Coverage Report

Created: 2025-07-23 08:18

/src/bzip2/blocksort.c
Line
Count
Source (jump to first uncovered line)
1
2
/*-------------------------------------------------------------*/
3
/*--- Block sorting machinery                               ---*/
4
/*---                                           blocksort.c ---*/
5
/*-------------------------------------------------------------*/
6
7
/* ------------------------------------------------------------------
8
   This file is part of bzip2/libbzip2, a program and library for
9
   lossless, block-sorting data compression.
10
11
   bzip2/libbzip2 version 1.0.6 of 6 September 2010
12
   Copyright (C) 1996-2010 Julian Seward <jseward@acm.org>
13
14
   Please read the WARNING, DISCLAIMER and PATENTS sections in the 
15
   README file.
16
17
   This program is released under the terms of the license contained
18
   in the file LICENSE.
19
   ------------------------------------------------------------------ */
20
21
22
#include "bzlib_private.h"
23
24
/*---------------------------------------------*/
25
/*--- Fallback O(N log(N)^2) sorting        ---*/
26
/*--- algorithm, for repetitive blocks      ---*/
27
/*---------------------------------------------*/
28
29
/*---------------------------------------------*/
30
static 
31
__inline__
32
void fallbackSimpleSort ( UInt32* fmap, 
33
                          UInt32* eclass, 
34
                          Int32   lo, 
35
                          Int32   hi )
36
113M
{
37
113M
   Int32 i, j, tmp;
38
113M
   UInt32 ec_tmp;
39
40
113M
   if (lo == hi) return;
41
42
110M
   if (hi - lo > 3) {
43
93.3M
      for ( i = hi-4; i >= lo; i-- ) {
44
70.7M
         tmp = fmap[i];
45
70.7M
         ec_tmp = eclass[tmp];
46
93.2M
         for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 )
47
22.5M
            fmap[j-4] = fmap[j];
48
70.7M
         fmap[j-4] = tmp;
49
70.7M
      }
50
22.6M
   }
51
52
364M
   for ( i = hi-1; i >= lo; i-- ) {
53
253M
      tmp = fmap[i];
54
253M
      ec_tmp = eclass[tmp];
55
363M
      for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ )
56
109M
         fmap[j-1] = fmap[j];
57
253M
      fmap[j-1] = tmp;
58
253M
   }
59
110M
}
60
61
62
/*---------------------------------------------*/
63
#define fswap(zz1, zz2) \
64
1.41G
   { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
65
66
45.1M
#define fvswap(zzp1, zzp2, zzn)       \
67
45.1M
{                                     \
68
45.1M
   Int32 yyp1 = (zzp1);               \
69
45.1M
   Int32 yyp2 = (zzp2);               \
70
45.1M
   Int32 yyn  = (zzn);                \
71
238M
   while (yyn > 0) {                  \
72
193M
      fswap(fmap[yyp1], fmap[yyp2]);  \
73
193M
      yyp1++; yyp2++; yyn--;          \
74
193M
   }                                  \
75
45.1M
}
76
77
78
45.1M
#define fmin(a,b) ((a) < (b)) ? (a) : (b)
79
80
138M
#define fpush(lz,hz) { stackLo[sp] = lz; \
81
138M
                       stackHi[sp] = hz; \
82
138M
                       sp++; }
83
84
138M
#define fpop(lz,hz) { sp--;              \
85
138M
                      lz = stackLo[sp];  \
86
138M
                      hz = stackHi[sp]; }
87
88
138M
#define FALLBACK_QSORT_SMALL_THRESH 10
89
#define FALLBACK_QSORT_STACK_SIZE   100
90
91
92
static
93
void fallbackQSort3 ( UInt32* fmap, 
94
                      UInt32* eclass,
95
                      Int32   loSt, 
96
                      Int32   hiSt )
97
93.0M
{
98
93.0M
   Int32 unLo, unHi, ltLo, gtHi, n, m;
99
93.0M
   Int32 sp, lo, hi;
100
93.0M
   UInt32 med, r, r3;
101
93.0M
   Int32 stackLo[FALLBACK_QSORT_STACK_SIZE];
102
93.0M
   Int32 stackHi[FALLBACK_QSORT_STACK_SIZE];
103
104
93.0M
   r = 0;
105
106
93.0M
   sp = 0;
107
93.0M
   fpush ( loSt, hiSt );
108
109
231M
   while (sp > 0) {
110
111
138M
      AssertH ( sp < FALLBACK_QSORT_STACK_SIZE - 1, 1004 );
112
113
138M
      fpop ( lo, hi );
114
138M
      if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
115
113M
         fallbackSimpleSort ( fmap, eclass, lo, hi );
116
113M
         continue;
117
113M
      }
118
119
      /* Random partitioning.  Median of 3 sometimes fails to
120
         avoid bad cases.  Median of 9 seems to help but 
121
         looks rather expensive.  This too seems to work but
122
         is cheaper.  Guidance for the magic constants 
123
         7621 and 32768 is taken from Sedgewick's algorithms
124
         book, chapter 35.
125
      */
126
24.6M
      r = ((r * 7621) + 1) % 32768;
127
24.6M
      r3 = r % 3;
128
24.6M
      if (r3 == 0) med = eclass[fmap[lo]]; else
129
21.6M
      if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else
130
8.05M
                   med = eclass[fmap[hi]];
131
132
24.6M
      unLo = ltLo = lo;
133
24.6M
      unHi = gtHi = hi;
134
135
126M
      while (1) {
136
1.36G
         while (1) {
137
1.36G
            if (unLo > unHi) break;
138
1.35G
            n = (Int32)eclass[fmap[unLo]] - (Int32)med;
139
1.35G
            if (n == 0) { 
140
905M
               fswap(fmap[unLo], fmap[ltLo]); 
141
905M
               ltLo++; unLo++; 
142
905M
               continue; 
143
905M
            };
144
448M
            if (n > 0) break;
145
335M
            unLo++;
146
335M
         }
147
676M
         while (1) {
148
676M
            if (unLo > unHi) break;
149
651M
            n = (Int32)eclass[fmap[unHi]] - (Int32)med;
150
651M
            if (n == 0) { 
151
212M
               fswap(fmap[unHi], fmap[gtHi]); 
152
212M
               gtHi--; unHi--; 
153
212M
               continue; 
154
439M
            };
155
439M
            if (n < 0) break;
156
337M
            unHi--;
157
337M
         }
158
126M
         if (unLo > unHi) break;
159
101M
         fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--;
160
101M
      }
161
162
24.6M
      AssertD ( unHi == unLo-1, "fallbackQSort3(2)" );
163
164
24.6M
      if (gtHi < ltLo) continue;
165
166
22.5M
      n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n);
167
22.5M
      m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m);
168
169
22.5M
      n = lo + unLo - ltLo - 1;
170
22.5M
      m = hi - (gtHi - unHi) + 1;
171
172
22.5M
      if (n - lo > hi - m) {
173
11.2M
         fpush ( lo, n );
174
11.2M
         fpush ( m, hi );
175
11.2M
      } else {
176
11.2M
         fpush ( m, hi );
177
11.2M
         fpush ( lo, n );
178
11.2M
      }
179
22.5M
   }
180
93.0M
}
181
182
#undef fmin
183
#undef fpush
184
#undef fpop
185
#undef fswap
186
#undef fvswap
187
#undef FALLBACK_QSORT_SMALL_THRESH
188
#undef FALLBACK_QSORT_STACK_SIZE
189
190
191
/*---------------------------------------------*/
192
/* Pre:
193
      nblock > 0
194
      eclass exists for [0 .. nblock-1]
195
      ((UChar*)eclass) [0 .. nblock-1] holds block
196
      ptr exists for [0 .. nblock-1]
197
198
   Post:
199
      ((UChar*)eclass) [0 .. nblock-1] holds block
200
      All other areas of eclass destroyed
201
      fmap [0 .. nblock-1] holds sorted order
202
      bhtab [ 0 .. 2+(nblock/32) ] destroyed
203
*/
204
205
268M
#define       SET_BH(zz)  bhtab[(zz) >> 5] |= ((UInt32)1 << ((zz) & 31))
206
2.97M
#define     CLEAR_BH(zz)  bhtab[(zz) >> 5] &= ~((UInt32)1 << ((zz) & 31))
207
3.64G
#define     ISSET_BH(zz)  (bhtab[(zz) >> 5] & ((UInt32)1 << ((zz) & 31)))
208
61.0M
#define      WORD_BH(zz)  bhtab[(zz) >> 5]
209
513M
#define UNALIGNED_BH(zz)  ((zz) & 0x01f)
210
211
static
212
void fallbackSort ( UInt32* fmap, 
213
                    UInt32* eclass, 
214
                    UInt32* bhtab,
215
                    Int32   nblock,
216
                    Int32   verb )
217
92.9k
{
218
92.9k
   Int32 ftab[257];
219
92.9k
   Int32 ftabCopy[256];
220
92.9k
   Int32 H, i, j, k, l, r, cc, cc1;
221
92.9k
   Int32 nNotDone;
222
92.9k
   Int32 nBhtab;
223
92.9k
   UChar* eclass8 = (UChar*)eclass;
224
225
   /*--
226
      Initial 1-char radix sort to generate
227
      initial fmap and initial BH bits.
228
   --*/
229
92.9k
   if (verb >= 4)
230
0
      VPrintf0 ( "        bucket sorting ...\n" );
231
23.9M
   for (i = 0; i < 257;    i++) ftab[i] = 0;
232
162M
   for (i = 0; i < nblock; i++) ftab[eclass8[i]]++;
233
23.8M
   for (i = 0; i < 256;    i++) ftabCopy[i] = ftab[i];
234
23.8M
   for (i = 1; i < 257;    i++) ftab[i] += ftab[i-1];
235
236
162M
   for (i = 0; i < nblock; i++) {
237
162M
      j = eclass8[i];
238
162M
      k = ftab[j] - 1;
239
162M
      ftab[j] = k;
240
162M
      fmap[k] = i;
241
162M
   }
242
243
92.9k
   nBhtab = 2 + (nblock / 32);
244
5.30M
   for (i = 0; i < nBhtab; i++) bhtab[i] = 0;
245
23.8M
   for (i = 0; i < 256; i++) SET_BH(ftab[i]);
246
247
   /*--
248
      Inductively refine the buckets.  Kind-of an
249
      "exponential radix sort" (!), inspired by the
250
      Manber-Myers suffix array construction algorithm.
251
   --*/
252
253
   /*-- set sentinel bits for block-end detection --*/
254
3.06M
   for (i = 0; i < 32; i++) { 
255
2.97M
      SET_BH(nblock + 2*i);
256
2.97M
      CLEAR_BH(nblock + 2*i + 1);
257
2.97M
   }
258
259
   /*-- the log(N) loop --*/
260
92.9k
   H = 1;
261
589k
   while (1) {
262
263
589k
      if (verb >= 4) 
264
0
         VPrintf1 ( "        depth %6d has ", H );
265
266
589k
      j = 0;
267
1.93G
      for (i = 0; i < nblock; i++) {
268
1.93G
         if (ISSET_BH(i)) j = i;
269
1.93G
         k = fmap[i] - H; if (k < 0) k += nblock;
270
1.93G
         eclass[k] = j;
271
1.93G
      }
272
273
589k
      nNotDone = 0;
274
589k
      r = -1;
275
93.6M
      while (1) {
276
277
   /*-- find the next non-singleton bucket --*/
278
93.6M
         k = r + 1;
279
331M
         while (ISSET_BH(k) && UNALIGNED_BH(k)) k++;
280
93.6M
         if (ISSET_BH(k)) {
281
17.8M
            while (WORD_BH(k) == 0xffffffff) k += 32;
282
65.0M
            while (ISSET_BH(k)) k++;
283
9.69M
         }
284
93.6M
         l = k - 1;
285
93.6M
         if (l >= nblock) break;
286
349M
         while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++;
287
93.0M
         if (!ISSET_BH(k)) {
288
43.1M
            while (WORD_BH(k) == 0x00000000) k += 32;
289
91.8M
            while (!ISSET_BH(k)) k++;
290
10.4M
         }
291
93.0M
         r = k - 1;
292
93.0M
         if (r >= nblock) break;
293
294
         /*-- now [l, r] bracket current bucket --*/
295
93.0M
         if (r > l) {
296
93.0M
            nNotDone += (r - l + 1);
297
93.0M
            fallbackQSort3 ( fmap, eclass, l, r );
298
299
            /*-- scan bucket and generate header bits-- */
300
93.0M
            cc = -1;
301
1.57G
            for (i = l; i <= r; i++) {
302
1.47G
               cc1 = eclass[fmap[i]];
303
1.47G
               if (cc != cc1) { SET_BH(i); cc = cc1; };
304
1.47G
            }
305
93.0M
         }
306
93.0M
      }
307
308
589k
      if (verb >= 4) 
309
0
         VPrintf1 ( "%6d unresolved strings\n", nNotDone );
310
311
589k
      H *= 2;
312
589k
      if (H > nblock || nNotDone == 0) break;
313
589k
   }
314
315
   /*-- 
316
      Reconstruct the original block in
317
      eclass8 [0 .. nblock-1], since the
318
      previous phase destroyed it.
319
   --*/
320
92.9k
   if (verb >= 4)
321
0
      VPrintf0 ( "        reconstructing block ...\n" );
322
92.9k
   j = 0;
323
162M
   for (i = 0; i < nblock; i++) {
324
177M
      while (ftabCopy[j] == 0) j++;
325
162M
      ftabCopy[j]--;
326
162M
      eclass8[fmap[i]] = (UChar)j;
327
162M
   }
328
92.9k
   AssertH ( j < 256, 1005 );
329
92.9k
}
330
331
#undef       SET_BH
332
#undef     CLEAR_BH
333
#undef     ISSET_BH
334
#undef      WORD_BH
335
#undef UNALIGNED_BH
336
337
338
/*---------------------------------------------*/
339
/*--- The main, O(N^2 log(N)) sorting       ---*/
340
/*--- algorithm.  Faster for "normal"       ---*/
341
/*--- non-repetitive blocks.                ---*/
342
/*---------------------------------------------*/
343
344
/*---------------------------------------------*/
345
static
346
__inline__
347
Bool mainGtU ( UInt32  i1, 
348
               UInt32  i2,
349
               UChar*  block, 
350
               UInt16* quadrant,
351
               UInt32  nblock,
352
               Int32*  budget )
353
129M
{
354
129M
   Int32  k;
355
129M
   UChar  c1, c2;
356
129M
   UInt16 s1, s2;
357
358
129M
   AssertD ( i1 != i2, "mainGtU" );
359
   /* 1 */
360
129M
   c1 = block[i1]; c2 = block[i2];
361
129M
   if (c1 != c2) return (c1 > c2);
362
125M
   i1++; i2++;
363
   /* 2 */
364
125M
   c1 = block[i1]; c2 = block[i2];
365
125M
   if (c1 != c2) return (c1 > c2);
366
123M
   i1++; i2++;
367
   /* 3 */
368
123M
   c1 = block[i1]; c2 = block[i2];
369
123M
   if (c1 != c2) return (c1 > c2);
370
121M
   i1++; i2++;
371
   /* 4 */
372
121M
   c1 = block[i1]; c2 = block[i2];
373
121M
   if (c1 != c2) return (c1 > c2);
374
120M
   i1++; i2++;
375
   /* 5 */
376
120M
   c1 = block[i1]; c2 = block[i2];
377
120M
   if (c1 != c2) return (c1 > c2);
378
118M
   i1++; i2++;
379
   /* 6 */
380
118M
   c1 = block[i1]; c2 = block[i2];
381
118M
   if (c1 != c2) return (c1 > c2);
382
116M
   i1++; i2++;
383
   /* 7 */
384
116M
   c1 = block[i1]; c2 = block[i2];
385
116M
   if (c1 != c2) return (c1 > c2);
386
114M
   i1++; i2++;
387
   /* 8 */
388
114M
   c1 = block[i1]; c2 = block[i2];
389
114M
   if (c1 != c2) return (c1 > c2);
390
113M
   i1++; i2++;
391
   /* 9 */
392
113M
   c1 = block[i1]; c2 = block[i2];
393
113M
   if (c1 != c2) return (c1 > c2);
394
111M
   i1++; i2++;
395
   /* 10 */
396
111M
   c1 = block[i1]; c2 = block[i2];
397
111M
   if (c1 != c2) return (c1 > c2);
398
110M
   i1++; i2++;
399
   /* 11 */
400
110M
   c1 = block[i1]; c2 = block[i2];
401
110M
   if (c1 != c2) return (c1 > c2);
402
109M
   i1++; i2++;
403
   /* 12 */
404
109M
   c1 = block[i1]; c2 = block[i2];
405
109M
   if (c1 != c2) return (c1 > c2);
406
107M
   i1++; i2++;
407
408
107M
   k = nblock + 8;
409
410
867M
   do {
411
      /* 1 */
412
867M
      c1 = block[i1]; c2 = block[i2];
413
867M
      if (c1 != c2) return (c1 > c2);
414
862M
      s1 = quadrant[i1]; s2 = quadrant[i2];
415
862M
      if (s1 != s2) return (s1 > s2);
416
850M
      i1++; i2++;
417
      /* 2 */
418
850M
      c1 = block[i1]; c2 = block[i2];
419
850M
      if (c1 != c2) return (c1 > c2);
420
846M
      s1 = quadrant[i1]; s2 = quadrant[i2];
421
846M
      if (s1 != s2) return (s1 > s2);
422
823M
      i1++; i2++;
423
      /* 3 */
424
823M
      c1 = block[i1]; c2 = block[i2];
425
823M
      if (c1 != c2) return (c1 > c2);
426
819M
      s1 = quadrant[i1]; s2 = quadrant[i2];
427
819M
      if (s1 != s2) return (s1 > s2);
428
814M
      i1++; i2++;
429
      /* 4 */
430
814M
      c1 = block[i1]; c2 = block[i2];
431
814M
      if (c1 != c2) return (c1 > c2);
432
810M
      s1 = quadrant[i1]; s2 = quadrant[i2];
433
810M
      if (s1 != s2) return (s1 > s2);
434
800M
      i1++; i2++;
435
      /* 5 */
436
800M
      c1 = block[i1]; c2 = block[i2];
437
800M
      if (c1 != c2) return (c1 > c2);
438
797M
      s1 = quadrant[i1]; s2 = quadrant[i2];
439
797M
      if (s1 != s2) return (s1 > s2);
440
791M
      i1++; i2++;
441
      /* 6 */
442
791M
      c1 = block[i1]; c2 = block[i2];
443
791M
      if (c1 != c2) return (c1 > c2);
444
788M
      s1 = quadrant[i1]; s2 = quadrant[i2];
445
788M
      if (s1 != s2) return (s1 > s2);
446
778M
      i1++; i2++;
447
      /* 7 */
448
778M
      c1 = block[i1]; c2 = block[i2];
449
778M
      if (c1 != c2) return (c1 > c2);
450
774M
      s1 = quadrant[i1]; s2 = quadrant[i2];
451
774M
      if (s1 != s2) return (s1 > s2);
452
770M
      i1++; i2++;
453
      /* 8 */
454
770M
      c1 = block[i1]; c2 = block[i2];
455
770M
      if (c1 != c2) return (c1 > c2);
456
766M
      s1 = quadrant[i1]; s2 = quadrant[i2];
457
766M
      if (s1 != s2) return (s1 > s2);
458
759M
      i1++; i2++;
459
460
759M
      if (i1 >= nblock) i1 -= nblock;
461
759M
      if (i2 >= nblock) i2 -= nblock;
462
463
759M
      k -= 8;
464
759M
      (*budget)--;
465
759M
   }
466
759M
      while (k >= 0);
467
468
31.3k
   return False;
469
107M
}
470
471
472
/*---------------------------------------------*/
473
/*--
474
   Knuth's increments seem to work better
475
   than Incerpi-Sedgewick here.  Possibly
476
   because the number of elems to sort is
477
   usually small, typically <= 20.
478
--*/
479
static
480
Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280,
481
                   9841, 29524, 88573, 265720,
482
                   797161, 2391484 };
483
484
static
485
void mainSimpleSort ( UInt32* ptr,
486
                      UChar*  block,
487
                      UInt16* quadrant,
488
                      Int32   nblock,
489
                      Int32   lo, 
490
                      Int32   hi, 
491
                      Int32   d,
492
                      Int32*  budget )
493
1.42M
{
494
1.42M
   Int32 i, j, h, bigN, hp;
495
1.42M
   UInt32 v;
496
497
1.42M
   bigN = hi - lo + 1;
498
1.42M
   if (bigN < 2) return;
499
500
1.16M
   hp = 0;
501
3.18M
   while (incs[hp] < bigN) hp++;
502
1.16M
   hp--;
503
504
3.15M
   for (; hp >= 0; hp--) {
505
1.99M
      h = incs[hp];
506
507
1.99M
      i = lo + h;
508
22.0M
      while (True) {
509
510
         /*-- copy 1 --*/
511
22.0M
         if (i > hi) break;
512
21.5M
         v = ptr[i];
513
21.5M
         j = i;
514
43.5M
         while ( mainGtU ( 
515
43.5M
                    ptr[j-h]+d, v+d, block, quadrant, nblock, budget 
516
43.5M
                 ) ) {
517
25.3M
            ptr[j] = ptr[j-h];
518
25.3M
            j = j - h;
519
25.3M
            if (j <= (lo + h - 1)) break;
520
25.3M
         }
521
21.5M
         ptr[j] = v;
522
21.5M
         i++;
523
524
         /*-- copy 2 --*/
525
21.5M
         if (i > hi) break;
526
20.7M
         v = ptr[i];
527
20.7M
         j = i;
528
43.3M
         while ( mainGtU ( 
529
43.3M
                    ptr[j-h]+d, v+d, block, quadrant, nblock, budget 
530
43.3M
                 ) ) {
531
25.4M
            ptr[j] = ptr[j-h];
532
25.4M
            j = j - h;
533
25.4M
            if (j <= (lo + h - 1)) break;
534
25.4M
         }
535
20.7M
         ptr[j] = v;
536
20.7M
         i++;
537
538
         /*-- copy 3 --*/
539
20.7M
         if (i > hi) break;
540
20.0M
         v = ptr[i];
541
20.0M
         j = i;
542
42.6M
         while ( mainGtU ( 
543
42.6M
                    ptr[j-h]+d, v+d, block, quadrant, nblock, budget 
544
42.6M
                 ) ) {
545
25.1M
            ptr[j] = ptr[j-h];
546
25.1M
            j = j - h;
547
25.1M
            if (j <= (lo + h - 1)) break;
548
25.1M
         }
549
20.0M
         ptr[j] = v;
550
20.0M
         i++;
551
552
20.0M
         if (*budget < 0) return;
553
20.0M
      }
554
1.99M
   }
555
1.16M
}
556
557
558
/*---------------------------------------------*/
559
/*--
560
   The following is an implementation of
561
   an elegant 3-way quicksort for strings,
562
   described in a paper "Fast Algorithms for
563
   Sorting and Searching Strings", by Robert
564
   Sedgewick and Jon L. Bentley.
565
--*/
566
567
#define mswap(zz1, zz2) \
568
268M
   { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; }
569
570
523k
#define mvswap(zzp1, zzp2, zzn)       \
571
523k
{                                     \
572
523k
   Int32 yyp1 = (zzp1);               \
573
523k
   Int32 yyp2 = (zzp2);               \
574
523k
   Int32 yyn  = (zzn);                \
575
9.39M
   while (yyn > 0) {                  \
576
8.87M
      mswap(ptr[yyp1], ptr[yyp2]);    \
577
8.87M
      yyp1++; yyp2++; yyn--;          \
578
8.87M
   }                                  \
579
523k
}
580
581
static 
582
__inline__
583
UChar mmed3 ( UChar a, UChar b, UChar c )
584
1.25M
{
585
1.25M
   UChar t;
586
1.25M
   if (a > b) { t = a; a = b; b = t; };
587
1.25M
   if (b > c) { 
588
58.2k
      b = c;
589
58.2k
      if (a > b) b = a;
590
58.2k
   }
591
1.25M
   return b;
592
1.25M
}
593
594
523k
#define mmin(a,b) ((a) < (b)) ? (a) : (b)
595
596
2.67M
#define mpush(lz,hz,dz) { stackLo[sp] = lz; \
597
2.67M
                          stackHi[sp] = hz; \
598
2.67M
                          stackD [sp] = dz; \
599
2.67M
                          sp++; }
600
601
2.67M
#define mpop(lz,hz,dz) { sp--;             \
602
2.67M
                         lz = stackLo[sp]; \
603
2.67M
                         hz = stackHi[sp]; \
604
2.67M
                         dz = stackD [sp]; }
605
606
607
1.57M
#define mnextsize(az) (nextHi[az]-nextLo[az])
608
609
#define mnextswap(az,bz)                                        \
610
542k
   { Int32 tz;                                                  \
611
542k
     tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \
612
542k
     tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \
613
542k
     tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; }
614
615
616
5.35M
#define MAIN_QSORT_SMALL_THRESH 20
617
1.36M
#define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT)
618
#define MAIN_QSORT_STACK_SIZE 100
619
620
static
621
void mainQSort3 ( UInt32* ptr,
622
                  UChar*  block,
623
                  UInt16* quadrant,
624
                  Int32   nblock,
625
                  Int32   loSt, 
626
                  Int32   hiSt, 
627
                  Int32   dSt,
628
                  Int32*  budget )
629
901k
{
630
901k
   Int32 unLo, unHi, ltLo, gtHi, n, m, med;
631
901k
   Int32 sp, lo, hi, d;
632
633
901k
   Int32 stackLo[MAIN_QSORT_STACK_SIZE];
634
901k
   Int32 stackHi[MAIN_QSORT_STACK_SIZE];
635
901k
   Int32 stackD [MAIN_QSORT_STACK_SIZE];
636
637
901k
   Int32 nextLo[3];
638
901k
   Int32 nextHi[3];
639
901k
   Int32 nextD [3];
640
641
901k
   sp = 0;
642
901k
   mpush ( loSt, hiSt, dSt );
643
644
3.57M
   while (sp > 0) {
645
646
2.67M
      AssertH ( sp < MAIN_QSORT_STACK_SIZE - 2, 1001 );
647
648
2.67M
      mpop ( lo, hi, d );
649
2.67M
      if (hi - lo < MAIN_QSORT_SMALL_THRESH || 
650
2.67M
          d > MAIN_QSORT_DEPTH_THRESH) {
651
1.42M
         mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget );
652
1.42M
         if (*budget < 0) return;
653
1.41M
         continue;
654
1.42M
      }
655
656
1.25M
      med = (Int32) 
657
1.25M
            mmed3 ( block[ptr[ lo         ]+d],
658
1.25M
                    block[ptr[ hi         ]+d],
659
1.25M
                    block[ptr[ (lo+hi)>>1 ]+d] );
660
661
1.25M
      unLo = ltLo = lo;
662
1.25M
      unHi = gtHi = hi;
663
664
1.70M
      while (True) {
665
235M
         while (True) {
666
235M
            if (unLo > unHi) break;
667
233M
            n = ((Int32)block[ptr[unLo]+d]) - med;
668
233M
            if (n == 0) { 
669
227M
               mswap(ptr[unLo], ptr[ltLo]); 
670
227M
               ltLo++; unLo++; continue; 
671
227M
            };
672
6.38M
            if (n >  0) break;
673
5.83M
            unLo++;
674
5.83M
         }
675
37.7M
         while (True) {
676
37.7M
            if (unLo > unHi) break;
677
36.4M
            n = ((Int32)block[ptr[unHi]+d]) - med;
678
36.4M
            if (n == 0) { 
679
31.1M
               mswap(ptr[unHi], ptr[gtHi]); 
680
31.1M
               gtHi--; unHi--; continue; 
681
31.1M
            };
682
5.32M
            if (n <  0) break;
683
4.87M
            unHi--;
684
4.87M
         }
685
1.70M
         if (unLo > unHi) break;
686
450k
         mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--;
687
450k
      }
688
689
1.25M
      AssertD ( unHi == unLo-1, "mainQSort3(2)" );
690
691
1.25M
      if (gtHi < ltLo) {
692
990k
         mpush(lo, hi, d+1 );
693
990k
         continue;
694
990k
      }
695
696
261k
      n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n);
697
261k
      m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m);
698
699
261k
      n = lo + unLo - ltLo - 1;
700
261k
      m = hi - (gtHi - unHi) + 1;
701
702
261k
      nextLo[0] = lo;  nextHi[0] = n;   nextD[0] = d;
703
261k
      nextLo[1] = m;   nextHi[1] = hi;  nextD[1] = d;
704
261k
      nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1;
705
706
261k
      if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
707
261k
      if (mnextsize(1) < mnextsize(2)) mnextswap(1,2);
708
261k
      if (mnextsize(0) < mnextsize(1)) mnextswap(0,1);
709
710
261k
      AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" );
711
261k
      AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" );
712
713
261k
      mpush (nextLo[0], nextHi[0], nextD[0]);
714
261k
      mpush (nextLo[1], nextHi[1], nextD[1]);
715
261k
      mpush (nextLo[2], nextHi[2], nextD[2]);
716
261k
   }
717
901k
}
718
719
#undef mswap
720
#undef mvswap
721
#undef mpush
722
#undef mpop
723
#undef mmin
724
#undef mnextsize
725
#undef mnextswap
726
#undef MAIN_QSORT_SMALL_THRESH
727
#undef MAIN_QSORT_DEPTH_THRESH
728
#undef MAIN_QSORT_STACK_SIZE
729
730
731
/*---------------------------------------------*/
732
/* Pre:
733
      nblock > N_OVERSHOOT
734
      block32 exists for [0 .. nblock-1 +N_OVERSHOOT]
735
      ((UChar*)block32) [0 .. nblock-1] holds block
736
      ptr exists for [0 .. nblock-1]
737
738
   Post:
739
      ((UChar*)block32) [0 .. nblock-1] holds block
740
      All other areas of block32 destroyed
741
      ftab [0 .. 65536 ] destroyed
742
      ptr [0 .. nblock-1] holds sorted order
743
      if (*budget < 0), sorting was abandoned
744
*/
745
746
24.5M
#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
747
3.53G
#define SETMASK (1 << 21)
748
1.77G
#define CLEARMASK (~(SETMASK))
749
750
static
751
void mainSort ( UInt32* ptr, 
752
                UChar*  block,
753
                UInt16* quadrant, 
754
                UInt32* ftab,
755
                Int32   nblock,
756
                Int32   verb,
757
                Int32*  budget )
758
9.08k
{
759
9.08k
   Int32  i, j, k, ss, sb;
760
9.08k
   Int32  runningOrder[256];
761
9.08k
   Bool   bigDone[256];
762
9.08k
   Int32  copyStart[256];
763
9.08k
   Int32  copyEnd  [256];
764
9.08k
   UChar  c1;
765
9.08k
   Int32  numQSorted;
766
9.08k
   UInt16 s;
767
9.08k
   if (verb >= 4) VPrintf0 ( "        main sort initialise ...\n" );
768
769
   /*-- set up the 2-byte frequency table --*/
770
595M
   for (i = 65536; i >= 0; i--) ftab[i] = 0;
771
772
9.08k
   j = block[0] << 8;
773
9.08k
   i = nblock-1;
774
25.9M
   for (; i >= 3; i -= 4) {
775
25.9M
      quadrant[i] = 0;
776
25.9M
      j = (j >> 8) | ( ((UInt16)block[i]) << 8);
777
25.9M
      ftab[j]++;
778
25.9M
      quadrant[i-1] = 0;
779
25.9M
      j = (j >> 8) | ( ((UInt16)block[i-1]) << 8);
780
25.9M
      ftab[j]++;
781
25.9M
      quadrant[i-2] = 0;
782
25.9M
      j = (j >> 8) | ( ((UInt16)block[i-2]) << 8);
783
25.9M
      ftab[j]++;
784
25.9M
      quadrant[i-3] = 0;
785
25.9M
      j = (j >> 8) | ( ((UInt16)block[i-3]) << 8);
786
25.9M
      ftab[j]++;
787
25.9M
   }
788
20.2k
   for (; i >= 0; i--) {
789
11.1k
      quadrant[i] = 0;
790
11.1k
      j = (j >> 8) | ( ((UInt16)block[i]) << 8);
791
11.1k
      ftab[j]++;
792
11.1k
   }
793
794
   /*-- (emphasises close relationship of block & quadrant) --*/
795
317k
   for (i = 0; i < BZ_N_OVERSHOOT; i++) {
796
308k
      block   [nblock+i] = block[i];
797
308k
      quadrant[nblock+i] = 0;
798
308k
   }
799
800
9.08k
   if (verb >= 4) VPrintf0 ( "        bucket sorting ...\n" );
801
802
   /*-- Complete the initial radix sort --*/
803
595M
   for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1];
804
805
9.08k
   s = block[0] << 8;
806
9.08k
   i = nblock-1;
807
25.9M
   for (; i >= 3; i -= 4) {
808
25.9M
      s = (s >> 8) | (block[i] << 8);
809
25.9M
      j = ftab[s] -1;
810
25.9M
      ftab[s] = j;
811
25.9M
      ptr[j] = i;
812
25.9M
      s = (s >> 8) | (block[i-1] << 8);
813
25.9M
      j = ftab[s] -1;
814
25.9M
      ftab[s] = j;
815
25.9M
      ptr[j] = i-1;
816
25.9M
      s = (s >> 8) | (block[i-2] << 8);
817
25.9M
      j = ftab[s] -1;
818
25.9M
      ftab[s] = j;
819
25.9M
      ptr[j] = i-2;
820
25.9M
      s = (s >> 8) | (block[i-3] << 8);
821
25.9M
      j = ftab[s] -1;
822
25.9M
      ftab[s] = j;
823
25.9M
      ptr[j] = i-3;
824
25.9M
   }
825
20.2k
   for (; i >= 0; i--) {
826
11.1k
      s = (s >> 8) | (block[i] << 8);
827
11.1k
      j = ftab[s] -1;
828
11.1k
      ftab[s] = j;
829
11.1k
      ptr[j] = i;
830
11.1k
   }
831
832
   /*--
833
      Now ftab contains the first loc of every small bucket.
834
      Calculate the running order, from smallest to largest
835
      big bucket.
836
   --*/
837
2.33M
   for (i = 0; i <= 255; i++) {
838
2.32M
      bigDone     [i] = False;
839
2.32M
      runningOrder[i] = i;
840
2.32M
   }
841
842
9.08k
   {
843
9.08k
      Int32 vv;
844
9.08k
      Int32 h = 1;
845
45.4k
      do h = 3 * h + 1; while (h <= 256);
846
45.4k
      do {
847
45.4k
         h = h / 3;
848
10.0M
         for (i = h; i <= 255; i++) {
849
9.99M
            vv = runningOrder[i];
850
9.99M
            j = i;
851
12.2M
            while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) {
852
2.47M
               runningOrder[j] = runningOrder[j-h];
853
2.47M
               j = j - h;
854
2.47M
               if (j <= (h - 1)) goto zero;
855
2.47M
            }
856
9.99M
            zero:
857
9.99M
            runningOrder[j] = vv;
858
9.99M
         }
859
45.4k
      } while (h != 1);
860
9.08k
   }
861
862
   /*--
863
      The main sorting loop.
864
   --*/
865
866
9.08k
   numQSorted = 0;
867
868
2.30M
   for (i = 0; i <= 255; i++) {
869
870
      /*--
871
         Process big buckets, starting with the least full.
872
         Basically this is a 3-step process in which we call
873
         mainQSort3 to sort the small buckets [ss, j], but
874
         also make a big effort to avoid the calls if we can.
875
      --*/
876
2.29M
      ss = runningOrder[i];
877
878
      /*--
879
         Step 1:
880
         Complete the big bucket [ss] by quicksorting
881
         any unsorted small buckets [ss, j], for j != ss.  
882
         Hopefully previous pointer-scanning phases have already
883
         completed many of the small buckets [ss, j], so
884
         we don't have to sort them at all.
885
      --*/
886
590M
      for (j = 0; j <= 255; j++) {
887
587M
         if (j != ss) {
888
585M
            sb = (ss << 8) + j;
889
585M
            if ( ! (ftab[sb] & SETMASK) ) {
890
296M
               Int32 lo = ftab[sb]   & CLEARMASK;
891
296M
               Int32 hi = (ftab[sb+1] & CLEARMASK) - 1;
892
296M
               if (hi > lo) {
893
901k
                  if (verb >= 4)
894
0
                     VPrintf4 ( "        qsort [0x%x, 0x%x]   "
895
901k
                                "done %d   this %d\n",
896
901k
                                ss, j, numQSorted, hi - lo + 1 );
897
901k
                  mainQSort3 ( 
898
901k
                     ptr, block, quadrant, nblock, 
899
901k
                     lo, hi, BZ_N_RADIX, budget 
900
901k
                  );   
901
901k
                  numQSorted += (hi - lo + 1);
902
901k
                  if (*budget < 0) return;
903
901k
               }
904
296M
            }
905
585M
            ftab[sb] |= SETMASK;
906
585M
         }
907
587M
      }
908
909
2.29M
      AssertH ( !bigDone[ss], 1006 );
910
911
      /*--
912
         Step 2:
913
         Now scan this big bucket [ss] so as to synthesise the
914
         sorted order for small buckets [t, ss] for all t,
915
         including, magically, the bucket [ss,ss] too.
916
         This will avoid doing Real Work in subsequent Step 1's.
917
      --*/
918
2.29M
      {
919
589M
         for (j = 0; j <= 255; j++) {
920
587M
            copyStart[j] =  ftab[(j << 8) + ss]     & CLEARMASK;
921
587M
            copyEnd  [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
922
587M
         }
923
21.2M
         for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
924
18.9M
            k = ptr[j]-1; if (k < 0) k += nblock;
925
18.9M
            c1 = block[k];
926
18.9M
            if (!bigDone[c1])
927
11.6M
               ptr[ copyStart[c1]++ ] = k;
928
18.9M
         }
929
24.3M
         for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
930
22.0M
            k = ptr[j]-1; if (k < 0) k += nblock;
931
22.0M
            c1 = block[k];
932
22.0M
            if (!bigDone[c1]) 
933
12.4M
               ptr[ copyEnd[c1]-- ] = k;
934
22.0M
         }
935
2.29M
      }
936
937
2.29M
      AssertH ( (copyStart[ss]-1 == copyEnd[ss])
938
2.29M
                || 
939
                /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1.
940
                   Necessity for this case is demonstrated by compressing 
941
                   a sequence of approximately 48.5 million of character 
942
                   251; 1.0.0/1.0.1 will then die here. */
943
2.29M
                (copyStart[ss] == 0 && copyEnd[ss] == nblock-1),
944
2.29M
                1007 )
945
946
589M
      for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK;
947
948
      /*--
949
         Step 3:
950
         The [ss] big bucket is now done.  Record this fact,
951
         and update the quadrant descriptors.  Remember to
952
         update quadrants in the overshoot area too, if
953
         necessary.  The "if (i < 255)" test merely skips
954
         this updating for the last bucket processed, since
955
         updating for the last bucket is pointless.
956
957
         The quadrant array provides a way to incrementally
958
         cache sort orderings, as they appear, so as to 
959
         make subsequent comparisons in fullGtU() complete
960
         faster.  For repetitive blocks this makes a big
961
         difference (but not big enough to be able to avoid
962
         the fallback sorting mechanism, exponential radix sort).
963
964
         The precise meaning is: at all times:
965
966
            for 0 <= i < nblock and 0 <= j <= nblock
967
968
            if block[i] != block[j], 
969
970
               then the relative values of quadrant[i] and 
971
                    quadrant[j] are meaningless.
972
973
               else {
974
                  if quadrant[i] < quadrant[j]
975
                     then the string starting at i lexicographically
976
                     precedes the string starting at j
977
978
                  else if quadrant[i] > quadrant[j]
979
                     then the string starting at j lexicographically
980
                     precedes the string starting at i
981
982
                  else
983
                     the relative ordering of the strings starting
984
                     at i and j has not yet been determined.
985
               }
986
      --*/
987
2.29M
      bigDone[ss] = True;
988
989
2.29M
      if (i < 255) {
990
2.29M
         Int32 bbStart  = ftab[ss << 8] & CLEARMASK;
991
2.29M
         Int32 bbSize   = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
992
2.29M
         Int32 shifts   = 0;
993
994
2.29M
         while ((bbSize >> shifts) > 65534) shifts++;
995
996
32.9M
         for (j = bbSize-1; j >= 0; j--) {
997
30.6M
            Int32 a2update     = ptr[bbStart + j];
998
30.6M
            UInt16 qVal        = (UInt16)(j >> shifts);
999
30.6M
            quadrant[a2update] = qVal;
1000
30.6M
            if (a2update < BZ_N_OVERSHOOT)
1001
95.2k
               quadrant[a2update + nblock] = qVal;
1002
30.6M
         }
1003
2.29M
         AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 );
1004
2.29M
      }
1005
1006
2.29M
   }
1007
1008
3.43k
   if (verb >= 4)
1009
0
      VPrintf3 ( "        %d pointers, %d sorted, %d scanned\n",
1010
3.43k
                 nblock, numQSorted, nblock - numQSorted );
1011
3.43k
}
1012
1013
#undef BIGFREQ
1014
#undef SETMASK
1015
#undef CLEARMASK
1016
1017
1018
/*---------------------------------------------*/
1019
/* Pre:
1020
      nblock > 0
1021
      arr2 exists for [0 .. nblock-1 +N_OVERSHOOT]
1022
      ((UChar*)arr2)  [0 .. nblock-1] holds block
1023
      arr1 exists for [0 .. nblock-1]
1024
1025
   Post:
1026
      ((UChar*)arr2) [0 .. nblock-1] holds block
1027
      All other areas of block destroyed
1028
      ftab [ 0 .. 65536 ] destroyed
1029
      arr1 [0 .. nblock-1] holds sorted order
1030
*/
1031
void BZ2_blockSort ( EState* s )
1032
96.3k
{
1033
96.3k
   UInt32* ptr    = s->ptr; 
1034
96.3k
   UChar*  block  = s->block;
1035
96.3k
   UInt32* ftab   = s->ftab;
1036
96.3k
   Int32   nblock = s->nblock;
1037
96.3k
   Int32   verb   = s->verbosity;
1038
96.3k
   Int32   wfact  = s->workFactor;
1039
96.3k
   UInt16* quadrant;
1040
96.3k
   Int32   budget;
1041
96.3k
   Int32   budgetInit;
1042
96.3k
   Int32   i;
1043
1044
96.3k
   if (nblock < 10000) {
1045
87.3k
      fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
1046
87.3k
   } else {
1047
      /* Calculate the location for quadrant, remembering to get
1048
         the alignment right.  Assumes that &(block[0]) is at least
1049
         2-byte aligned -- this should be ok since block is really
1050
         the first section of arr2.
1051
      */
1052
9.08k
      i = nblock+BZ_N_OVERSHOOT;
1053
9.08k
      if (i & 1) i++;
1054
9.08k
      quadrant = (UInt16*)(&(block[i]));
1055
1056
      /* (wfact-1) / 3 puts the default-factor-30
1057
         transition point at very roughly the same place as 
1058
         with v0.1 and v0.9.0.  
1059
         Not that it particularly matters any more, since the
1060
         resulting compressed stream is now the same regardless
1061
         of whether or not we use the main sort or fallback sort.
1062
      */
1063
9.08k
      if (wfact < 1  ) wfact = 1;
1064
9.08k
      if (wfact > 100) wfact = 100;
1065
9.08k
      budgetInit = nblock * ((wfact-1) / 3);
1066
9.08k
      budget = budgetInit;
1067
1068
9.08k
      mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget );
1069
9.08k
      if (verb >= 3) 
1070
0
         VPrintf3 ( "      %d work, %d block, ratio %5.2f\n",
1071
9.08k
                    budgetInit - budget,
1072
9.08k
                    nblock, 
1073
9.08k
                    (float)(budgetInit - budget) /
1074
9.08k
                    (float)(nblock==0 ? 1 : nblock) ); 
1075
9.08k
      if (budget < 0) {
1076
5.64k
         if (verb >= 2) 
1077
0
            VPrintf0 ( "    too repetitive; using fallback"
1078
5.64k
                       " sorting algorithm\n" );
1079
5.64k
         fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb );
1080
5.64k
      }
1081
9.08k
   }
1082
1083
96.3k
   s->origPtr = -1;
1084
100M
   for (i = 0; i < s->nblock; i++)
1085
100M
      if (ptr[i] == 0)
1086
96.3k
         { s->origPtr = i; break; };
1087
1088
96.3k
   AssertH( s->origPtr != -1, 1003 );
1089
96.3k
}
1090
1091
1092
/*-------------------------------------------------------------*/
1093
/*--- end                                       blocksort.c ---*/
1094
/*-------------------------------------------------------------*/