimal
121
    value, and k(a)=0.808_ the mul/mullo speed ratio. We get
122
    k(a+1/6)=0.929_ but k(a-1/6)=0.865_.
123
*/
124
125
static mp_size_t
126
mpn_sqrlo_itch (mp_size_t n)
127
335k
{
128
335k
  return 2*n;
129
335k
}
130
131
/*
132
    mpn_dc_sqrlo requires a scratch space of 2*n limbs at tp.
133
    It accepts tp == rp.
134
*/
135
static void
136
mpn_dc_sqrlo (mp_ptr rp, mp_srcptr xp, mp_size_t n, mp_ptr tp)
137
167k
{
138
167k
  mp_size_t n2, n1;
139
167k
  ASSERT (n >= 2);
140
167k
  ASSERT (! MPN_OVERLAP_P (rp, n, xp, n));
141
167k
  ASSERT (MPN_SAME_OR_SEPARATE2_P(rp, n, tp, 2*n));
142
143
  /* Divide-and-conquer */
144
145
  /* We need fractional approximation of the value 0 < a <= 1/2
146
     giving the minimum in the function k=(1-a)^e/(1-2*a^e).
147
  */
148
167k
  if (MAYBE_range_basecase && BELOW_THRESHOLD (n, SQR_TOOM2_THRESHOLD*36/(36-11)))
149
16.3k
    n1 = n >> 1;
150
151k
  else if (MAYBE_range_toom22 && BELOW_THRESHOLD (n, SQR_TOOM3_THRESHOLD*36/(36-11)))
151
123k
    n1 = n * 11 / (size_t) 36;  /* n1 ~= n*(1-.694...) */
152
28.2k
  else if (BELOW_THRESHOLD (n, SQR_TOOM4_THRESHOLD*40/(40-9)))
153
28.2k
    n1 = n * 9 / (size_t) 40;  /* n1 ~= n*(1-.775...) */
154
0
  else if (BELOW_THRESHOLD (n, SQR_TOOM8_THRESHOLD*10/9))
155
0
    n1 = n * 7 / (size_t) 39; /* n1 ~= n*(1-.821...) */
156
  /* n1 = n * 4 / (size_t) 31;  // n1 ~= n*(1-.871...) [TOOM66] */
157
0
  else
158
0
    n1 = n / (size_t) 10;   /* n1 ~= n*(1-.899...) [TOOM88] */
159
160
167k
  n2 = n - n1;
161
162
  /* Split as x = x1 2^(n2 GMP_NUMB_BITS) + x0 */
163
164
  /* x0 ^ 2 */
165
167k
  mpn_sqr (tp, xp, n2);
166
167k
  MPN_COPY (rp, tp, n2);
167
168
  /* x1 * x0 * 2^(n2 GMP_NUMB_BITS) */
169
167k
  if (BELOW_THRESHOLD (n1, MULLO_BASECASE_THRESHOLD))
170
0
    mpn_mul_basecase (tp + n, xp + n2, n1, xp, n1);
171
167k
  else if (BELOW_THRESHOLD (n1, MULLO_DC_THRESHOLD))
172
167k
    mpn_mullo_basecase (tp + n, xp + n2, xp, n1);
173
0
  else
174
0
    mpn_mullo_n (tp + n, xp + n2, xp, n1);
175
  /* mpn_dc_mullo_n (tp + n, xp + n2, xp, n1, tp + n); */
176
#if HAVE_NATIVE_mpn_addlsh1_n
177
  mpn_addlsh1_n (rp + n2, tp + n2, tp + n, n1);
178
#else
179
167k
  mpn_lshift (rp + n2, tp + n, n1, 1);
180
167k
  mpn_add_n (rp + n2, rp + n2, tp + n2, n1);
181
167k
#endif
182
167k
}
183
184
/* Avoid zero allocations when MULLO_BASECASE_THRESHOLD is 0.  */
185
#define SQR_BASECASE_ALLOC \
186
 (SQRLO_BASECASE_THRESHOLD_LIMIT == 0 ? 1 : 2*SQRLO_BASECASE_THRESHOLD_LIMIT)
187
188
/* FIXME: This function should accept a temporary area; dc_sqrlo
189
   accepts a pointer tp, and handle the case tp == rp, do the same here.
190
*/
191
192
void
193
mpn_sqrlo (mp_ptr rp, mp_srcptr xp, mp_size_t n)
194
1.06M
{
195
1.06M
  ASSERT (n >= 1);
196
1.06M
  ASSERT (! MPN_OVERLAP_P (rp, n, xp, n));
197
198
1.06M
  if (BELOW_THRESHOLD (n, SQRLO_BASECASE_THRESHOLD))
199
0
    {
200
      /* FIXME: smarter criteria? */
201
0
#if HAVE_NATIVE_mpn_mullo_basecase || ! HAVE_NATIVE_mpn_sqr_basecase
202
      /* mullo computes as many products as sqr, but directly writes
203
   on the result area. */
204
0
      mpn_mullo_basecase (rp, xp, xp, n);
205
#else
206
      /* Allocate workspace of fixed size on stack: fast! */
207
      mp_limb_t tp[SQR_BASECASE_ALLOC];
208
      mpn_sqr_basecase (tp, xp, n);
209
      MPN_COPY (rp, tp, n);
210
#endif
211
0
    }
212
1.06M
  else if (BELOW_THRESHOLD (n, SQRLO_DC_THRESHOLD))
213
898k
    {
214
898k
      mpn_sqrlo_basecase (rp, xp, n);
215
898k
    }
216
167k
  else
217
167k
    {
218
167k
      mp_ptr tp;
219
167k
      TMP_DECL;
220
167k
      TMP_MARK;
221
167k
      tp = TMP_ALLOC_LIMBS (mpn_sqrlo_itch (n));
222
167k
      if (BELOW_THRESHOLD (n, SQRLO_SQR_THRESHOLD))
223
167k
  {
224
167k
    mpn_dc_sqrlo (rp, xp, n, tp);
225
167k
  }
226
0
      else
227
0
  {
228
    /* For really large operands, use plain mpn_mul_n but throw away upper n
229
       limbs of result.  */
230
0
#if !TUNE_PROGRAM_BUILD && (SQRLO_SQR_THRESHOLD > SQR_FFT_THRESHOLD)
231
0
    mpn_fft_mul (tp, xp, n, xp, n);
232
#else
233
    mpn_sqr (tp, xp, n);
234
#endif
235
0
    MPN_COPY (rp, tp, n);
236
0
  }
237
167k
      TMP_FREE;
238
167k
    }
239
1.06M
}