Coverage Report

Created: 2025-07-23 06:43

/src/nettle/rsa-sign-tr.c
Line
Count
Source (jump to first uncovered line)
1
/* rsa-sign-tr.c
2
3
   Creating RSA signatures, with some additional checks.
4
5
   Copyright (C) 2001, 2015 Niels Möller
6
   Copyright (C) 2012 Nikos Mavrogiannopoulos
7
   Copyright (C) 2018 Red Hat Inc.
8
9
   This file is part of GNU Nettle.
10
11
   GNU Nettle is free software: you can redistribute it and/or
12
   modify it under the terms of either:
13
14
     * the GNU Lesser General Public License as published by the Free
15
       Software Foundation; either version 3 of the License, or (at your
16
       option) any later version.
17
18
   or
19
20
     * the GNU General Public License as published by the Free
21
       Software Foundation; either version 2 of the License, or (at your
22
       option) any later version.
23
24
   or both in parallel, as here.
25
26
   GNU Nettle is distributed in the hope that it will be useful,
27
   but WITHOUT ANY WARRANTY; without even the implied warranty of
28
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
29
   General Public License for more details.
30
31
   You should have received copies of the GNU General Public License and
32
   the GNU Lesser General Public License along with this program.  If
33
   not, see http://www.gnu.org/licenses/.
34
*/
35
36
#if HAVE_CONFIG_H
37
# include "config.h"
38
#endif
39
40
#include <assert.h>
41
42
#include "gmp-glue.h"
43
#include "rsa.h"
44
#include "rsa-internal.h"
45
46
104k
#define MAX(a, b) ((a) > (b) ? (a) : (b))
47
48
#if NETTLE_USE_MINI_GMP
49
/* Blinds m, by computing c = m r^e (mod n), for a random r. Also
50
   returns the inverse (ri), for use by rsa_unblind. */
51
static void
52
rsa_blind (const struct rsa_public_key *pub,
53
     void *random_ctx, nettle_random_func *random,
54
     mpz_t c, mpz_t ri, const mpz_t m)
55
{
56
  mpz_t r;
57
58
  mpz_init(r);
59
60
  /* c = m*(r^e)
61
   * ri = r^(-1)
62
   */
63
  do
64
    {
65
      nettle_mpz_random(r, random_ctx, random, pub->n);
66
      /* invert r */
67
    }
68
  while (!mpz_invert (ri, r, pub->n));
69
70
  /* c = c*(r^e) mod n */
71
  mpz_powm_sec(r, r, pub->e, pub->n);
72
  mpz_mul(c, m, r);
73
  mpz_fdiv_r(c, c, pub->n);
74
75
  mpz_clear(r);
76
}
77
78
/* m = c ri mod n */
79
static void
80
rsa_unblind (const struct rsa_public_key *pub,
81
       mpz_t m, const mpz_t ri, const mpz_t c)
82
{
83
  mpz_mul(m, c, ri);
84
  mpz_fdiv_r(m, m, pub->n);
85
}
86
87
/* Checks for any errors done in the RSA computation. That avoids
88
 * attacks which rely on faults on hardware, or even software MPI
89
 * implementation. */
90
int
91
rsa_compute_root_tr(const struct rsa_public_key *pub,
92
        const struct rsa_private_key *key,
93
        void *random_ctx, nettle_random_func *random,
94
        mpz_t x, const mpz_t m)
95
{
96
  int res;
97
  mpz_t t, mb, xb, ri;
98
99
  /* mpz_powm_sec handles only odd moduli. If p, q or n is even, the
100
     key is invalid and rejected by rsa_private_key_prepare. However,
101
     some applications, notably gnutls, don't use this function, and
102
     we don't want an invalid key to lead to a crash down inside
103
     mpz_powm_sec. So do an additional check here. */
104
  if (mpz_even_p (pub->n) || mpz_even_p (key->p) || mpz_even_p (key->q))
105
    return 0;
106
107
  mpz_init (mb);
108
  mpz_init (xb);
109
  mpz_init (ri);
110
  mpz_init (t);
111
112
  rsa_blind (pub, random_ctx, random, mb, ri, m);
113
114
  rsa_compute_root (key, xb, mb);
115
116
  mpz_powm_sec(t, xb, pub->e, pub->n);
117
  res = (mpz_cmp(mb, t) == 0);
118
119
  if (res)
120
    rsa_unblind (pub, x, ri, xb);
121
122
  mpz_clear (mb);
123
  mpz_clear (xb);
124
  mpz_clear (ri);
125
  mpz_clear (t);
126
127
  return res;
128
}
129
130
int
131
_rsa_sec_compute_root_tr(const struct rsa_public_key *pub,
132
       const struct rsa_private_key *key,
133
       void *random_ctx, nettle_random_func *random,
134
       mp_limb_t *x, const mp_limb_t *m)
135
{
136
  mp_size_t nn;
137
  mpz_t mz;
138
  mpz_t xz;
139
  int res;
140
141
  mpz_init(xz);
142
143
  nn = mpz_size (pub->n);
144
145
  res = rsa_compute_root_tr(pub, key, random_ctx, random, xz,
146
          mpz_roinit_n(mz, m, nn));
147
148
  if (res)
149
    mpz_limbs_copy(x, xz, nn);
150
151
  mpz_clear(xz);
152
  return res;
153
}
154
#else
155
/* Blinds m, by computing c = m r^e (mod n), for a random r. Also
156
   returns the inverse (ri), for use by rsa_unblind. Must have c != m,
157
   no in-place operation.*/
158
static void
159
rsa_sec_blind (const struct rsa_public_key *pub,
160
               void *random_ctx, nettle_random_func *random,
161
               mp_limb_t *c, mp_limb_t *ri, const mp_limb_t *m)
162
26.1k
{
163
26.1k
  const mp_limb_t *ep = mpz_limbs_read (pub->e);
164
26.1k
  const mp_limb_t *np = mpz_limbs_read (pub->n);
165
26.1k
  mp_bitcnt_t ebn = mpz_sizeinbase (pub->e, 2);
166
26.1k
  mp_size_t nn = mpz_size (pub->n);
167
26.1k
  size_t itch;
168
26.1k
  size_t i2;
169
26.1k
  mp_limb_t *scratch;
170
26.1k
  TMP_GMP_DECL (tp, mp_limb_t);
171
26.1k
  TMP_GMP_DECL (rp, mp_limb_t);
172
26.1k
  TMP_GMP_DECL (r, uint8_t);
173
174
26.1k
  TMP_GMP_ALLOC (rp, nn);
175
26.1k
  TMP_GMP_ALLOC (r, nn * sizeof(mp_limb_t));
176
177
  /* c = m*(r^e) mod n */
178
26.1k
  itch = mpn_sec_powm_itch(nn, ebn, nn);
179
26.1k
  i2 = mpn_sec_mul_itch(nn, nn);
180
26.1k
  itch = MAX(itch, i2);
181
26.1k
  i2 = mpn_sec_div_r_itch(2*nn, nn);
182
26.1k
  itch = MAX(itch, i2);
183
26.1k
  i2 = mpn_sec_invert_itch(nn);
184
26.1k
  itch = MAX(itch, i2);
185
186
26.1k
  TMP_GMP_ALLOC (tp, 2*nn  + itch);
187
26.1k
  scratch = tp + 2*nn;
188
189
  /* ri = r^(-1) */
190
26.1k
  do
191
26.1k
    {
192
26.1k
      random(random_ctx, nn * sizeof(mp_limb_t), (uint8_t *)r);
193
26.1k
      mpn_set_base256(rp, nn, r, nn * sizeof(mp_limb_t));
194
26.1k
      mpn_copyi(tp, rp, nn);
195
      /* invert r */
196
26.1k
    }
197
26.1k
  while (!mpn_sec_invert (ri, tp, np, nn, 2 * nn * GMP_NUMB_BITS, scratch));
198
199
26.1k
  mpn_sec_powm (c, rp, nn, ep, ebn, np, nn, scratch);
200
26.1k
  mpn_sec_mul (tp, c, nn, m, nn, scratch);
201
26.1k
  mpn_sec_div_r (tp, 2*nn, np, nn, scratch);
202
26.1k
  mpn_copyi(c, tp, nn);
203
204
26.1k
  TMP_GMP_FREE (r);
205
26.1k
  TMP_GMP_FREE (rp);
206
26.1k
  TMP_GMP_FREE (tp);
207
26.1k
}
208
209
/* m = c ri mod n. Allows x == c. */
210
static void
211
rsa_sec_unblind (const struct rsa_public_key *pub,
212
                 mp_limb_t *x, mp_limb_t *ri, const mp_limb_t *c)
213
26.1k
{
214
26.1k
  const mp_limb_t *np = mpz_limbs_read (pub->n);
215
26.1k
  mp_size_t nn = mpz_size (pub->n);
216
217
26.1k
  size_t itch;
218
26.1k
  size_t i2;
219
26.1k
  mp_limb_t *scratch;
220
26.1k
  TMP_GMP_DECL(tp, mp_limb_t);
221
222
26.1k
  itch = mpn_sec_mul_itch(nn, nn);
223
26.1k
  i2 = mpn_sec_div_r_itch(nn + nn, nn);
224
26.1k
  itch = MAX(itch, i2);
225
226
26.1k
  TMP_GMP_ALLOC (tp, nn + nn + itch);
227
26.1k
  scratch = tp + nn + nn;
228
229
26.1k
  mpn_sec_mul (tp, c, nn, ri, nn, scratch);
230
26.1k
  mpn_sec_div_r (tp, nn + nn, np, nn, scratch);
231
26.1k
  mpn_copyi(x, tp, nn);
232
233
26.1k
  TMP_GMP_FREE (tp);
234
26.1k
}
235
236
static int
237
sec_equal(const mp_limb_t *a, const mp_limb_t *b, size_t limbs)
238
26.1k
{
239
26.1k
  volatile mp_limb_t z = 0;
240
26.1k
  size_t i;
241
242
1.07M
  for (i = 0; i < limbs; i++)
243
1.04M
    {
244
1.04M
      z |= (a[i] ^ b[i]);
245
1.04M
    }
246
247
26.1k
  return z == 0;
248
26.1k
}
249
250
static int
251
rsa_sec_check_root(const struct rsa_public_key *pub,
252
                   const mp_limb_t *x, const mp_limb_t *m)
253
26.1k
{
254
26.1k
  mp_size_t nn = mpz_size (pub->n);
255
26.1k
  mp_size_t ebn = mpz_sizeinbase (pub->e, 2);
256
26.1k
  const mp_limb_t *np = mpz_limbs_read (pub->n);
257
26.1k
  const mp_limb_t *ep = mpz_limbs_read (pub->e);
258
26.1k
  int ret;
259
260
26.1k
  mp_size_t itch;
261
262
26.1k
  mp_limb_t *scratch;
263
26.1k
  TMP_GMP_DECL(tp, mp_limb_t);
264
265
26.1k
  itch = mpn_sec_powm_itch (nn, ebn, nn);
266
26.1k
  TMP_GMP_ALLOC (tp, nn + itch);
267
26.1k
  scratch = tp + nn;
268
269
26.1k
  mpn_sec_powm(tp, x, nn, ep, ebn, np, nn, scratch);
270
26.1k
  ret = sec_equal(tp, m, nn);
271
272
26.1k
  TMP_GMP_FREE (tp);
273
26.1k
  return ret;
274
26.1k
}
275
276
static void
277
cnd_mpn_zero (int cnd, volatile mp_ptr rp, mp_size_t n)
278
26.1k
{
279
26.1k
  volatile mp_limb_t c;
280
26.1k
  volatile mp_limb_t mask = (mp_limb_t) cnd - 1;
281
282
1.07M
  while (--n >= 0)
283
1.04M
    {
284
1.04M
      c = rp[n];
285
1.04M
      c &= mask;
286
1.04M
      rp[n] = c;
287
1.04M
    }
288
26.1k
}
289
290
/* Checks for any errors done in the RSA computation. That avoids
291
 * attacks which rely on faults on hardware, or even software MPI
292
 * implementation.
293
 * This version is side-channel silent even in case of error,
294
 * the destination buffer is always overwritten */
295
int
296
_rsa_sec_compute_root_tr(const struct rsa_public_key *pub,
297
       const struct rsa_private_key *key,
298
       void *random_ctx, nettle_random_func *random,
299
       mp_limb_t *x, const mp_limb_t *m)
300
26.1k
{
301
26.1k
  TMP_GMP_DECL (c, mp_limb_t);
302
26.1k
  TMP_GMP_DECL (ri, mp_limb_t);
303
26.1k
  TMP_GMP_DECL (scratch, mp_limb_t);
304
26.1k
  size_t key_limb_size;
305
26.1k
  int ret;
306
307
26.1k
  key_limb_size = mpz_size(pub->n);
308
309
  /* mpz_powm_sec handles only odd moduli. If p, q or n is even, the
310
     key is invalid and rejected by rsa_private_key_prepare. However,
311
     some applications, notably gnutls, don't use this function, and
312
     we don't want an invalid key to lead to a crash down inside
313
     mpz_powm_sec. So do an additional check here. */
314
26.1k
  if (mpz_even_p (pub->n) || mpz_even_p (key->p) || mpz_even_p (key->q))
315
0
    {
316
0
      mpn_zero(x, key_limb_size);
317
0
      return 0;
318
0
    }
319
320
26.1k
  assert(mpz_size(pub->n) == key_limb_size);
321
322
26.1k
  TMP_GMP_ALLOC (c, key_limb_size);
323
26.1k
  TMP_GMP_ALLOC (ri, key_limb_size);
324
26.1k
  TMP_GMP_ALLOC (scratch, _rsa_sec_compute_root_itch(key));
325
326
26.1k
  rsa_sec_blind (pub, random_ctx, random, c, ri, m);
327
328
26.1k
  _rsa_sec_compute_root(key, x, c, scratch);
329
330
26.1k
  ret = rsa_sec_check_root(pub, x, c);
331
332
26.1k
  rsa_sec_unblind(pub, x, ri, x);
333
334
26.1k
  cnd_mpn_zero(1 - ret, x, key_limb_size);
335
336
26.1k
  TMP_GMP_FREE (scratch);
337
26.1k
  TMP_GMP_FREE (ri);
338
26.1k
  TMP_GMP_FREE (c);
339
26.1k
  return ret;
340
26.1k
}
341
342
/* Checks for any errors done in the RSA computation. That avoids
343
 * attacks which rely on faults on hardware, or even software MPI
344
 * implementation.
345
 * This version is maintained for API compatibility reasons. It
346
 * is not completely side-channel silent. There are conditionals
347
 * in buffer copying both in case of success or error.
348
 */
349
int
350
rsa_compute_root_tr(const struct rsa_public_key *pub,
351
        const struct rsa_private_key *key,
352
        void *random_ctx, nettle_random_func *random,
353
        mpz_t x, const mpz_t m)
354
26.0k
{
355
26.0k
  TMP_GMP_DECL (l, mp_limb_t);
356
26.0k
  mp_size_t nn = mpz_size(pub->n);
357
26.0k
  int res;
358
359
26.0k
  TMP_GMP_ALLOC (l, nn);
360
26.0k
  mpz_limbs_copy(l, m, nn);
361
362
26.0k
  res = _rsa_sec_compute_root_tr (pub, key, random_ctx, random, l, l);
363
26.0k
  if (res) {
364
26.0k
    mp_limb_t *xp = mpz_limbs_write (x, nn);
365
26.0k
    mpn_copyi (xp, l, nn);
366
26.0k
    mpz_limbs_finish (x, nn);
367
26.0k
  }
368
369
26.0k
  TMP_GMP_FREE (l);
370
26.0k
  return res;
371
26.0k
}
372
#endif