Coverage Report

Created: 2025-07-23 06:43

/src/gmp/mpn/tdiv_qr.c
Line
Count
Source (jump to first uncovered line)
1
/* mpn_tdiv_qr -- Divide the numerator (np,nn) by the denominator (dp,dn) and
2
   write the nn-dn+1 quotient limbs at qp and the dn remainder limbs at rp.  If
3
   qxn is non-zero, generate that many fraction limbs and append them after the
4
   other quotient limbs, and update the remainder accordingly.  The input
5
   operands are unaffected.
6
7
   Preconditions:
8
   1. The most significant limb of the divisor must be non-zero.
9
   2. nn >= dn, even if qxn is non-zero.  (??? relax this ???)
10
11
   The time complexity of this is O(qn*qn+M(dn,qn)), where M(m,n) is the time
12
   complexity of multiplication.
13
14
Copyright 1997, 2000-2002, 2005, 2009, 2015 Free Software Foundation, Inc.
15
16
This file is part of the GNU MP Library.
17
18
The GNU MP Library is free software; you can redistribute it and/or modify
19
it under the terms of either:
20
21
  * the GNU Lesser General Public License as published by the Free
22
    Software Foundation; either version 3 of the License, or (at your
23
    option) any later version.
24
25
or
26
27
  * the GNU General Public License as published by the Free Software
28
    Foundation; either version 2 of the License, or (at your option) any
29
    later version.
30
31
or both in parallel, as here.
32
33
The GNU MP Library is distributed in the hope that it will be useful, but
34
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
35
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
36
for more details.
37
38
You should have received copies of the GNU General Public License and the
39
GNU Lesser General Public License along with the GNU MP Library.  If not,
40
see https://www.gnu.org/licenses/.  */
41
42
#include "gmp-impl.h"
43
#include "longlong.h"
44
45
46
void
47
mpn_tdiv_qr (mp_ptr qp, mp_ptr rp, mp_size_t qxn,
48
       mp_srcptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn)
49
126k
{
50
126k
  ASSERT_ALWAYS (qxn == 0);
51
52
126k
  ASSERT (nn >= 0);
53
126k
  ASSERT (dn >= 0);
54
126k
  ASSERT (dn == 0 || dp[dn - 1] != 0);
55
126k
  ASSERT (! MPN_OVERLAP_P (qp, nn - dn + 1 + qxn, np, nn));
56
126k
  ASSERT (! MPN_OVERLAP_P (qp, nn - dn + 1 + qxn, dp, dn));
57
58
126k
  switch (dn)
59
126k
    {
60
0
    case 0:
61
0
      DIVIDE_BY_ZERO;
62
63
9.41k
    case 1:
64
9.41k
      {
65
9.41k
  rp[0] = mpn_divrem_1 (qp, (mp_size_t) 0, np, nn, dp[0]);
66
9.41k
  return;
67
0
      }
68
69
4.71k
    case 2:
70
4.71k
      {
71
4.71k
  mp_ptr n2p;
72
4.71k
  mp_limb_t qhl, cy;
73
4.71k
  TMP_DECL;
74
4.71k
  TMP_MARK;
75
4.71k
  if ((dp[1] & GMP_NUMB_HIGHBIT) == 0)
76
3.91k
    {
77
3.91k
      int cnt;
78
3.91k
      mp_limb_t d2p[2];
79
3.91k
      count_leading_zeros (cnt, dp[1]);
80
3.91k
      cnt -= GMP_NAIL_BITS;
81
3.91k
      d2p[1] = (dp[1] << cnt) | (dp[0] >> (GMP_NUMB_BITS - cnt));
82
3.91k
      d2p[0] = (dp[0] << cnt) & GMP_NUMB_MASK;
83
3.91k
      n2p = TMP_ALLOC_LIMBS (nn + 1);
84
3.91k
      cy = mpn_lshift (n2p, np, nn, cnt);
85
3.91k
      n2p[nn] = cy;
86
3.91k
      qhl = mpn_divrem_2 (qp, 0L, n2p, nn + (cy != 0), d2p);
87
3.91k
      if (cy == 0)
88
1.42k
        qp[nn - 2] = qhl; /* always store nn-2+1 quotient limbs */
89
3.91k
      rp[0] = (n2p[0] >> cnt)
90
3.91k
        | ((n2p[1] << (GMP_NUMB_BITS - cnt)) & GMP_NUMB_MASK);
91
3.91k
      rp[1] = (n2p[1] >> cnt);
92
3.91k
    }
93
800
  else
94
800
    {
95
800
      n2p = TMP_ALLOC_LIMBS (nn);
96
800
      MPN_COPY (n2p, np, nn);
97
800
      qhl = mpn_divrem_2 (qp, 0L, n2p, nn, dp);
98
800
      qp[nn - 2] = qhl; /* always store nn-2+1 quotient limbs */
99
800
      rp[0] = n2p[0];
100
800
      rp[1] = n2p[1];
101
800
    }
102
4.71k
  TMP_FREE;
103
4.71k
  return;
104
0
      }
105
106
112k
    default:
107
112k
      {
108
112k
  int adjust;
109
112k
  gmp_pi1_t dinv;
110
112k
  TMP_DECL;
111
112k
  TMP_MARK;
112
112k
  adjust = np[nn - 1] >= dp[dn - 1];  /* conservative tests for quotient size */
113
112k
  if (nn + adjust >= 2 * dn)
114
73.4k
    {
115
73.4k
      mp_ptr n2p, d2p;
116
73.4k
      mp_limb_t cy;
117
73.4k
      int cnt;
118
119
73.4k
      qp[nn - dn] = 0;        /* zero high quotient limb */
120
73.4k
      if ((dp[dn - 1] & GMP_NUMB_HIGHBIT) == 0) /* normalize divisor */
121
5.63k
        {
122
5.63k
    count_leading_zeros (cnt, dp[dn - 1]);
123
5.63k
    cnt -= GMP_NAIL_BITS;
124
5.63k
    d2p = TMP_ALLOC_LIMBS (dn);
125
5.63k
    mpn_lshift (d2p, dp, dn, cnt);
126
5.63k
    n2p = TMP_ALLOC_LIMBS (nn + 1);
127
5.63k
    cy = mpn_lshift (n2p, np, nn, cnt);
128
5.63k
    n2p[nn] = cy;
129
5.63k
    nn += adjust;
130
5.63k
        }
131
67.8k
      else
132
67.8k
        {
133
67.8k
    cnt = 0;
134
67.8k
    d2p = (mp_ptr) dp;
135
67.8k
    n2p = TMP_ALLOC_LIMBS (nn + 1);
136
67.8k
    MPN_COPY (n2p, np, nn);
137
67.8k
    n2p[nn] = 0;
138
67.8k
    nn += adjust;
139
67.8k
        }
140
141
73.4k
      invert_pi1 (dinv, d2p[dn - 1], d2p[dn - 2]);
142
73.4k
      if (BELOW_THRESHOLD (dn, DC_DIV_QR_THRESHOLD))
143
73.2k
        mpn_sbpi1_div_qr (qp, n2p, nn, d2p, dn, dinv.inv32);
144
252
      else if (BELOW_THRESHOLD (dn, MUPI_DIV_QR_THRESHOLD) ||   /* fast condition */
145
252
         BELOW_THRESHOLD (nn, 2 * MU_DIV_QR_THRESHOLD) || /* fast condition */
146
252
         (double) (2 * (MU_DIV_QR_THRESHOLD - MUPI_DIV_QR_THRESHOLD)) * dn /* slow... */
147
0
         + (double) MUPI_DIV_QR_THRESHOLD * nn > (double) dn * nn)    /* ...condition */
148
252
        mpn_dcpi1_div_qr (qp, n2p, nn, d2p, dn, &dinv);
149
0
      else
150
0
        {
151
0
    mp_size_t itch = mpn_mu_div_qr_itch (nn, dn, 0);
152
0
    mp_ptr scratch = TMP_ALLOC_LIMBS (itch);
153
0
    mpn_mu_div_qr (qp, rp, n2p, nn, d2p, dn, scratch);
154
0
    n2p = rp;
155
0
        }
156
157
73.4k
      if (cnt != 0)
158
5.63k
        mpn_rshift (rp, n2p, dn, cnt);
159
67.8k
      else
160
67.8k
        MPN_COPY (rp, n2p, dn);
161
73.4k
      TMP_FREE;
162
73.4k
      return;
163
73.4k
    }
164
165
  /* When we come here, the numerator/partial remainder is less
166
     than twice the size of the denominator.  */
167
168
39.2k
    {
169
      /* Problem:
170
171
         Divide a numerator N with nn limbs by a denominator D with dn
172
         limbs forming a quotient of qn=nn-dn+1 limbs.  When qn is small
173
         compared to dn, conventional division algorithms perform poorly.
174
         We want an algorithm that has an expected running time that is
175
         dependent only on qn.
176
177
         Algorithm (very informally stated):
178
179
         1) Divide the 2 x qn most significant limbs from the numerator
180
      by the qn most significant limbs from the denominator.  Call
181
      the result qest.  This is either the correct quotient, but
182
      might be 1 or 2 too large.  Compute the remainder from the
183
      division.  (This step is implemented by an mpn_divrem call.)
184
185
         2) Is the most significant limb from the remainder < p, where p
186
      is the product of the most significant limb from the quotient
187
      and the next(d)?  (Next(d) denotes the next ignored limb from
188
      the denominator.)  If it is, decrement qest, and adjust the
189
      remainder accordingly.
190
191
         3) Is the remainder >= qest?  If it is, qest is the desired
192
      quotient.  The algorithm terminates.
193
194
         4) Subtract qest x next(d) from the remainder.  If there is
195
      borrow out, decrement qest, and adjust the remainder
196
      accordingly.
197
198
         5) Skip one word from the denominator (i.e., let next(d) denote
199
      the next less significant limb.  */
200
201
39.2k
      mp_size_t qn;
202
39.2k
      mp_ptr n2p, d2p;
203
39.2k
      mp_ptr tp;
204
39.2k
      mp_limb_t cy;
205
39.2k
      mp_size_t in, rn;
206
39.2k
      mp_limb_t quotient_too_large;
207
39.2k
      unsigned int cnt;
208
209
39.2k
      qn = nn - dn;
210
39.2k
      qp[qn] = 0;       /* zero high quotient limb */
211
39.2k
      qn += adjust;     /* qn cannot become bigger */
212
213
39.2k
      if (qn == 0)
214
137
        {
215
137
    MPN_COPY (rp, np, dn);
216
137
    TMP_FREE;
217
137
    return;
218
137
        }
219
220
39.0k
      in = dn - qn;   /* (at least partially) ignored # of limbs in ops */
221
      /* Normalize denominator by shifting it to the left such that its
222
         most significant bit is set.  Then shift the numerator the same
223
         amount, to mathematically preserve quotient.  */
224
39.0k
      if ((dp[dn - 1] & GMP_NUMB_HIGHBIT) == 0)
225
25.8k
        {
226
25.8k
    count_leading_zeros (cnt, dp[dn - 1]);
227
25.8k
    cnt -= GMP_NAIL_BITS;
228
229
25.8k
    d2p = TMP_ALLOC_LIMBS (qn);
230
25.8k
    mpn_lshift (d2p, dp + in, qn, cnt);
231
25.8k
    d2p[0] |= dp[in - 1] >> (GMP_NUMB_BITS - cnt);
232
233
25.8k
    n2p = TMP_ALLOC_LIMBS (2 * qn + 1);
234
25.8k
    cy = mpn_lshift (n2p, np + nn - 2 * qn, 2 * qn, cnt);
235
25.8k
    if (adjust)
236
14.6k
      {
237
14.6k
        n2p[2 * qn] = cy;
238
14.6k
        n2p++;
239
14.6k
      }
240
11.2k
    else
241
11.2k
      {
242
11.2k
        n2p[0] |= np[nn - 2 * qn - 1] >> (GMP_NUMB_BITS - cnt);
243
11.2k
      }
244
25.8k
        }
245
13.1k
      else
246
13.1k
        {
247
13.1k
    cnt = 0;
248
13.1k
    d2p = (mp_ptr) dp + in;
249
250
13.1k
    n2p = TMP_ALLOC_LIMBS (2 * qn + 1);
251
13.1k
    MPN_COPY (n2p, np + nn - 2 * qn, 2 * qn);
252
13.1k
    if (adjust)
253
987
      {
254
987
        n2p[2 * qn] = 0;
255
987
        n2p++;
256
987
      }
257
13.1k
        }
258
259
      /* Get an approximate quotient using the extracted operands.  */
260
39.0k
      if (qn == 1)
261
9.34k
        {
262
9.34k
    mp_limb_t q0, r0;
263
9.34k
    udiv_qrnnd (q0, r0, n2p[1], n2p[0] << GMP_NAIL_BITS, d2p[0] << GMP_NAIL_BITS);
264
9.34k
    n2p[0] = r0 >> GMP_NAIL_BITS;
265
9.34k
    qp[0] = q0;
266
9.34k
        }
267
29.7k
      else if (qn == 2)
268
9.02k
        mpn_divrem_2 (qp, 0L, n2p, 4L, d2p); /* FIXME: obsolete function */
269
20.6k
      else
270
20.6k
        {
271
20.6k
    invert_pi1 (dinv, d2p[qn - 1], d2p[qn - 2]);
272
20.6k
    if (BELOW_THRESHOLD (qn, DC_DIV_QR_THRESHOLD))
273
19.5k
      mpn_sbpi1_div_qr (qp, n2p, 2 * qn, d2p, qn, dinv.inv32);
274
1.15k
    else if (BELOW_THRESHOLD (qn, MU_DIV_QR_THRESHOLD))
275
1.15k
      mpn_dcpi1_div_qr (qp, n2p, 2 * qn, d2p, qn, &dinv);
276
0
    else
277
0
      {
278
0
        mp_size_t itch = mpn_mu_div_qr_itch (2 * qn, qn, 0);
279
0
        mp_ptr scratch = TMP_ALLOC_LIMBS (itch);
280
0
        mp_ptr r2p = rp;
281
0
        if (np == r2p) /* If N and R share space, put ... */
282
0
          r2p += nn - qn; /* intermediate remainder at N's upper end. */
283
0
        mpn_mu_div_qr (qp, r2p, n2p, 2 * qn, d2p, qn, scratch);
284
0
        MPN_COPY (n2p, r2p, qn);
285
0
      }
286
20.6k
        }
287
288
39.0k
      rn = qn;
289
      /* Multiply the first ignored divisor limb by the most significant
290
         quotient limb.  If that product is > the partial remainder's
291
         most significant limb, we know the quotient is too large.  This
292
         test quickly catches most cases where the quotient is too large;
293
         it catches all cases where the quotient is 2 too large.  */
294
39.0k
      {
295
39.0k
        mp_limb_t dl, x;
296
39.0k
        mp_limb_t h, dummy;
297
298
39.0k
        if (in - 2 < 0)
299
2.09k
    dl = 0;
300
36.9k
        else
301
36.9k
    dl = dp[in - 2];
302
303
39.0k
#if GMP_NAIL_BITS == 0
304
39.0k
        x = (dp[in - 1] << cnt) | ((dl >> 1) >> ((~cnt) % GMP_LIMB_BITS));
305
#else
306
        x = (dp[in - 1] << cnt) & GMP_NUMB_MASK;
307
        if (cnt != 0)
308
    x |= dl >> (GMP_NUMB_BITS - cnt);
309
#endif
310
39.0k
        umul_ppmm (h, dummy, x, qp[qn - 1] << GMP_NAIL_BITS);
311
312
39.0k
        if (n2p[qn - 1] < h)
313
2.59k
    {
314
2.59k
      mp_limb_t cy;
315
316
2.59k
      mpn_decr_u (qp, (mp_limb_t) 1);
317
2.59k
      cy = mpn_add_n (n2p, n2p, d2p, qn);
318
2.59k
      if (cy)
319
1.21k
        {
320
          /* The partial remainder is safely large.  */
321
1.21k
          n2p[qn] = cy;
322
1.21k
          ++rn;
323
1.21k
        }
324
2.59k
    }
325
39.0k
      }
326
327
39.0k
      quotient_too_large = 0;
328
39.0k
      if (cnt != 0)
329
25.8k
        {
330
25.8k
    mp_limb_t cy1, cy2;
331
332
    /* Append partially used numerator limb to partial remainder.  */
333
25.8k
    cy1 = mpn_lshift (n2p, n2p, rn, GMP_NUMB_BITS - cnt);
334
25.8k
    n2p[0] |= np[in - 1] & (GMP_NUMB_MASK >> cnt);
335
336
    /* Update partial remainder with partially used divisor limb.  */
337
25.8k
    cy2 = mpn_submul_1 (n2p, qp, qn, dp[in - 1] & (GMP_NUMB_MASK >> cnt));
338
25.8k
    if (qn != rn)
339
680
      {
340
680
        ASSERT_ALWAYS (n2p[qn] >= cy2);
341
680
        n2p[qn] -= cy2;
342
680
      }
343
25.2k
    else
344
25.2k
      {
345
25.2k
        n2p[qn] = cy1 - cy2; /* & GMP_NUMB_MASK; */
346
347
25.2k
        quotient_too_large = (cy1 < cy2);
348
25.2k
        ++rn;
349
25.2k
      }
350
25.8k
    --in;
351
25.8k
        }
352
      /* True: partial remainder now is neutral, i.e., it is not shifted up.  */
353
354
39.0k
      tp = TMP_ALLOC_LIMBS (dn);
355
356
39.0k
      if (in < qn)
357
12.3k
        {
358
12.3k
    if (in == 0)
359
1.76k
      {
360
1.76k
        MPN_COPY (rp, n2p, rn);
361
1.76k
        ASSERT_ALWAYS (rn == dn);
362
1.76k
        goto foo;
363
1.76k
      }
364
10.5k
    mpn_mul (tp, qp, qn, dp, in);
365
10.5k
        }
366
26.7k
      else
367
26.7k
        mpn_mul (tp, dp, in, qp, qn);
368
369
37.3k
      cy = mpn_sub (n2p, n2p, rn, tp + in, qn);
370
37.3k
      MPN_COPY (rp + in, n2p, dn - in);
371
37.3k
      quotient_too_large |= cy;
372
37.3k
      cy = mpn_sub_n (rp, np, tp, in);
373
37.3k
      cy = mpn_sub_1 (rp + in, rp + in, rn, cy);
374
37.3k
      quotient_too_large |= cy;
375
39.0k
    foo:
376
39.0k
      if (quotient_too_large)
377
1.51k
        {
378
1.51k
    mpn_decr_u (qp, (mp_limb_t) 1);
379
1.51k
    mpn_add_n (rp, rp, dp, dn);
380
1.51k
        }
381
39.0k
    }
382
39.0k
  TMP_FREE;
383
39.0k
  return;
384
37.3k
      }
385
126k
    }
386
126k
}