Coverage Report

Created: 2025-11-16 06:46

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/gmp/mpn/divrem_1.c
Line
Count
Source
1
/* mpn_divrem_1 -- mpn by limb division.
2
3
Copyright 1991, 1993, 1994, 1996, 1998-2000, 2002, 2003 Free Software
4
Foundation, Inc.
5
6
This file is part of the GNU MP Library.
7
8
The GNU MP Library is free software; you can redistribute it and/or modify
9
it under the terms of either:
10
11
  * the GNU Lesser General Public License as published by the Free
12
    Software Foundation; either version 3 of the License, or (at your
13
    option) any later version.
14
15
or
16
17
  * the GNU General Public License as published by the Free Software
18
    Foundation; either version 2 of the License, or (at your option) any
19
    later version.
20
21
or both in parallel, as here.
22
23
The GNU MP Library is distributed in the hope that it will be useful, but
24
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
25
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
26
for more details.
27
28
You should have received copies of the GNU General Public License and the
29
GNU Lesser General Public License along with the GNU MP Library.  If not,
30
see https://www.gnu.org/licenses/.  */
31
32
#include "gmp-impl.h"
33
#include "longlong.h"
34
35
36
/* The size where udiv_qrnnd_preinv should be used rather than udiv_qrnnd,
37
   meaning the quotient size where that should happen, the quotient size
38
   being how many udiv divisions will be done.
39
40
   The default is to use preinv always, CPUs where this doesn't suit have
41
   tuned thresholds.  Note in particular that preinv should certainly be
42
   used if that's the only division available (USE_PREINV_ALWAYS).  */
43
44
#ifndef DIVREM_1_NORM_THRESHOLD
45
#define DIVREM_1_NORM_THRESHOLD  0
46
#endif
47
#ifndef DIVREM_1_UNNORM_THRESHOLD
48
#define DIVREM_1_UNNORM_THRESHOLD  0
49
#endif
50
51
52
53
/* If the cpu only has multiply-by-inverse division (eg. alpha), then NORM
54
   and UNNORM thresholds are 0 and only the inversion code is included.
55
56
   If multiply-by-inverse is never viable, then NORM and UNNORM thresholds
57
   will be MP_SIZE_T_MAX and only the plain division code is included.
58
59
   Otherwise mul-by-inverse is better than plain division above some
60
   threshold, and best results are obtained by having code for both present.
61
62
   The main reason for separating the norm and unnorm cases is that not all
63
   CPUs give zero for "n0 >> GMP_LIMB_BITS" which would arise in the unnorm
64
   code used on an already normalized divisor.
65
66
   If UDIV_NEEDS_NORMALIZATION is false then plain division uses the same
67
   non-shifting code for both the norm and unnorm cases, though with
68
   different criteria for skipping a division, and with different thresholds
69
   of course.  And in fact if inversion is never viable, then that simple
70
   non-shifting division would be all that's left.
71
72
   The NORM and UNNORM thresholds might not differ much, but if there's
73
   going to be separate code for norm and unnorm then it makes sense to have
74
   separate thresholds.  One thing that's possible is that the
75
   mul-by-inverse might be better only for normalized divisors, due to that
76
   case not needing variable bit shifts.
77
78
   Notice that the thresholds are tested after the decision to possibly skip
79
   one divide step, so they're based on the actual number of divisions done.
80
81
   For the unnorm case, it would be possible to call mpn_lshift to adjust
82
   the dividend all in one go (into the quotient space say), rather than
83
   limb-by-limb in the loop.  This might help if mpn_lshift is a lot faster
84
   than what the compiler can generate for EXTRACT.  But this is left to CPU
85
   specific implementations to consider, especially since EXTRACT isn't on
86
   the dependent chain.  */
87
88
mp_limb_t
89
mpn_divrem_1 (mp_ptr qp, mp_size_t qxn,
90
        mp_srcptr up, mp_size_t un, mp_limb_t d)
91
9.50k
{
92
9.50k
  mp_size_t  n;
93
9.50k
  mp_size_t  i;
94
9.50k
  mp_limb_t  n1, n0;
95
9.50k
  mp_limb_t  r = 0;
96
97
9.50k
  ASSERT (qxn >= 0);
98
9.50k
  ASSERT (un >= 0);
99
9.50k
  ASSERT (d != 0);
100
  /* FIXME: What's the correct overlap rule when qxn!=0? */
101
9.50k
  ASSERT (MPN_SAME_OR_SEPARATE_P (qp+qxn, up, un));
102
103
9.50k
  n = un + qxn;
104
9.50k
  if (n == 0)
105
0
    return 0;
106
107
9.50k
  d <<= GMP_NAIL_BITS;
108
109
9.50k
  qp += (n - 1);   /* Make qp point at most significant quotient limb */
110
111
9.50k
  if ((d & GMP_LIMB_HIGHBIT) != 0)
112
2.66k
    {
113
2.66k
      if (un != 0)
114
2.66k
  {
115
    /* High quotient limb is 0 or 1, skip a divide step. */
116
2.66k
    mp_limb_t q;
117
2.66k
    r = up[un - 1] << GMP_NAIL_BITS;
118
2.66k
    q = (r >= d);
119
2.66k
    *qp-- = q;
120
2.66k
    r -= (d & -q);
121
2.66k
    r >>= GMP_NAIL_BITS;
122
2.66k
    n--;
123
2.66k
    un--;
124
2.66k
  }
125
126
2.66k
      if (BELOW_THRESHOLD (n, DIVREM_1_NORM_THRESHOLD))
127
0
  {
128
0
  plain:
129
0
    for (i = un - 1; i >= 0; i--)
130
0
      {
131
0
        n0 = up[i] << GMP_NAIL_BITS;
132
0
        udiv_qrnnd (*qp, r, r, n0, d);
133
0
        r >>= GMP_NAIL_BITS;
134
0
        qp--;
135
0
      }
136
0
    for (i = qxn - 1; i >= 0; i--)
137
0
      {
138
0
        udiv_qrnnd (*qp, r, r, CNST_LIMB(0), d);
139
0
        r >>= GMP_NAIL_BITS;
140
0
        qp--;
141
0
      }
142
0
    return r;
143
0
  }
144
2.66k
      else
145
2.66k
  {
146
    /* Multiply-by-inverse, divisor already normalized. */
147
2.66k
    mp_limb_t dinv;
148
2.66k
    invert_limb (dinv, d);
149
150
20.9k
    for (i = un - 1; i >= 0; i--)
151
18.2k
      {
152
18.2k
        n0 = up[i] << GMP_NAIL_BITS;
153
18.2k
        udiv_qrnnd_preinv (*qp, r, r, n0, d, dinv);
154
18.2k
        r >>= GMP_NAIL_BITS;
155
18.2k
        qp--;
156
18.2k
      }
157
2.66k
    for (i = qxn - 1; i >= 0; i--)
158
0
      {
159
0
        udiv_qrnnd_preinv (*qp, r, r, CNST_LIMB(0), d, dinv);
160
0
        r >>= GMP_NAIL_BITS;
161
0
        qp--;
162
0
      }
163
2.66k
    return r;
164
2.66k
  }
165
2.66k
    }
166
6.83k
  else
167
6.83k
    {
168
      /* Most significant bit of divisor == 0.  */
169
6.83k
      int cnt;
170
171
      /* Skip a division if high < divisor (high quotient 0).  Testing here
172
   before normalizing will still skip as often as possible.  */
173
6.83k
      if (un != 0)
174
6.83k
  {
175
6.83k
    n1 = up[un - 1] << GMP_NAIL_BITS;
176
6.83k
    if (n1 < d)
177
3.06k
      {
178
3.06k
        r = n1 >> GMP_NAIL_BITS;
179
3.06k
        *qp-- = 0;
180
3.06k
        n--;
181
3.06k
        if (n == 0)
182
617
    return r;
183
2.44k
        un--;
184
2.44k
      }
185
6.83k
  }
186
187
6.22k
      if (! UDIV_NEEDS_NORMALIZATION
188
0
    && BELOW_THRESHOLD (n, DIVREM_1_UNNORM_THRESHOLD))
189
0
  goto plain;
190
191
6.22k
      count_leading_zeros (cnt, d);
192
6.22k
      d <<= cnt;
193
6.22k
      r <<= cnt;
194
195
6.22k
      if (UDIV_NEEDS_NORMALIZATION
196
0
    && BELOW_THRESHOLD (n, DIVREM_1_UNNORM_THRESHOLD))
197
0
  {
198
0
    mp_limb_t nshift;
199
0
    if (un != 0)
200
0
      {
201
0
        n1 = up[un - 1] << GMP_NAIL_BITS;
202
0
        r |= (n1 >> (GMP_LIMB_BITS - cnt));
203
0
        for (i = un - 2; i >= 0; i--)
204
0
    {
205
0
      n0 = up[i] << GMP_NAIL_BITS;
206
0
      nshift = (n1 << cnt) | (n0 >> (GMP_NUMB_BITS - cnt));
207
0
      udiv_qrnnd (*qp, r, r, nshift, d);
208
0
      r >>= GMP_NAIL_BITS;
209
0
      qp--;
210
0
      n1 = n0;
211
0
    }
212
0
        udiv_qrnnd (*qp, r, r, n1 << cnt, d);
213
0
        r >>= GMP_NAIL_BITS;
214
0
        qp--;
215
0
      }
216
0
    for (i = qxn - 1; i >= 0; i--)
217
0
      {
218
0
        udiv_qrnnd (*qp, r, r, CNST_LIMB(0), d);
219
0
        r >>= GMP_NAIL_BITS;
220
0
        qp--;
221
0
      }
222
0
    return r >> cnt;
223
0
  }
224
6.22k
      else
225
6.22k
  {
226
6.22k
    mp_limb_t  dinv, nshift;
227
6.22k
    invert_limb (dinv, d);
228
6.22k
    if (un != 0)
229
6.22k
      {
230
6.22k
        n1 = up[un - 1] << GMP_NAIL_BITS;
231
6.22k
        r |= (n1 >> (GMP_LIMB_BITS - cnt));
232
57.3k
        for (i = un - 2; i >= 0; i--)
233
51.1k
    {
234
51.1k
      n0 = up[i] << GMP_NAIL_BITS;
235
51.1k
      nshift = (n1 << cnt) | (n0 >> (GMP_NUMB_BITS - cnt));
236
51.1k
      udiv_qrnnd_preinv (*qp, r, r, nshift, d, dinv);
237
51.1k
      r >>= GMP_NAIL_BITS;
238
51.1k
      qp--;
239
51.1k
      n1 = n0;
240
51.1k
    }
241
6.22k
        udiv_qrnnd_preinv (*qp, r, r, n1 << cnt, d, dinv);
242
6.22k
        r >>= GMP_NAIL_BITS;
243
6.22k
        qp--;
244
6.22k
      }
245
6.22k
    for (i = qxn - 1; i >= 0; i--)
246
0
      {
247
0
        udiv_qrnnd_preinv (*qp, r, r, CNST_LIMB(0), d, dinv);
248
0
        r >>= GMP_NAIL_BITS;
249
0
        qp--;
250
0
      }
251
6.22k
    return r >> cnt;
252
6.22k
  }
253
6.22k
    }
254
9.50k
}