Coverage Report

Created: 2026-02-14 06:49

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/nettle/rsa-sign-tr.c
Line
Count
Source
1
/* rsa-sign-tr.c
2
3
   Creating RSA signatures, with some additional checks.
4
5
   Copyright (C) 2001, 2015 Niels Möller
6
   Copyright (C) 2012 Nikos Mavrogiannopoulos
7
   Copyright (C) 2018 Red Hat Inc.
8
9
   This file is part of GNU Nettle.
10
11
   GNU Nettle is free software: you can redistribute it and/or
12
   modify it under the terms of either:
13
14
     * the GNU Lesser General Public License as published by the Free
15
       Software Foundation; either version 3 of the License, or (at your
16
       option) any later version.
17
18
   or
19
20
     * the GNU General Public License as published by the Free
21
       Software Foundation; either version 2 of the License, or (at your
22
       option) any later version.
23
24
   or both in parallel, as here.
25
26
   GNU Nettle is distributed in the hope that it will be useful,
27
   but WITHOUT ANY WARRANTY; without even the implied warranty of
28
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
29
   General Public License for more details.
30
31
   You should have received copies of the GNU General Public License and
32
   the GNU Lesser General Public License along with this program.  If
33
   not, see http://www.gnu.org/licenses/.
34
*/
35
36
#if HAVE_CONFIG_H
37
# include "config.h"
38
#endif
39
40
#include <assert.h>
41
42
#include "gmp-glue.h"
43
#include "rsa.h"
44
#include "rsa-internal.h"
45
46
81.1k
#define MAX(a, b) ((a) > (b) ? (a) : (b))
47
48
#if NETTLE_USE_MINI_GMP
49
/* Blinds m, by computing c = m r^e (mod n), for a random r. Also
50
   returns the inverse (ri), for use by rsa_unblind. */
51
static void
52
rsa_blind (const struct rsa_public_key *pub,
53
     void *random_ctx, nettle_random_func *random,
54
     mpz_t c, mpz_t ri, const mpz_t m)
55
{
56
  mpz_t r;
57
58
  mpz_init(r);
59
60
  /* c = m*(r^e)
61
   * ri = r^(-1)
62
   */
63
  do
64
    {
65
      nettle_mpz_random(r, random_ctx, random, pub->n);
66
      /* invert r */
67
    }
68
  while (!mpz_invert (ri, r, pub->n));
69
70
  /* c = c*(r^e) mod n */
71
  mpz_powm_sec(r, r, pub->e, pub->n);
72
  mpz_mul(c, m, r);
73
  mpz_fdiv_r(c, c, pub->n);
74
75
  mpz_clear(r);
76
}
77
78
/* m = c ri mod n */
79
static void
80
rsa_unblind (const struct rsa_public_key *pub,
81
       mpz_t m, const mpz_t ri, const mpz_t c)
82
{
83
  mpz_mul(m, c, ri);
84
  mpz_fdiv_r(m, m, pub->n);
85
}
86
87
/* Checks for any errors done in the RSA computation. That avoids
88
 * attacks which rely on faults on hardware, or even software MPI
89
 * implementation. */
90
int
91
rsa_compute_root_tr(const struct rsa_public_key *pub,
92
        const struct rsa_private_key *key,
93
        void *random_ctx, nettle_random_func *random,
94
        mpz_t x, const mpz_t m)
95
{
96
  int res;
97
  mpz_t t, mb, xb, ri;
98
99
  /* mpz_powm_sec handles only odd moduli. If p, q or n is even, the
100
     key is invalid and rejected by rsa_private_key_prepare. However,
101
     some applications, notably gnutls, don't use this function, and
102
     we don't want an invalid key to lead to a crash down inside
103
     mpz_powm_sec. So do an additional check here. */
104
  if (mpz_even_p (pub->n) || mpz_even_p (key->p) || mpz_even_p (key->q))
105
    return 0;
106
107
  mpz_init (mb);
108
  mpz_init (xb);
109
  mpz_init (ri);
110
  mpz_init (t);
111
112
  rsa_blind (pub, random_ctx, random, mb, ri, m);
113
114
  rsa_compute_root (key, xb, mb);
115
116
  mpz_powm_sec(t, xb, pub->e, pub->n);
117
  res = (mpz_cmp(mb, t) == 0);
118
119
  if (res)
120
    rsa_unblind (pub, x, ri, xb);
121
122
  mpz_clear (mb);
123
  mpz_clear (xb);
124
  mpz_clear (ri);
125
  mpz_clear (t);
126
127
  return res;
128
}
129
130
int
131
_rsa_sec_compute_root_tr(const struct rsa_public_key *pub,
132
       const struct rsa_private_key *key,
133
       void *random_ctx, nettle_random_func *random,
134
       mp_limb_t *x, const mp_limb_t *m)
135
{
136
  mp_size_t nn;
137
  mpz_t mz;
138
  mpz_t xz;
139
  int res;
140
141
  mpz_init(xz);
142
143
  nn = mpz_size (pub->n);
144
145
  res = rsa_compute_root_tr(pub, key, random_ctx, random, xz,
146
          mpz_roinit_n(mz, m, nn));
147
148
  if (res)
149
    mpz_limbs_copy(x, xz, nn);
150
151
  mpz_clear(xz);
152
  return res;
153
}
154
#else
155
/* Blinds m, by computing c = m r^e (mod n), for a random r. Also
156
   returns the inverse (ri), for use by rsa_unblind. Must have c != m,
157
   no in-place operation.*/
158
static void
159
rsa_sec_blind (const struct rsa_public_key *pub,
160
               void *random_ctx, nettle_random_func *random,
161
               mp_limb_t *c, mp_limb_t *ri, const mp_limb_t *m)
162
20.2k
{
163
20.2k
  const mp_limb_t *ep = mpz_limbs_read (pub->e);
164
20.2k
  const mp_limb_t *np = mpz_limbs_read (pub->n);
165
20.2k
  mp_bitcnt_t ebn = mpz_sizeinbase (pub->e, 2);
166
20.2k
  mp_size_t nn = mpz_size (pub->n);
167
20.2k
  size_t itch;
168
20.2k
  size_t i2;
169
20.2k
  mp_limb_t *scratch;
170
20.2k
  TMP_GMP_DECL (tp, mp_limb_t);
171
20.2k
  TMP_GMP_DECL (rp, mp_limb_t);
172
20.2k
  TMP_GMP_DECL (r, uint8_t);
173
174
20.2k
  TMP_GMP_ALLOC (rp, nn);
175
20.2k
  TMP_GMP_ALLOC (r, nn * sizeof(mp_limb_t));
176
177
  /* c = m*(r^e) mod n */
178
20.2k
  itch = mpn_sec_powm_itch(nn, ebn, nn);
179
20.2k
  i2 = mpn_sec_mul_itch(nn, nn);
180
20.2k
  itch = MAX(itch, i2);
181
20.2k
  i2 = mpn_sec_div_r_itch(2*nn, nn);
182
20.2k
  itch = MAX(itch, i2);
183
20.2k
  i2 = mpn_sec_invert_itch(nn);
184
20.2k
  itch = MAX(itch, i2);
185
186
20.2k
  TMP_GMP_ALLOC (tp, 2*nn  + itch);
187
20.2k
  scratch = tp + 2*nn;
188
189
  /* ri = r^(-1) */
190
20.2k
  do
191
20.2k
    {
192
20.2k
      random(random_ctx, nn * sizeof(mp_limb_t), (uint8_t *)r);
193
20.2k
      mpn_set_base256(rp, nn, r, nn * sizeof(mp_limb_t));
194
20.2k
      mpn_copyi(tp, rp, nn);
195
      /* invert r */
196
20.2k
    }
197
20.2k
  while (!mpn_sec_invert (ri, tp, np, nn, 2 * nn * GMP_NUMB_BITS, scratch));
198
199
20.2k
  mpn_sec_powm (c, rp, nn, ep, ebn, np, nn, scratch);
200
20.2k
  mpn_sec_mul (tp, c, nn, m, nn, scratch);
201
20.2k
  mpn_sec_div_r (tp, 2*nn, np, nn, scratch);
202
20.2k
  mpn_copyi(c, tp, nn);
203
204
20.2k
  TMP_GMP_FREE (r);
205
20.2k
  TMP_GMP_FREE (rp);
206
20.2k
  TMP_GMP_FREE (tp);
207
20.2k
}
208
209
/* m = c ri mod n. Allows x == c. */
210
static void
211
rsa_sec_unblind (const struct rsa_public_key *pub,
212
                 mp_limb_t *x, mp_limb_t *ri, const mp_limb_t *c)
213
20.2k
{
214
20.2k
  const mp_limb_t *np = mpz_limbs_read (pub->n);
215
20.2k
  mp_size_t nn = mpz_size (pub->n);
216
217
20.2k
  size_t itch;
218
20.2k
  size_t i2;
219
20.2k
  mp_limb_t *scratch;
220
20.2k
  TMP_GMP_DECL(tp, mp_limb_t);
221
222
20.2k
  itch = mpn_sec_mul_itch(nn, nn);
223
20.2k
  i2 = mpn_sec_div_r_itch(nn + nn, nn);
224
20.2k
  itch = MAX(itch, i2);
225
226
20.2k
  TMP_GMP_ALLOC (tp, nn + nn + itch);
227
20.2k
  scratch = tp + nn + nn;
228
229
20.2k
  mpn_sec_mul (tp, c, nn, ri, nn, scratch);
230
20.2k
  mpn_sec_div_r (tp, nn + nn, np, nn, scratch);
231
20.2k
  mpn_copyi(x, tp, nn);
232
233
20.2k
  TMP_GMP_FREE (tp);
234
20.2k
}
235
236
static int
237
sec_equal(const mp_limb_t *a, const mp_limb_t *b, size_t limbs)
238
20.2k
{
239
20.2k
  volatile mp_limb_t z = 0;
240
20.2k
  size_t i;
241
242
831k
  for (i = 0; i < limbs; i++)
243
810k
    {
244
810k
      z |= (a[i] ^ b[i]);
245
810k
    }
246
247
20.2k
  return z == 0;
248
20.2k
}
249
250
static int
251
rsa_sec_check_root(const struct rsa_public_key *pub,
252
                   const mp_limb_t *x, const mp_limb_t *m)
253
20.2k
{
254
20.2k
  mp_size_t nn = mpz_size (pub->n);
255
20.2k
  mp_size_t ebn = mpz_sizeinbase (pub->e, 2);
256
20.2k
  const mp_limb_t *np = mpz_limbs_read (pub->n);
257
20.2k
  const mp_limb_t *ep = mpz_limbs_read (pub->e);
258
20.2k
  int ret;
259
260
20.2k
  mp_size_t itch;
261
262
20.2k
  mp_limb_t *scratch;
263
20.2k
  TMP_GMP_DECL(tp, mp_limb_t);
264
265
20.2k
  itch = mpn_sec_powm_itch (nn, ebn, nn);
266
20.2k
  TMP_GMP_ALLOC (tp, nn + itch);
267
20.2k
  scratch = tp + nn;
268
269
20.2k
  mpn_sec_powm(tp, x, nn, ep, ebn, np, nn, scratch);
270
20.2k
  ret = sec_equal(tp, m, nn);
271
272
20.2k
  TMP_GMP_FREE (tp);
273
20.2k
  return ret;
274
20.2k
}
275
276
static void
277
cnd_mpn_zero (int cnd, volatile mp_ptr rp, mp_size_t n)
278
20.2k
{
279
20.2k
  volatile mp_limb_t c;
280
20.2k
  volatile mp_limb_t mask = (mp_limb_t) cnd - 1;
281
282
831k
  while (--n >= 0)
283
810k
    {
284
810k
      c = rp[n];
285
810k
      c &= mask;
286
810k
      rp[n] = c;
287
810k
    }
288
20.2k
}
289
290
/* Checks for any errors done in the RSA computation. That avoids
291
 * attacks which rely on faults on hardware, or even software MPI
292
 * implementation.
293
 * This version is side-channel silent even in case of error,
294
 * the destination buffer is always overwritten */
295
int
296
_rsa_sec_compute_root_tr(const struct rsa_public_key *pub,
297
       const struct rsa_private_key *key,
298
       void *random_ctx, nettle_random_func *random,
299
       mp_limb_t *x, const mp_limb_t *m)
300
20.2k
{
301
20.2k
  TMP_GMP_DECL (c, mp_limb_t);
302
20.2k
  TMP_GMP_DECL (ri, mp_limb_t);
303
20.2k
  TMP_GMP_DECL (scratch, mp_limb_t);
304
20.2k
  size_t key_limb_size;
305
20.2k
  int ret;
306
307
20.2k
  key_limb_size = mpz_size(pub->n);
308
309
  /* mpz_powm_sec handles only odd moduli. If p, q or n is even, the
310
     key is invalid and rejected by rsa_private_key_prepare. However,
311
     some applications, notably gnutls, don't use this function, and
312
     we don't want an invalid key to lead to a crash down inside
313
     mpz_powm_sec. So do an additional check here. */
314
20.2k
  if (mpz_even_p (pub->n) || mpz_even_p (key->p) || mpz_even_p (key->q))
315
0
    {
316
0
      mpn_zero(x, key_limb_size);
317
0
      return 0;
318
0
    }
319
320
20.2k
  assert(mpz_size(pub->n) == key_limb_size);
321
322
20.2k
  TMP_GMP_ALLOC (c, key_limb_size);
323
20.2k
  TMP_GMP_ALLOC (ri, key_limb_size);
324
20.2k
  TMP_GMP_ALLOC (scratch, _rsa_sec_compute_root_itch(key));
325
326
20.2k
  rsa_sec_blind (pub, random_ctx, random, c, ri, m);
327
328
20.2k
  _rsa_sec_compute_root(key, x, c, scratch);
329
330
20.2k
  ret = rsa_sec_check_root(pub, x, c);
331
332
20.2k
  rsa_sec_unblind(pub, x, ri, x);
333
334
20.2k
  cnd_mpn_zero(1 - ret, x, key_limb_size);
335
336
20.2k
  TMP_GMP_FREE (scratch);
337
20.2k
  TMP_GMP_FREE (ri);
338
20.2k
  TMP_GMP_FREE (c);
339
20.2k
  return ret;
340
20.2k
}
341
342
/* Checks for any errors done in the RSA computation. That avoids
343
 * attacks which rely on faults on hardware, or even software MPI
344
 * implementation.
345
 * This version is maintained for API compatibility reasons. It
346
 * is not completely side-channel silent. There are conditionals
347
 * in buffer copying both in case of success or error.
348
 */
349
int
350
rsa_compute_root_tr(const struct rsa_public_key *pub,
351
        const struct rsa_private_key *key,
352
        void *random_ctx, nettle_random_func *random,
353
        mpz_t x, const mpz_t m)
354
20.2k
{
355
20.2k
  TMP_GMP_DECL (l, mp_limb_t);
356
20.2k
  mp_size_t nn = mpz_size(pub->n);
357
20.2k
  int res;
358
359
20.2k
  TMP_GMP_ALLOC (l, nn);
360
20.2k
  mpz_limbs_copy(l, m, nn);
361
362
20.2k
  res = _rsa_sec_compute_root_tr (pub, key, random_ctx, random, l, l);
363
20.2k
  if (res) {
364
20.2k
    mp_limb_t *xp = mpz_limbs_write (x, nn);
365
20.2k
    mpn_copyi (xp, l, nn);
366
20.2k
    mpz_limbs_finish (x, nn);
367
20.2k
  }
368
369
20.2k
  TMP_GMP_FREE (l);
370
20.2k
  return res;
371
20.2k
}
372
#endif