Coverage Report

Created: 2025-07-23 08:18

/src/aom/av1/common/restoration.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 *
11
 */
12
13
#include <math.h>
14
15
#include "config/aom_config.h"
16
#include "config/aom_dsp_rtcd.h"
17
#include "config/aom_scale_rtcd.h"
18
19
#include "aom_mem/aom_mem.h"
20
#include "av1/common/av1_common_int.h"
21
#include "av1/common/resize.h"
22
#include "av1/common/restoration.h"
23
#include "aom_dsp/aom_dsp_common.h"
24
#include "aom_mem/aom_mem.h"
25
26
#include "aom_ports/mem.h"
27
28
// The 's' values are calculated based on original 'r' and 'e' values in the
29
// spec using GenSgrprojVtable().
30
// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
31
const sgr_params_type av1_sgr_params[SGRPROJ_PARAMS] = {
32
  { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
33
  { { 2, 1 }, { 93, 1618 } },  { { 2, 1 }, { 80, 1438 } },
34
  { { 2, 1 }, { 70, 1295 } },  { { 2, 1 }, { 58, 1177 } },
35
  { { 2, 1 }, { 47, 1079 } },  { { 2, 1 }, { 37, 996 } },
36
  { { 2, 1 }, { 30, 925 } },   { { 2, 1 }, { 25, 863 } },
37
  { { 0, 1 }, { -1, 2589 } },  { { 0, 1 }, { -1, 1618 } },
38
  { { 0, 1 }, { -1, 1177 } },  { { 0, 1 }, { -1, 925 } },
39
  { { 2, 0 }, { 56, -1 } },    { { 2, 0 }, { 22, -1 } },
40
};
41
42
457k
AV1PixelRect av1_whole_frame_rect(const AV1_COMMON *cm, int is_uv) {
43
457k
  AV1PixelRect rect;
44
45
457k
  int ss_x = is_uv && cm->seq_params->subsampling_x;
46
457k
  int ss_y = is_uv && cm->seq_params->subsampling_y;
47
48
457k
  rect.top = 0;
49
457k
  rect.bottom = ROUND_POWER_OF_TWO(cm->height, ss_y);
50
457k
  rect.left = 0;
51
457k
  rect.right = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
52
457k
  return rect;
53
457k
}
54
55
// Count horizontal or vertical units per tile (use a width or height for
56
// tile_size, respectively). We basically want to divide the tile size by the
57
// size of a restoration unit. Rather than rounding up unconditionally as you
58
// might expect, we round to nearest, which models the way a right or bottom
59
// restoration unit can extend to up to 150% its normal width or height. The
60
// max with 1 is to deal with tiles that are smaller than half of a restoration
61
// unit.
62
895k
int av1_lr_count_units_in_tile(int unit_size, int tile_size) {
63
895k
  return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
64
895k
}
65
66
void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
67
15.1k
                                  int is_uv) {
68
  // We need to allocate enough space for restoration units to cover the
69
  // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
70
  // top-left and we can use av1_get_tile_rect(). With CONFIG_MAX_TILE, we have
71
  // to do the computation ourselves, iterating over the tiles and keeping
72
  // track of the largest width and height, then upscaling.
73
15.1k
  const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
74
15.1k
  const int max_tile_w = tile_rect.right - tile_rect.left;
75
15.1k
  const int max_tile_h = tile_rect.bottom - tile_rect.top;
76
77
  // To calculate hpertile and vpertile (horizontal and vertical units per
78
  // tile), we basically want to divide the largest tile width or height by the
79
  // size of a restoration unit. Rather than rounding up unconditionally as you
80
  // might expect, we round to nearest, which models the way a right or bottom
81
  // restoration unit can extend to up to 150% its normal width or height. The
82
  // max with 1 is to deal with tiles that are smaller than half of a
83
  // restoration unit.
84
15.1k
  const int unit_size = rsi->restoration_unit_size;
85
15.1k
  const int hpertile = av1_lr_count_units_in_tile(unit_size, max_tile_w);
86
15.1k
  const int vpertile = av1_lr_count_units_in_tile(unit_size, max_tile_h);
87
88
15.1k
  rsi->units_per_tile = hpertile * vpertile;
89
15.1k
  rsi->horz_units_per_tile = hpertile;
90
15.1k
  rsi->vert_units_per_tile = vpertile;
91
92
15.1k
  const int ntiles = 1;
93
15.1k
  const int nunits = ntiles * rsi->units_per_tile;
94
95
15.1k
  aom_free(rsi->unit_info);
96
15.1k
  CHECK_MEM_ERROR(cm, rsi->unit_info,
97
15.1k
                  (RestorationUnitInfo *)aom_memalign(
98
15.1k
                      16, sizeof(*rsi->unit_info) * nunits));
99
15.1k
}
100
101
85.9k
void av1_free_restoration_struct(RestorationInfo *rst_info) {
102
85.9k
  aom_free(rst_info->unit_info);
103
85.9k
  rst_info->unit_info = NULL;
104
85.9k
}
105
106
#if 0
107
// Pair of values for each sgrproj parameter:
108
// Index 0 corresponds to r[0], e[0]
109
// Index 1 corresponds to r[1], e[1]
110
int sgrproj_mtable[SGRPROJ_PARAMS][2];
111
112
static void GenSgrprojVtable() {
113
  for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
114
    const sgr_params_type *const params = &av1_sgr_params[i];
115
    for (int j = 0; j < 2; ++j) {
116
      const int e = params->e[j];
117
      const int r = params->r[j];
118
      if (r == 0) {                 // filter is disabled
119
        sgrproj_mtable[i][j] = -1;  // mark invalid
120
      } else {                      // filter is enabled
121
        const int n = (2 * r + 1) * (2 * r + 1);
122
        const int n2e = n * n * e;
123
        assert(n2e != 0);
124
        sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
125
      }
126
    }
127
  }
128
}
129
#endif
130
131
28.6k
void av1_loop_restoration_precal() {
132
#if 0
133
  GenSgrprojVtable();
134
#endif
135
28.6k
}
136
137
static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
138
2.26k
                               int border_horz, int border_vert) {
139
2.26k
  uint8_t *data_p;
140
2.26k
  int i;
141
551k
  for (i = 0; i < height; ++i) {
142
549k
    data_p = data + i * stride;
143
549k
    memset(data_p - border_horz, data_p[0], border_horz);
144
549k
    memset(data_p + width, data_p[width - 1], border_horz);
145
549k
  }
146
2.26k
  data_p = data - border_horz;
147
9.04k
  for (i = -border_vert; i < 0; ++i) {
148
6.78k
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
149
6.78k
  }
150
9.04k
  for (i = height; i < height + border_vert; ++i) {
151
6.78k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
152
6.78k
           width + 2 * border_horz);
153
6.78k
  }
154
2.26k
}
155
156
#if CONFIG_AV1_HIGHBITDEPTH
157
static void extend_frame_highbd(uint16_t *data, int width, int height,
158
1.14k
                                int stride, int border_horz, int border_vert) {
159
1.14k
  uint16_t *data_p;
160
1.14k
  int i, j;
161
211k
  for (i = 0; i < height; ++i) {
162
209k
    data_p = data + i * stride;
163
839k
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
164
839k
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
165
209k
  }
166
1.14k
  data_p = data - border_horz;
167
4.56k
  for (i = -border_vert; i < 0; ++i) {
168
3.42k
    memcpy(data_p + i * stride, data_p,
169
3.42k
           (width + 2 * border_horz) * sizeof(uint16_t));
170
3.42k
  }
171
4.56k
  for (i = height; i < height + border_vert; ++i) {
172
3.42k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
173
3.42k
           (width + 2 * border_horz) * sizeof(uint16_t));
174
3.42k
  }
175
1.14k
}
176
177
static void copy_tile_highbd(int width, int height, const uint16_t *src,
178
2.37k
                             int src_stride, uint16_t *dst, int dst_stride) {
179
199k
  for (int i = 0; i < height; ++i)
180
197k
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
181
2.37k
}
182
#endif
183
184
void av1_extend_frame(uint8_t *data, int width, int height, int stride,
185
3.40k
                      int border_horz, int border_vert, int highbd) {
186
3.40k
#if CONFIG_AV1_HIGHBITDEPTH
187
3.40k
  if (highbd) {
188
1.14k
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
189
1.14k
                        border_horz, border_vert);
190
1.14k
    return;
191
1.14k
  }
192
2.26k
#endif
193
2.26k
  (void)highbd;
194
2.26k
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
195
2.26k
}
196
197
static void copy_tile_lowbd(int width, int height, const uint8_t *src,
198
4.25k
                            int src_stride, uint8_t *dst, int dst_stride) {
199
401k
  for (int i = 0; i < height; ++i)
200
397k
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
201
4.25k
}
202
203
static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
204
6.62k
                      uint8_t *dst, int dst_stride, int highbd) {
205
6.62k
#if CONFIG_AV1_HIGHBITDEPTH
206
6.62k
  if (highbd) {
207
2.37k
    copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
208
2.37k
                     CONVERT_TO_SHORTPTR(dst), dst_stride);
209
2.37k
    return;
210
2.37k
  }
211
4.25k
#endif
212
4.25k
  (void)highbd;
213
4.25k
  copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
214
4.25k
}
215
216
182k
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
217
218
// With striped loop restoration, the filtering for each 64-pixel stripe gets
219
// most of its input from the output of CDEF (stored in data8), but we need to
220
// fill out a border of 3 pixels above/below the stripe according to the
221
// following
222
// rules:
223
//
224
// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
225
//   This extension is done by a call to av1_extend_frame() at the start of the
226
//   loop restoration process, so the value of copy_above/copy_below doesn't
227
//   strictly matter. However, by setting *copy_above = *copy_below = 1 whenever
228
//   loop filtering across tiles is disabled, we can allow
229
//   {setup,restore}_processing_stripe_boundary to assume that the top/bottom
230
//   data has always been copied, simplifying the behaviour at the left and
231
//   right edges of tiles.
232
//
233
// * If we're at a tile boundary and loop filtering across tiles is enabled,
234
//   then there is a logical stripe which is 64 pixels high, but which is split
235
//   into an 8px high and a 56px high stripe so that the processing (and
236
//   coefficient set usage) can be aligned to tiles.
237
//   In this case, we use the 3 rows of CDEF output across the boundary for
238
//   context; this corresponds to leaving the frame buffer as-is.
239
//
240
// * If we're at a tile boundary and loop filtering across tiles is disabled,
241
//   then we take the outermost row of CDEF pixels *within the current tile*
242
//   and copy it three times. Thus we behave exactly as if the tile were a full
243
//   frame.
244
//
245
// * Otherwise, we're at a stripe boundary within a tile. In that case, we
246
//   take 2 rows of deblocked pixels and extend them to 3 rows of context.
247
//
248
// The distinction between the latter two cases is handled by the
249
// av1_loop_restoration_save_boundary_lines() function, so here we just need
250
// to decide if we're overwriting the above/below boundary pixels or not.
251
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
252
                                     const AV1PixelRect *tile_rect, int ss_y,
253
11.9k
                                     int *copy_above, int *copy_below) {
254
11.9k
  *copy_above = 1;
255
11.9k
  *copy_below = 1;
256
257
11.9k
  const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
258
11.9k
  const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
259
260
11.9k
  const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
261
11.9k
  const int this_stripe_height =
262
11.9k
      full_stripe_height - (first_stripe_in_tile ? runit_offset : 0);
263
11.9k
  const int last_stripe_in_tile =
264
11.9k
      (limits->v_start + this_stripe_height >= tile_rect->bottom);
265
266
11.9k
  if (first_stripe_in_tile) *copy_above = 0;
267
11.9k
  if (last_stripe_in_tile) *copy_below = 0;
268
11.9k
}
269
270
// Overwrite the border pixels around a processing stripe so that the conditions
271
// listed above get_stripe_boundary_info() are preserved.
272
// We save the pixels which get overwritten into a temporary buffer, so that
273
// they can be restored by restore_processing_stripe_boundary() after we've
274
// processed the stripe.
275
//
276
// limits gives the rectangular limits of the remaining stripes for the current
277
// restoration unit. rsb is the stored stripe boundaries (taken from either
278
// deblock or CDEF output as necessary).
279
//
280
// tile_rect is the limits of the current tile and tile_stripe0 is the index of
281
// the first stripe in this tile (needed to convert the tile-relative stripe
282
// index we get from limits into something we can look up in rsb).
283
static void setup_processing_stripe_boundary(
284
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
285
    int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
286
11.9k
    RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
287
  // Offsets within the line buffers. The buffer logically starts at column
288
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
289
  // has column x0 in the buffer.
290
11.9k
  const int buf_stride = rsb->stripe_boundary_stride;
291
11.9k
  const int buf_x0_off = limits->h_start;
292
11.9k
  const int line_width =
293
11.9k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
294
11.9k
  const int line_size = line_width << use_highbd;
295
296
11.9k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
297
298
  // Replace RESTORATION_BORDER pixels above the top of the stripe
299
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
300
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
301
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
302
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
303
  //
304
  // Special case: If we're at the top of a tile, which isn't on the topmost
305
  // tile row, and we're allowed to loop filter across tiles, then we have a
306
  // logical 64-pixel-high stripe which has been split into an 8-pixel high
307
  // stripe and a 56-pixel high stripe (the current one). So, in this case,
308
  // we want to leave the boundary alone!
309
11.9k
  if (!opt) {
310
10.1k
    if (copy_above) {
311
7.75k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
312
313
31.0k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
314
23.2k
        const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
315
23.2k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
316
23.2k
        const uint8_t *buf =
317
23.2k
            rsb->stripe_boundary_above + (buf_off << use_highbd);
318
23.2k
        uint8_t *dst8 = data8_tl + i * data_stride;
319
        // Save old pixels, then replace with data from stripe_boundary_above
320
23.2k
        memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
321
23.2k
               REAL_PTR(use_highbd, dst8), line_size);
322
23.2k
        memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
323
23.2k
      }
324
7.75k
    }
325
326
    // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
327
    // The second buffer row is repeated, so src_row gets the values 0, 1, 1
328
    // for i = 0, 1, 2.
329
10.1k
    if (copy_below) {
330
7.67k
      const int stripe_end = limits->v_start + h;
331
7.67k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
332
333
30.7k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
334
23.0k
        const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
335
23.0k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
336
23.0k
        const uint8_t *src =
337
23.0k
            rsb->stripe_boundary_below + (buf_off << use_highbd);
338
339
23.0k
        uint8_t *dst8 = data8_bl + i * data_stride;
340
        // Save old pixels, then replace with data from stripe_boundary_below
341
23.0k
        memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
342
23.0k
        memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
343
23.0k
      }
344
7.67k
    }
345
10.1k
  } else {
346
1.82k
    if (copy_above) {
347
1.44k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
348
349
      // Only save and overwrite i=-RESTORATION_BORDER line.
350
1.44k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
351
      // Save old pixels, then replace with data from stripe_boundary_above
352
1.44k
      memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
353
1.44k
      memcpy(REAL_PTR(use_highbd, dst8),
354
1.44k
             REAL_PTR(use_highbd,
355
1.44k
                      data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
356
1.44k
             line_size);
357
1.44k
    }
358
359
1.82k
    if (copy_below) {
360
1.40k
      const int stripe_end = limits->v_start + h;
361
1.40k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
362
363
      // Only save and overwrite i=2 line.
364
1.40k
      uint8_t *dst8 = data8_bl + 2 * data_stride;
365
      // Save old pixels, then replace with data from stripe_boundary_below
366
1.40k
      memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
367
1.40k
      memcpy(REAL_PTR(use_highbd, dst8),
368
1.40k
             REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
369
1.40k
    }
370
1.82k
  }
371
11.9k
}
372
373
// This function restores the boundary lines modified by
374
// setup_processing_stripe_boundary.
375
//
376
// Note: We need to be careful when handling the corners of the processing
377
// unit, because (eg.) the top-left corner is considered to be part of
378
// both the left and top borders. This means that, depending on the
379
// loop_filter_across_tiles_enabled flag, the corner pixels might get
380
// overwritten twice, once as part of the "top" border and once as part
381
// of the "left" border (or similar for other corners).
382
//
383
// Everything works out fine as long as we make sure to reverse the order
384
// when restoring, ie. we need to restore the left/right borders followed
385
// by the top/bottom borders.
386
static void restore_processing_stripe_boundary(
387
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
388
    int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
389
11.9k
    int copy_below, int opt) {
390
11.9k
  const int line_width =
391
11.9k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
392
11.9k
  const int line_size = line_width << use_highbd;
393
394
11.9k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
395
396
11.9k
  if (!opt) {
397
10.1k
    if (copy_above) {
398
7.75k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
399
31.0k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
400
23.2k
        uint8_t *dst8 = data8_tl + i * data_stride;
401
23.2k
        memcpy(REAL_PTR(use_highbd, dst8),
402
23.2k
               rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
403
23.2k
      }
404
7.75k
    }
405
406
10.1k
    if (copy_below) {
407
7.67k
      const int stripe_bottom = limits->v_start + h;
408
7.67k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
409
410
30.7k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
411
23.0k
        if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
412
413
23.0k
        uint8_t *dst8 = data8_bl + i * data_stride;
414
23.0k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
415
23.0k
      }
416
7.67k
    }
417
10.1k
  } else {
418
1.82k
    if (copy_above) {
419
1.44k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
420
421
      // Only restore i=-RESTORATION_BORDER line.
422
1.44k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
423
1.44k
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
424
1.44k
    }
425
426
1.82k
    if (copy_below) {
427
1.40k
      const int stripe_bottom = limits->v_start + h;
428
1.40k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
429
430
      // Only restore i=2 line.
431
1.40k
      if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
432
1.40k
        uint8_t *dst8 = data8_bl + 2 * data_stride;
433
1.40k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
434
1.40k
      }
435
1.40k
    }
436
1.82k
  }
437
11.9k
}
438
439
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
440
                                 int stripe_width, int stripe_height,
441
                                 int procunit_width, const uint8_t *src,
442
                                 int src_stride, uint8_t *dst, int dst_stride,
443
3.51k
                                 int32_t *tmpbuf, int bit_depth) {
444
3.51k
  (void)tmpbuf;
445
3.51k
  (void)bit_depth;
446
3.51k
  assert(bit_depth == 8);
447
3.51k
  const ConvolveParams conv_params = get_conv_params_wiener(8);
448
449
14.0k
  for (int j = 0; j < stripe_width; j += procunit_width) {
450
10.5k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
451
10.5k
    const uint8_t *src_p = src + j;
452
10.5k
    uint8_t *dst_p = dst + j;
453
10.5k
    av1_wiener_convolve_add_src(
454
10.5k
        src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
455
10.5k
        rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
456
10.5k
  }
457
3.51k
}
458
459
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
460
   over the input. The window is of size (2r + 1)x(2r + 1), and we
461
   specialize to r = 1, 2, 3. A default function is used for r > 3.
462
463
   Each loop follows the same format: We keep a window's worth of input
464
   in individual variables and select data out of that as appropriate.
465
*/
466
static void boxsum1(int32_t *src, int width, int height, int src_stride,
467
31.6k
                    int sqr, int32_t *dst, int dst_stride) {
468
31.6k
  int i, j, a, b, c;
469
31.6k
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
470
31.6k
  assert(height > 2 * SGRPROJ_BORDER_VERT);
471
472
  // Vertical sum over 3-pixel regions, from src into dst.
473
31.6k
  if (!sqr) {
474
914k
    for (j = 0; j < width; ++j) {
475
898k
      a = src[j];
476
898k
      b = src[src_stride + j];
477
898k
      c = src[2 * src_stride + j];
478
479
898k
      dst[j] = a + b;
480
52.2M
      for (i = 1; i < height - 2; ++i) {
481
        // Loop invariant: At the start of each iteration,
482
        // a = src[(i - 1) * src_stride + j]
483
        // b = src[(i    ) * src_stride + j]
484
        // c = src[(i + 1) * src_stride + j]
485
51.3M
        dst[i * dst_stride + j] = a + b + c;
486
51.3M
        a = b;
487
51.3M
        b = c;
488
51.3M
        c = src[(i + 2) * src_stride + j];
489
51.3M
      }
490
898k
      dst[i * dst_stride + j] = a + b + c;
491
898k
      dst[(i + 1) * dst_stride + j] = b + c;
492
898k
    }
493
15.8k
  } else {
494
914k
    for (j = 0; j < width; ++j) {
495
898k
      a = src[j] * src[j];
496
898k
      b = src[src_stride + j] * src[src_stride + j];
497
898k
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
498
499
898k
      dst[j] = a + b;
500
52.2M
      for (i = 1; i < height - 2; ++i) {
501
51.3M
        dst[i * dst_stride + j] = a + b + c;
502
51.3M
        a = b;
503
51.3M
        b = c;
504
51.3M
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
505
51.3M
      }
506
898k
      dst[i * dst_stride + j] = a + b + c;
507
898k
      dst[(i + 1) * dst_stride + j] = b + c;
508
898k
    }
509
15.8k
  }
510
511
  // Horizontal sum over 3-pixel regions of dst
512
1.89M
  for (i = 0; i < height; ++i) {
513
1.86M
    a = dst[i * dst_stride];
514
1.86M
    b = dst[i * dst_stride + 1];
515
1.86M
    c = dst[i * dst_stride + 2];
516
517
1.86M
    dst[i * dst_stride] = a + b;
518
104M
    for (j = 1; j < width - 2; ++j) {
519
      // Loop invariant: At the start of each iteration,
520
      // a = src[i * src_stride + (j - 1)]
521
      // b = src[i * src_stride + (j    )]
522
      // c = src[i * src_stride + (j + 1)]
523
102M
      dst[i * dst_stride + j] = a + b + c;
524
102M
      a = b;
525
102M
      b = c;
526
102M
      c = dst[i * dst_stride + (j + 2)];
527
102M
    }
528
1.86M
    dst[i * dst_stride + j] = a + b + c;
529
1.86M
    dst[i * dst_stride + (j + 1)] = b + c;
530
1.86M
  }
531
31.6k
}
532
533
static void boxsum2(int32_t *src, int width, int height, int src_stride,
534
27.8k
                    int sqr, int32_t *dst, int dst_stride) {
535
27.8k
  int i, j, a, b, c, d, e;
536
27.8k
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
537
27.8k
  assert(height > 2 * SGRPROJ_BORDER_VERT);
538
539
  // Vertical sum over 5-pixel regions, from src into dst.
540
27.8k
  if (!sqr) {
541
814k
    for (j = 0; j < width; ++j) {
542
800k
      a = src[j];
543
800k
      b = src[src_stride + j];
544
800k
      c = src[2 * src_stride + j];
545
800k
      d = src[3 * src_stride + j];
546
800k
      e = src[4 * src_stride + j];
547
548
800k
      dst[j] = a + b + c;
549
800k
      dst[dst_stride + j] = a + b + c + d;
550
45.1M
      for (i = 2; i < height - 3; ++i) {
551
        // Loop invariant: At the start of each iteration,
552
        // a = src[(i - 2) * src_stride + j]
553
        // b = src[(i - 1) * src_stride + j]
554
        // c = src[(i    ) * src_stride + j]
555
        // d = src[(i + 1) * src_stride + j]
556
        // e = src[(i + 2) * src_stride + j]
557
44.3M
        dst[i * dst_stride + j] = a + b + c + d + e;
558
44.3M
        a = b;
559
44.3M
        b = c;
560
44.3M
        c = d;
561
44.3M
        d = e;
562
44.3M
        e = src[(i + 3) * src_stride + j];
563
44.3M
      }
564
800k
      dst[i * dst_stride + j] = a + b + c + d + e;
565
800k
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
566
800k
      dst[(i + 2) * dst_stride + j] = c + d + e;
567
800k
    }
568
13.9k
  } else {
569
814k
    for (j = 0; j < width; ++j) {
570
800k
      a = src[j] * src[j];
571
800k
      b = src[src_stride + j] * src[src_stride + j];
572
800k
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
573
800k
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
574
800k
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
575
576
800k
      dst[j] = a + b + c;
577
800k
      dst[dst_stride + j] = a + b + c + d;
578
45.1M
      for (i = 2; i < height - 3; ++i) {
579
44.3M
        dst[i * dst_stride + j] = a + b + c + d + e;
580
44.3M
        a = b;
581
44.3M
        b = c;
582
44.3M
        c = d;
583
44.3M
        d = e;
584
44.3M
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
585
44.3M
      }
586
800k
      dst[i * dst_stride + j] = a + b + c + d + e;
587
800k
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
588
800k
      dst[(i + 2) * dst_stride + j] = c + d + e;
589
800k
    }
590
13.9k
  }
591
592
  // Horizontal sum over 5-pixel regions of dst
593
1.66M
  for (i = 0; i < height; ++i) {
594
1.64M
    a = dst[i * dst_stride];
595
1.64M
    b = dst[i * dst_stride + 1];
596
1.64M
    c = dst[i * dst_stride + 2];
597
1.64M
    d = dst[i * dst_stride + 3];
598
1.64M
    e = dst[i * dst_stride + 4];
599
600
1.64M
    dst[i * dst_stride] = a + b + c;
601
1.64M
    dst[i * dst_stride + 1] = a + b + c + d;
602
90.2M
    for (j = 2; j < width - 3; ++j) {
603
      // Loop invariant: At the start of each iteration,
604
      // a = src[i * src_stride + (j - 2)]
605
      // b = src[i * src_stride + (j - 1)]
606
      // c = src[i * src_stride + (j    )]
607
      // d = src[i * src_stride + (j + 1)]
608
      // e = src[i * src_stride + (j + 2)]
609
88.5M
      dst[i * dst_stride + j] = a + b + c + d + e;
610
88.5M
      a = b;
611
88.5M
      b = c;
612
88.5M
      c = d;
613
88.5M
      d = e;
614
88.5M
      e = dst[i * dst_stride + (j + 3)];
615
88.5M
    }
616
1.64M
    dst[i * dst_stride + j] = a + b + c + d + e;
617
1.64M
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
618
1.64M
    dst[i * dst_stride + (j + 2)] = c + d + e;
619
1.64M
  }
620
27.8k
}
621
622
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
623
59.4k
                   int sqr, int32_t *dst, int dst_stride) {
624
59.4k
  if (r == 1)
625
31.6k
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
626
27.8k
  else if (r == 2)
627
27.8k
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
628
0
  else
629
0
    assert(0 && "Invalid value of r in self-guided filter");
630
59.4k
}
631
632
17.8k
void av1_decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
633
17.8k
  if (params->r[0] == 0) {
634
3.97k
    xq[0] = 0;
635
3.97k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
636
13.9k
  } else if (params->r[1] == 0) {
637
2.03k
    xq[0] = xqd[0];
638
2.03k
    xq[1] = 0;
639
11.8k
  } else {
640
11.8k
    xq[0] = xqd[0];
641
11.8k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
642
11.8k
  }
643
17.8k
}
644
645
const int32_t av1_x_by_xplus1[256] = {
646
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
647
  // instead of 0. See comments in selfguided_restoration_internal() for why
648
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
649
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
650
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
651
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
652
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
653
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
654
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
655
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
656
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
657
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
658
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
659
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
660
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
661
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
662
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
663
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
664
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
665
  256,
666
};
667
668
const int32_t av1_one_by_x[MAX_NELEM] = {
669
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
670
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
671
};
672
673
static void calculate_intermediate_result(int32_t *dgd, int width, int height,
674
                                          int dgd_stride, int bit_depth,
675
                                          int sgr_params_idx, int radius_idx,
676
29.7k
                                          int pass, int32_t *A, int32_t *B) {
677
29.7k
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
678
29.7k
  const int r = params->r[radius_idx];
679
29.7k
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
680
29.7k
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
681
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
682
  // leading to a significant speed improvement.
683
  // We also align the stride to a multiple of 16 bytes, for consistency
684
  // with the SIMD version of this function.
685
29.7k
  int buf_stride = ((width_ext + 3) & ~3) + 16;
686
29.7k
  const int step = pass == 0 ? 1 : 2;
687
29.7k
  int i, j;
688
689
29.7k
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
690
29.7k
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
691
29.7k
         "Need SGRPROJ_BORDER_* >= r+1");
692
693
29.7k
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
694
29.7k
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
695
29.7k
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
696
29.7k
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
697
29.7k
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
698
29.7k
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
699
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
700
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
701
1.28M
  for (i = -1; i < height + 1; i += step) {
702
69.3M
    for (j = -1; j < width + 1; ++j) {
703
68.0M
      const int k = i * buf_stride + j;
704
68.0M
      const int n = (2 * r + 1) * (2 * r + 1);
705
706
      // a < 2^16 * n < 2^22 regardless of bit depth
707
68.0M
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
708
      // b < 2^8 * n < 2^14 regardless of bit depth
709
68.0M
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
710
711
      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
712
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
713
      // This bound on p is due to:
714
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
715
      //
716
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
717
      // This is an artefact of rounding, and can only happen if all pixels
718
      // are (almost) identical, so in this case we saturate to p=0.
719
68.0M
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
720
721
68.0M
      const uint32_t s = params->s[radius_idx];
722
723
      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
724
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
725
      // (this holds even after accounting for the rounding in s)
726
68.0M
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
727
728
      // Note: We have to be quite careful about the value of A[k].
729
      // This is used as a blend factor between individual pixel values and the
730
      // local mean. So it logically has a range of [0, 256], including both
731
      // endpoints.
732
      //
733
      // This is a pain for hardware, as we'd like something which can be stored
734
      // in exactly 8 bits.
735
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
736
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
737
      // slightly above 2^(8 + bit depth), due to rounding in the value of
738
      // av1_one_by_x[25-1].
739
      //
740
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
741
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
742
      // overflow), without significantly affecting the final result: z == 0
743
      // implies that the image is essentially "flat", so the local mean and
744
      // individual pixel values are very similar.
745
      //
746
      // Note that saturating on the other side, ie. requring A[k] <= 255,
747
      // would be a bad idea, as that corresponds to the case where the image
748
      // is very variable, when we want to preserve the local pixel value as
749
      // much as possible.
750
68.0M
      A[k] = av1_x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]
751
752
      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
753
      // av1_one_by_x[n - 1] = round(2^12 / n)
754
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
755
      // and B[k] is set to a value < 2^(8 + bit depth)
756
      // This holds even with the rounding in av1_one_by_x and in the overall
757
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
758
68.0M
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
759
68.0M
                                             (uint32_t)B[k] *
760
68.0M
                                             (uint32_t)av1_one_by_x[n - 1],
761
68.0M
                                         SGRPROJ_RECIP_BITS);
762
68.0M
    }
763
1.25M
  }
764
29.7k
}
765
766
static void selfguided_restoration_fast_internal(
767
    int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
768
13.9k
    int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
769
13.9k
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
770
13.9k
  const int r = params->r[radius_idx];
771
13.9k
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
772
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
773
  // leading to a significant speed improvement.
774
  // We also align the stride to a multiple of 16 bytes, for consistency
775
  // with the SIMD version of this function.
776
13.9k
  int buf_stride = ((width_ext + 3) & ~3) + 16;
777
13.9k
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
778
13.9k
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
779
13.9k
  int32_t *A = A_;
780
13.9k
  int32_t *B = B_;
781
13.9k
  int i, j;
782
13.9k
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
783
13.9k
                                sgr_params_idx, radius_idx, 1, A, B);
784
13.9k
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
785
13.9k
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
786
787
  // Use the A[] and B[] arrays to calculate the filtered image
788
13.9k
  (void)r;
789
13.9k
  assert(r == 2);
790
751k
  for (i = 0; i < height; ++i) {
791
737k
    if (!(i & 1)) {  // even row
792
19.9M
      for (j = 0; j < width; ++j) {
793
19.5M
        const int k = i * buf_stride + j;
794
19.5M
        const int l = i * dgd_stride + j;
795
19.5M
        const int m = i * dst_stride + j;
796
19.5M
        const int nb = 5;
797
19.5M
        const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
798
19.5M
                          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
799
19.5M
                           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
800
19.5M
                              5;
801
19.5M
        const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
802
19.5M
                          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
803
19.5M
                           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
804
19.5M
                              5;
805
19.5M
        const int32_t v = a * dgd[l] + b;
806
19.5M
        dst[m] =
807
19.5M
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
808
19.5M
      }
809
369k
    } else {  // odd row
810
19.9M
      for (j = 0; j < width; ++j) {
811
19.5M
        const int k = i * buf_stride + j;
812
19.5M
        const int l = i * dgd_stride + j;
813
19.5M
        const int m = i * dst_stride + j;
814
19.5M
        const int nb = 4;
815
19.5M
        const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
816
19.5M
        const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
817
19.5M
        const int32_t v = a * dgd[l] + b;
818
19.5M
        dst[m] =
819
19.5M
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
820
19.5M
      }
821
368k
    }
822
737k
  }
823
13.9k
}
824
825
static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
826
                                            int dgd_stride, int32_t *dst,
827
                                            int dst_stride, int bit_depth,
828
                                            int sgr_params_idx,
829
15.8k
                                            int radius_idx) {
830
15.8k
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
831
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
832
  // leading to a significant speed improvement.
833
  // We also align the stride to a multiple of 16 bytes, for consistency
834
  // with the SIMD version of this function.
835
15.8k
  int buf_stride = ((width_ext + 3) & ~3) + 16;
836
15.8k
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
837
15.8k
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
838
15.8k
  int32_t *A = A_;
839
15.8k
  int32_t *B = B_;
840
15.8k
  int i, j;
841
15.8k
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
842
15.8k
                                sgr_params_idx, radius_idx, 0, A, B);
843
15.8k
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
844
15.8k
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
845
846
  // Use the A[] and B[] arrays to calculate the filtered image
847
853k
  for (i = 0; i < height; ++i) {
848
44.4M
    for (j = 0; j < width; ++j) {
849
43.6M
      const int k = i * buf_stride + j;
850
43.6M
      const int l = i * dgd_stride + j;
851
43.6M
      const int m = i * dst_stride + j;
852
43.6M
      const int nb = 5;
853
43.6M
      const int32_t a =
854
43.6M
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
855
43.6M
              4 +
856
43.6M
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
857
43.6M
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
858
43.6M
              3;
859
43.6M
      const int32_t b =
860
43.6M
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
861
43.6M
              4 +
862
43.6M
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
863
43.6M
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
864
43.6M
              3;
865
43.6M
      const int32_t v = a * dgd[l] + b;
866
43.6M
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
867
43.6M
    }
868
837k
  }
869
15.8k
}
870
871
int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
872
                                 int dgd_stride, int32_t *flt0, int32_t *flt1,
873
                                 int flt_stride, int sgr_params_idx,
874
17.8k
                                 int bit_depth, int highbd) {
875
17.8k
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
876
17.8k
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
877
17.8k
  int32_t *dgd32 =
878
17.8k
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
879
880
17.8k
  if (highbd) {
881
6.37k
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
882
334k
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
883
17.6M
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
884
17.2M
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
885
17.2M
      }
886
328k
    }
887
11.5k
  } else {
888
722k
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
889
43.8M
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
890
43.1M
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
891
43.1M
      }
892
710k
    }
893
11.5k
  }
894
895
17.8k
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
896
  // If params->r == 0 we skip the corresponding filter. We only allow one of
897
  // the radii to be 0, as having both equal to 0 would be equivalent to
898
  // skipping SGR entirely.
899
17.8k
  assert(!(params->r[0] == 0 && params->r[1] == 0));
900
901
17.8k
  if (params->r[0] > 0)
902
13.9k
    selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
903
13.9k
                                         flt0, flt_stride, bit_depth,
904
13.9k
                                         sgr_params_idx, 0);
905
17.8k
  if (params->r[1] > 0)
906
15.8k
    selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
907
15.8k
                                    flt_stride, bit_depth, sgr_params_idx, 1);
908
17.8k
  return 0;
909
17.8k
}
910
911
void av1_apply_selfguided_restoration_c(const uint8_t *dat8, int width,
912
                                        int height, int stride, int eps,
913
                                        const int *xqd, uint8_t *dst8,
914
                                        int dst_stride, int32_t *tmpbuf,
915
17.8k
                                        int bit_depth, int highbd) {
916
17.8k
  int32_t *flt0 = tmpbuf;
917
17.8k
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
918
17.8k
  assert(width * height <= RESTORATION_UNITPELS_MAX);
919
920
17.8k
  const int ret = av1_selfguided_restoration_c(
921
17.8k
      dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd);
922
17.8k
  (void)ret;
923
17.8k
  assert(!ret);
924
17.8k
  const sgr_params_type *const params = &av1_sgr_params[eps];
925
17.8k
  int xq[2];
926
17.8k
  av1_decode_xq(xqd, xq, params);
927
949k
  for (int i = 0; i < height; ++i) {
928
49.6M
    for (int j = 0; j < width; ++j) {
929
48.7M
      const int k = i * width + j;
930
48.7M
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
931
48.7M
      const uint8_t *dat8ij = dat8 + i * stride + j;
932
933
48.7M
      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
934
48.7M
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
935
48.7M
      int32_t v = u << SGRPROJ_PRJ_BITS;
936
      // If params->r == 0 then we skipped the filtering in
937
      // av1_selfguided_restoration_c, i.e. flt[k] == u
938
48.7M
      if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
939
48.7M
      if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
940
48.7M
      const int16_t w =
941
48.7M
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
942
943
48.7M
      const uint16_t out = clip_pixel_highbd(w, bit_depth);
944
48.7M
      if (highbd)
945
13.5M
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
946
35.1M
      else
947
35.1M
        *dst8ij = (uint8_t)out;
948
48.7M
    }
949
931k
  }
950
17.8k
}
951
952
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
953
                                  int stripe_width, int stripe_height,
954
                                  int procunit_width, const uint8_t *src,
955
                                  int src_stride, uint8_t *dst, int dst_stride,
956
3.37k
                                  int32_t *tmpbuf, int bit_depth) {
957
3.37k
  (void)bit_depth;
958
3.37k
  assert(bit_depth == 8);
959
960
14.8k
  for (int j = 0; j < stripe_width; j += procunit_width) {
961
11.5k
    int w = AOMMIN(procunit_width, stripe_width - j);
962
11.5k
    av1_apply_selfguided_restoration(
963
11.5k
        src + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
964
11.5k
        rui->sgrproj_info.xqd, dst + j, dst_stride, tmpbuf, bit_depth, 0);
965
11.5k
  }
966
3.37k
}
967
968
#if CONFIG_AV1_HIGHBITDEPTH
969
static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui,
970
                                        int stripe_width, int stripe_height,
971
                                        int procunit_width, const uint8_t *src8,
972
                                        int src_stride, uint8_t *dst8,
973
                                        int dst_stride, int32_t *tmpbuf,
974
2.60k
                                        int bit_depth) {
975
2.60k
  (void)tmpbuf;
976
2.60k
  const ConvolveParams conv_params = get_conv_params_wiener(bit_depth);
977
978
7.84k
  for (int j = 0; j < stripe_width; j += procunit_width) {
979
5.24k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
980
5.24k
    const uint8_t *src8_p = src8 + j;
981
5.24k
    uint8_t *dst8_p = dst8 + j;
982
5.24k
    av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
983
5.24k
                                       rui->wiener_info.hfilter, 16,
984
5.24k
                                       rui->wiener_info.vfilter, 16, w,
985
5.24k
                                       stripe_height, &conv_params, bit_depth);
986
5.24k
  }
987
2.60k
}
988
989
static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui,
990
                                         int stripe_width, int stripe_height,
991
                                         int procunit_width,
992
                                         const uint8_t *src8, int src_stride,
993
                                         uint8_t *dst8, int dst_stride,
994
2.46k
                                         int32_t *tmpbuf, int bit_depth) {
995
8.83k
  for (int j = 0; j < stripe_width; j += procunit_width) {
996
6.37k
    int w = AOMMIN(procunit_width, stripe_width - j);
997
6.37k
    av1_apply_selfguided_restoration(
998
6.37k
        src8 + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
999
6.37k
        rui->sgrproj_info.xqd, dst8 + j, dst_stride, tmpbuf, bit_depth, 1);
1000
6.37k
  }
1001
2.46k
}
1002
#endif  // CONFIG_AV1_HIGHBITDEPTH
1003
1004
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
1005
                                  int stripe_width, int stripe_height,
1006
                                  int procunit_width, const uint8_t *src,
1007
                                  int src_stride, uint8_t *dst, int dst_stride,
1008
                                  int32_t *tmpbuf, int bit_depth);
1009
1010
#if CONFIG_AV1_HIGHBITDEPTH
1011
#define NUM_STRIPE_FILTERS 4
1012
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
1013
  wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
1014
  sgrproj_filter_stripe_highbd
1015
};
1016
#else
1017
#define NUM_STRIPE_FILTERS 2
1018
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
1019
  wiener_filter_stripe, sgrproj_filter_stripe
1020
};
1021
#endif  // CONFIG_AV1_HIGHBITDEPTH
1022
1023
// Filter one restoration unit
1024
void av1_loop_restoration_filter_unit(
1025
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
1026
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
1027
    const AV1PixelRect *tile_rect, int tile_stripe0, int ss_x, int ss_y,
1028
    int highbd, int bit_depth, uint8_t *data8, int stride, uint8_t *dst8,
1029
12.5k
    int dst_stride, int32_t *tmpbuf, int optimized_lr) {
1030
12.5k
  RestorationType unit_rtype = rui->restoration_type;
1031
1032
12.5k
  int unit_h = limits->v_end - limits->v_start;
1033
12.5k
  int unit_w = limits->h_end - limits->h_start;
1034
12.5k
  uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start;
1035
12.5k
  uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->h_start;
1036
1037
12.5k
  if (unit_rtype == RESTORE_NONE) {
1038
6.62k
    copy_tile(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride, highbd);
1039
6.62k
    return;
1040
6.62k
  }
1041
1042
5.87k
  const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
1043
5.87k
  assert(filter_idx < NUM_STRIPE_FILTERS);
1044
5.87k
  const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
1045
1046
5.87k
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
1047
1048
  // Convolve the whole tile one stripe at a time
1049
5.87k
  RestorationTileLimits remaining_stripes = *limits;
1050
5.87k
  int i = 0;
1051
17.8k
  while (i < unit_h) {
1052
11.9k
    int copy_above, copy_below;
1053
11.9k
    remaining_stripes.v_start = limits->v_start + i;
1054
1055
11.9k
    get_stripe_boundary_info(&remaining_stripes, tile_rect, ss_y, &copy_above,
1056
11.9k
                             &copy_below);
1057
1058
11.9k
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1059
11.9k
    const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
1060
1061
    // Work out where this stripe's boundaries are within
1062
    // rsb->stripe_boundary_{above,below}
1063
11.9k
    const int tile_stripe =
1064
11.9k
        (remaining_stripes.v_start - tile_rect->top + runit_offset) /
1065
11.9k
        full_stripe_height;
1066
11.9k
    const int frame_stripe = tile_stripe0 + tile_stripe;
1067
11.9k
    const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
1068
1069
    // Calculate this stripe's height, based on two rules:
1070
    // * The topmost stripe in each tile is 8 luma pixels shorter than usual.
1071
    // * We can't extend past the end of the current restoration unit
1072
11.9k
    const int nominal_stripe_height =
1073
11.9k
        full_stripe_height - ((tile_stripe == 0) ? runit_offset : 0);
1074
11.9k
    const int h = AOMMIN(nominal_stripe_height,
1075
11.9k
                         remaining_stripes.v_end - remaining_stripes.v_start);
1076
1077
11.9k
    setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
1078
11.9k
                                     h, data8, stride, rlbs, copy_above,
1079
11.9k
                                     copy_below, optimized_lr);
1080
1081
11.9k
    stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
1082
11.9k
                  dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth);
1083
1084
11.9k
    restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
1085
11.9k
                                       data8, stride, copy_above, copy_below,
1086
11.9k
                                       optimized_lr);
1087
1088
11.9k
    i += h;
1089
11.9k
  }
1090
5.87k
}
1091
1092
static void filter_frame_on_unit(const RestorationTileLimits *limits,
1093
                                 const AV1PixelRect *tile_rect,
1094
                                 int rest_unit_idx, void *priv, int32_t *tmpbuf,
1095
12.5k
                                 RestorationLineBuffers *rlbs) {
1096
12.5k
  FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
1097
12.5k
  const RestorationInfo *rsi = ctxt->rsi;
1098
1099
12.5k
  av1_loop_restoration_filter_unit(
1100
12.5k
      limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs, tile_rect,
1101
12.5k
      ctxt->tile_stripe0, ctxt->ss_x, ctxt->ss_y, ctxt->highbd, ctxt->bit_depth,
1102
12.5k
      ctxt->data8, ctxt->data_stride, ctxt->dst8, ctxt->dst_stride, tmpbuf,
1103
12.5k
      rsi->optimized_lr);
1104
12.5k
}
1105
1106
void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
1107
                                            YV12_BUFFER_CONFIG *frame,
1108
                                            AV1_COMMON *cm, int optimized_lr,
1109
1.71k
                                            int num_planes) {
1110
1.71k
  const SequenceHeader *const seq_params = cm->seq_params;
1111
1.71k
  const int bit_depth = seq_params->bit_depth;
1112
1.71k
  const int highbd = seq_params->use_highbitdepth;
1113
1.71k
  lr_ctxt->dst = &cm->rst_frame;
1114
1115
1.71k
  const int frame_width = frame->crop_widths[0];
1116
1.71k
  const int frame_height = frame->crop_heights[0];
1117
1.71k
  if (aom_realloc_frame_buffer(
1118
1.71k
          lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
1119
1.71k
          seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
1120
1.71k
          cm->features.byte_alignment, NULL, NULL, NULL, 0) < 0)
1121
0
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1122
0
                       "Failed to allocate restoration dst buffer");
1123
1124
1.71k
  lr_ctxt->on_rest_unit = filter_frame_on_unit;
1125
1.71k
  lr_ctxt->frame = frame;
1126
6.64k
  for (int plane = 0; plane < num_planes; ++plane) {
1127
4.93k
    RestorationInfo *rsi = &cm->rst_info[plane];
1128
4.93k
    RestorationType rtype = rsi->frame_restoration_type;
1129
4.93k
    rsi->optimized_lr = optimized_lr;
1130
1131
4.93k
    if (rtype == RESTORE_NONE) {
1132
1.53k
      continue;
1133
1.53k
    }
1134
1135
3.40k
    const int is_uv = plane > 0;
1136
3.40k
    const int plane_width = frame->crop_widths[is_uv];
1137
3.40k
    const int plane_height = frame->crop_heights[is_uv];
1138
3.40k
    FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
1139
1140
3.40k
    av1_extend_frame(frame->buffers[plane], plane_width, plane_height,
1141
3.40k
                     frame->strides[is_uv], RESTORATION_BORDER,
1142
3.40k
                     RESTORATION_BORDER, highbd);
1143
1144
3.40k
    lr_plane_ctxt->rsi = rsi;
1145
3.40k
    lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
1146
3.40k
    lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
1147
3.40k
    lr_plane_ctxt->highbd = highbd;
1148
3.40k
    lr_plane_ctxt->bit_depth = bit_depth;
1149
3.40k
    lr_plane_ctxt->data8 = frame->buffers[plane];
1150
3.40k
    lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
1151
3.40k
    lr_plane_ctxt->data_stride = frame->strides[is_uv];
1152
3.40k
    lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
1153
3.40k
    lr_plane_ctxt->tile_rect = av1_whole_frame_rect(cm, is_uv);
1154
3.40k
    lr_plane_ctxt->tile_stripe0 = 0;
1155
3.40k
  }
1156
1.71k
}
1157
1158
void av1_loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
1159
1.71k
                                      AV1_COMMON *cm, int num_planes) {
1160
1.71k
  typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
1161
1.71k
                           YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
1162
1.71k
                           int vstart, int vend);
1163
1.71k
  static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
1164
1.71k
                                         aom_yv12_partial_coloc_copy_u,
1165
1.71k
                                         aom_yv12_partial_coloc_copy_v };
1166
1.71k
  assert(num_planes <= 3);
1167
6.64k
  for (int plane = 0; plane < num_planes; ++plane) {
1168
4.93k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1169
3.40k
    AV1PixelRect tile_rect = loop_rest_ctxt->ctxt[plane].tile_rect;
1170
3.40k
    copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, tile_rect.left,
1171
3.40k
                     tile_rect.right, tile_rect.top, tile_rect.bottom);
1172
3.40k
  }
1173
1.71k
}
1174
1175
static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
1176
1.71k
                                        int num_planes) {
1177
1.71k
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
1178
1179
6.64k
  for (int plane = 0; plane < num_planes; ++plane) {
1180
4.93k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
1181
1.53k
      continue;
1182
1.53k
    }
1183
1184
3.40k
    av1_foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit,
1185
3.40k
                                   &ctxt[plane], &ctxt[plane].tile_rect,
1186
3.40k
                                   cm->rst_tmpbuf, cm->rlbs);
1187
3.40k
  }
1188
1.71k
}
1189
1190
void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
1191
                                       AV1_COMMON *cm, int optimized_lr,
1192
1.71k
                                       void *lr_ctxt) {
1193
1.71k
  assert(!cm->features.all_lossless);
1194
1.71k
  const int num_planes = av1_num_planes(cm);
1195
1196
1.71k
  AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
1197
1198
1.71k
  av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
1199
1.71k
                                         optimized_lr, num_planes);
1200
1201
1.71k
  foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
1202
1203
1.71k
  av1_loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
1204
1.71k
}
1205
1206
void av1_foreach_rest_unit_in_row(
1207
    RestorationTileLimits *limits, const AV1PixelRect *tile_rect,
1208
    rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
1209
    int unit_idx0, int hunits_per_tile, int vunits_per_tile, int plane,
1210
    void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs,
1211
    sync_read_fn_t on_sync_read, sync_write_fn_t on_sync_write,
1212
7.37k
    struct AV1LrSyncData *const lr_sync) {
1213
7.37k
  const int tile_w = tile_rect->right - tile_rect->left;
1214
7.37k
  const int ext_size = unit_size * 3 / 2;
1215
7.37k
  int x0 = 0, j = 0;
1216
19.8k
  while (x0 < tile_w) {
1217
12.5k
    int remaining_w = tile_w - x0;
1218
12.5k
    int w = (remaining_w < ext_size) ? remaining_w : unit_size;
1219
1220
12.5k
    limits->h_start = tile_rect->left + x0;
1221
12.5k
    limits->h_end = tile_rect->left + x0 + w;
1222
12.5k
    assert(limits->h_end <= tile_rect->right);
1223
1224
12.5k
    const int unit_idx = unit_idx0 + row_number * hunits_per_tile + j;
1225
1226
    // No sync for even numbered rows
1227
    // For odd numbered rows, Loop Restoration of current block requires the LR
1228
    // of top-right and bottom-right blocks to be completed
1229
1230
    // top-right sync
1231
12.5k
    on_sync_read(lr_sync, row_number, j, plane);
1232
12.5k
    if ((row_number + 1) < vunits_per_tile)
1233
      // bottom-right sync
1234
6.17k
      on_sync_read(lr_sync, row_number + 2, j, plane);
1235
1236
12.5k
    on_rest_unit(limits, tile_rect, unit_idx, priv, tmpbuf, rlbs);
1237
1238
12.5k
    on_sync_write(lr_sync, row_number, j, hunits_per_tile, plane);
1239
1240
12.5k
    x0 += w;
1241
12.5k
    ++j;
1242
12.5k
  }
1243
7.37k
}
1244
1245
18.6k
void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
1246
18.6k
  (void)lr_sync;
1247
18.6k
  (void)r;
1248
18.6k
  (void)c;
1249
18.6k
  (void)plane;
1250
18.6k
}
1251
1252
void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
1253
12.5k
                             const int sb_cols, int plane) {
1254
12.5k
  (void)lr_sync;
1255
12.5k
  (void)r;
1256
12.5k
  (void)c;
1257
12.5k
  (void)sb_cols;
1258
12.5k
  (void)plane;
1259
12.5k
}
1260
1261
static void foreach_rest_unit_in_tile(
1262
    const AV1PixelRect *tile_rect, int tile_row, int tile_col, int tile_cols,
1263
    int hunits_per_tile, int vunits_per_tile, int units_per_tile, int unit_size,
1264
    int ss_y, int plane, rest_unit_visitor_t on_rest_unit, void *priv,
1265
3.40k
    int32_t *tmpbuf, RestorationLineBuffers *rlbs) {
1266
3.40k
  const int tile_h = tile_rect->bottom - tile_rect->top;
1267
3.40k
  const int ext_size = unit_size * 3 / 2;
1268
1269
3.40k
  const int tile_idx = tile_col + tile_row * tile_cols;
1270
3.40k
  const int unit_idx0 = tile_idx * units_per_tile;
1271
1272
3.40k
  int y0 = 0, i = 0;
1273
10.7k
  while (y0 < tile_h) {
1274
7.37k
    int remaining_h = tile_h - y0;
1275
7.37k
    int h = (remaining_h < ext_size) ? remaining_h : unit_size;
1276
1277
7.37k
    RestorationTileLimits limits;
1278
7.37k
    limits.v_start = tile_rect->top + y0;
1279
7.37k
    limits.v_end = tile_rect->top + y0 + h;
1280
7.37k
    assert(limits.v_end <= tile_rect->bottom);
1281
    // Offset the tile upwards to align with the restoration processing stripe
1282
7.37k
    const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
1283
7.37k
    limits.v_start = AOMMAX(tile_rect->top, limits.v_start - voffset);
1284
7.37k
    if (limits.v_end < tile_rect->bottom) limits.v_end -= voffset;
1285
1286
7.37k
    av1_foreach_rest_unit_in_row(
1287
7.37k
        &limits, tile_rect, on_rest_unit, i, unit_size, unit_idx0,
1288
7.37k
        hunits_per_tile, vunits_per_tile, plane, priv, tmpbuf, rlbs,
1289
7.37k
        av1_lr_sync_read_dummy, av1_lr_sync_write_dummy, NULL);
1290
1291
7.37k
    y0 += h;
1292
7.37k
    ++i;
1293
7.37k
  }
1294
3.40k
}
1295
1296
void av1_foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
1297
                                    rest_unit_visitor_t on_rest_unit,
1298
                                    void *priv, AV1PixelRect *tile_rect,
1299
                                    int32_t *tmpbuf,
1300
3.40k
                                    RestorationLineBuffers *rlbs) {
1301
3.40k
  const int is_uv = plane > 0;
1302
3.40k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1303
1304
3.40k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1305
1306
3.40k
  foreach_rest_unit_in_tile(tile_rect, LR_TILE_ROW, LR_TILE_COL, LR_TILE_COLS,
1307
3.40k
                            rsi->horz_units_per_tile, rsi->vert_units_per_tile,
1308
3.40k
                            rsi->units_per_tile, rsi->restoration_unit_size,
1309
3.40k
                            ss_y, plane, on_rest_unit, priv, tmpbuf, rlbs);
1310
3.40k
}
1311
1312
int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
1313
                                       int mi_row, int mi_col, BLOCK_SIZE bsize,
1314
                                       int *rcol0, int *rcol1, int *rrow0,
1315
18.0M
                                       int *rrow1) {
1316
18.0M
  assert(rcol0 && rcol1 && rrow0 && rrow1);
1317
1318
18.0M
  if (bsize != cm->seq_params->sb_size) return 0;
1319
1.60M
  if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) return 0;
1320
1321
432k
  assert(!cm->features.all_lossless);
1322
1323
432k
  const int is_uv = plane > 0;
1324
1325
432k
  const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
1326
432k
  const int tile_w = tile_rect.right - tile_rect.left;
1327
432k
  const int tile_h = tile_rect.bottom - tile_rect.top;
1328
1329
432k
  const int mi_top = 0;
1330
432k
  const int mi_left = 0;
1331
1332
  // Compute the mi-unit corners of the superblock relative to the top-left of
1333
  // the tile
1334
432k
  const int mi_rel_row0 = mi_row - mi_top;
1335
432k
  const int mi_rel_col0 = mi_col - mi_left;
1336
432k
  const int mi_rel_row1 = mi_rel_row0 + mi_size_high[bsize];
1337
432k
  const int mi_rel_col1 = mi_rel_col0 + mi_size_wide[bsize];
1338
1339
432k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1340
432k
  const int size = rsi->restoration_unit_size;
1341
1342
  // Calculate the number of restoration units in this tile (which might be
1343
  // strictly less than rsi->horz_units_per_tile and rsi->vert_units_per_tile)
1344
432k
  const int horz_units = av1_lr_count_units_in_tile(size, tile_w);
1345
432k
  const int vert_units = av1_lr_count_units_in_tile(size, tile_h);
1346
1347
  // The size of an MI-unit on this plane of the image
1348
432k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1349
432k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1350
432k
  const int mi_size_x = MI_SIZE >> ss_x;
1351
432k
  const int mi_size_y = MI_SIZE >> ss_y;
1352
1353
  // Write m for the relative mi column or row, D for the superres denominator
1354
  // and N for the superres numerator. If u is the upscaled pixel offset then
1355
  // we can write the downscaled pixel offset in two ways as:
1356
  //
1357
  //   MI_SIZE * m = N / D u
1358
  //
1359
  // from which we get u = D * MI_SIZE * m / N
1360
432k
  const int mi_to_num_x = av1_superres_scaled(cm)
1361
432k
                              ? mi_size_x * cm->superres_scale_denominator
1362
432k
                              : mi_size_x;
1363
432k
  const int mi_to_num_y = mi_size_y;
1364
432k
  const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
1365
432k
  const int denom_y = size;
1366
1367
432k
  const int rnd_x = denom_x - 1;
1368
432k
  const int rnd_y = denom_y - 1;
1369
1370
  // rcol0/rrow0 should be the first column/row of restoration units (relative
1371
  // to the top-left of the tile) that doesn't start left/below of
1372
  // mi_col/mi_row. For this calculation, we need to round up the division (if
1373
  // the sb starts at runit column 10.1, the first matching runit has column
1374
  // index 11)
1375
432k
  *rcol0 = (mi_rel_col0 * mi_to_num_x + rnd_x) / denom_x;
1376
432k
  *rrow0 = (mi_rel_row0 * mi_to_num_y + rnd_y) / denom_y;
1377
1378
  // rel_col1/rel_row1 is the equivalent calculation, but for the superblock
1379
  // below-right. If we're at the bottom or right of the tile, this restoration
1380
  // unit might not exist, in which case we'll clamp accordingly.
1381
432k
  *rcol1 = AOMMIN((mi_rel_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
1382
432k
  *rrow1 = AOMMIN((mi_rel_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
1383
1384
432k
  return *rcol0 < *rcol1 && *rrow0 < *rrow1;
1385
432k
}
1386
1387
// Extend to left and right
1388
static void extend_lines(uint8_t *buf, int width, int height, int stride,
1389
31.9k
                         int extend, int use_highbitdepth) {
1390
95.8k
  for (int i = 0; i < height; ++i) {
1391
63.9k
    if (use_highbitdepth) {
1392
15.4k
      uint16_t *buf16 = (uint16_t *)buf;
1393
15.4k
      aom_memset16(buf16 - extend, buf16[0], extend);
1394
15.4k
      aom_memset16(buf16 + width, buf16[width - 1], extend);
1395
48.5k
    } else {
1396
48.5k
      memset(buf - extend, buf[0], extend);
1397
48.5k
      memset(buf + width, buf[width - 1], extend);
1398
48.5k
    }
1399
63.9k
    buf += stride;
1400
63.9k
  }
1401
31.9k
}
1402
1403
static void save_deblock_boundary_lines(
1404
    const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
1405
    int stripe, int use_highbd, int is_above,
1406
25.9k
    RestorationStripeBoundaries *boundaries) {
1407
25.9k
  const int is_uv = plane > 0;
1408
25.9k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1409
25.9k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1410
25.9k
  const uint8_t *src_rows = src_buf + row * src_stride;
1411
1412
25.9k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1413
25.9k
                               : boundaries->stripe_boundary_below;
1414
25.9k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1415
25.9k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1416
25.9k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1417
1418
  // There is a rare case in which a processing stripe can end 1px above the
1419
  // crop border. In this case, we do want to use deblocked pixels from below
1420
  // the stripe (hence why we ended up in this function), but instead of
1421
  // fetching 2 "below" rows we need to fetch one and duplicate it.
1422
  // This is equivalent to clamping the sample locations against the crop border
1423
25.9k
  const int lines_to_save =
1424
25.9k
      AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
1425
25.9k
  assert(lines_to_save == 1 || lines_to_save == 2);
1426
1427
25.9k
  int upscaled_width;
1428
25.9k
  int line_bytes;
1429
25.9k
  if (av1_superres_scaled(cm)) {
1430
5.74k
    const int ss_x = is_uv && cm->seq_params->subsampling_x;
1431
5.74k
    upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
1432
5.74k
    line_bytes = upscaled_width << use_highbd;
1433
5.74k
    if (use_highbd)
1434
1.73k
      av1_upscale_normative_rows(
1435
1.73k
          cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
1436
1.73k
          CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
1437
1.73k
          plane, lines_to_save);
1438
4.00k
    else
1439
4.00k
      av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
1440
4.00k
                                 boundaries->stripe_boundary_stride, plane,
1441
4.00k
                                 lines_to_save);
1442
20.2k
  } else {
1443
20.2k
    upscaled_width = frame->crop_widths[is_uv];
1444
20.2k
    line_bytes = upscaled_width << use_highbd;
1445
60.6k
    for (int i = 0; i < lines_to_save; i++) {
1446
40.4k
      memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
1447
40.4k
             line_bytes);
1448
40.4k
    }
1449
20.2k
  }
1450
  // If we only saved one line, then copy it into the second line buffer
1451
25.9k
  if (lines_to_save == 1)
1452
17
    memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
1453
1454
25.9k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1455
25.9k
               RESTORATION_EXTRA_HORZ, use_highbd);
1456
25.9k
}
1457
1458
static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1459
                                     const AV1_COMMON *cm, int plane, int row,
1460
                                     int stripe, int use_highbd, int is_above,
1461
5.99k
                                     RestorationStripeBoundaries *boundaries) {
1462
5.99k
  const int is_uv = plane > 0;
1463
5.99k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1464
5.99k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1465
5.99k
  const uint8_t *src_rows = src_buf + row * src_stride;
1466
1467
5.99k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1468
5.99k
                               : boundaries->stripe_boundary_below;
1469
5.99k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1470
5.99k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1471
5.99k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1472
5.99k
  const int src_width = frame->crop_widths[is_uv];
1473
1474
  // At the point where this function is called, we've already applied
1475
  // superres. So we don't need to extend the lines here, we can just
1476
  // pull directly from the topmost row of the upscaled frame.
1477
5.99k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1478
5.99k
  const int upscaled_width = av1_superres_scaled(cm)
1479
5.99k
                                 ? (cm->superres_upscaled_width + ss_x) >> ss_x
1480
5.99k
                                 : src_width;
1481
5.99k
  const int line_bytes = upscaled_width << use_highbd;
1482
17.9k
  for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
1483
    // Copy the line at 'row' into both context lines. This is because
1484
    // we want to (effectively) extend the outermost row of CDEF data
1485
    // from this tile to produce a border, rather than using deblocked
1486
    // pixels from the tile above/below.
1487
11.9k
    memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
1488
11.9k
  }
1489
5.99k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1490
5.99k
               RESTORATION_EXTRA_HORZ, use_highbd);
1491
5.99k
}
1492
1493
static void save_tile_row_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1494
                                         int use_highbd, int plane,
1495
5.99k
                                         AV1_COMMON *cm, int after_cdef) {
1496
5.99k
  const int is_uv = plane > 0;
1497
5.99k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1498
5.99k
  const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1499
5.99k
  const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
1500
1501
  // Get the tile rectangle, with height rounded up to the next multiple of 8
1502
  // luma pixels (only relevant for the bottom tile of the frame)
1503
5.99k
  const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
1504
5.99k
  const int stripe0 = 0;
1505
1506
5.99k
  RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
1507
1508
5.99k
  const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
1509
1510
5.99k
  int tile_stripe;
1511
37.9k
  for (tile_stripe = 0;; ++tile_stripe) {
1512
37.9k
    const int rel_y0 = AOMMAX(0, tile_stripe * stripe_height - stripe_off);
1513
37.9k
    const int y0 = tile_rect.top + rel_y0;
1514
37.9k
    if (y0 >= tile_rect.bottom) break;
1515
1516
31.9k
    const int rel_y1 = (tile_stripe + 1) * stripe_height - stripe_off;
1517
31.9k
    const int y1 = AOMMIN(tile_rect.top + rel_y1, tile_rect.bottom);
1518
1519
31.9k
    const int frame_stripe = stripe0 + tile_stripe;
1520
1521
    // In this case, we should only use CDEF pixels at the top
1522
    // and bottom of the frame as a whole; internal tile boundaries
1523
    // can use deblocked pixels from adjacent tiles for context.
1524
31.9k
    const int use_deblock_above = (frame_stripe > 0);
1525
31.9k
    const int use_deblock_below = (y1 < plane_height);
1526
1527
31.9k
    if (!after_cdef) {
1528
      // Save deblocked context where needed.
1529
15.9k
      if (use_deblock_above) {
1530
12.9k
        save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
1531
12.9k
                                    frame_stripe, use_highbd, 1, boundaries);
1532
12.9k
      }
1533
15.9k
      if (use_deblock_below) {
1534
12.9k
        save_deblock_boundary_lines(frame, cm, plane, y1, frame_stripe,
1535
12.9k
                                    use_highbd, 0, boundaries);
1536
12.9k
      }
1537
15.9k
    } else {
1538
      // Save CDEF context where needed. Note that we need to save the CDEF
1539
      // context for a particular boundary iff we *didn't* save deblocked
1540
      // context for that boundary.
1541
      //
1542
      // In addition, we need to save copies of the outermost line within
1543
      // the tile, rather than using data from outside the tile.
1544
15.9k
      if (!use_deblock_above) {
1545
2.99k
        save_cdef_boundary_lines(frame, cm, plane, y0, frame_stripe, use_highbd,
1546
2.99k
                                 1, boundaries);
1547
2.99k
      }
1548
15.9k
      if (!use_deblock_below) {
1549
2.99k
        save_cdef_boundary_lines(frame, cm, plane, y1 - 1, frame_stripe,
1550
2.99k
                                 use_highbd, 0, boundaries);
1551
2.99k
      }
1552
15.9k
    }
1553
31.9k
  }
1554
5.99k
}
1555
1556
// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
1557
// lines to be used as boundary in the loop restoration process. The
1558
// lines are saved in rst_internal.stripe_boundary_lines
1559
void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1560
2.13k
                                              AV1_COMMON *cm, int after_cdef) {
1561
2.13k
  const int num_planes = av1_num_planes(cm);
1562
2.13k
  const int use_highbd = cm->seq_params->use_highbitdepth;
1563
8.12k
  for (int p = 0; p < num_planes; ++p) {
1564
5.99k
    save_tile_row_boundary_lines(frame, use_highbd, p, cm, after_cdef);
1565
5.99k
  }
1566
2.13k
}