Coverage Report

Created: 2025-07-23 08:18

/src/libjxl/lib/jxl/enc_huffman_tree.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include "lib/jxl/enc_huffman_tree.h"
7
8
#include <algorithm>
9
#include <cstddef>
10
#include <cstdint>
11
#include <limits>
12
#include <vector>
13
14
#include "lib/jxl/base/compiler_specific.h"
15
#include "lib/jxl/base/status.h"
16
17
namespace jxl {
18
19
void SetDepth(const HuffmanTree& p, HuffmanTree* pool, uint8_t* depth,
20
302k
              uint8_t level) {
21
302k
  if (p.index_left >= 0) {
22
134k
    ++level;
23
134k
    SetDepth(pool[p.index_left], pool, depth, level);
24
134k
    SetDepth(pool[p.index_right_or_value], pool, depth, level);
25
168k
  } else {
26
168k
    depth[p.index_right_or_value] = level;
27
168k
  }
28
302k
}
29
30
// Compare the root nodes, least popular first; indices are in decreasing order
31
// before sorting is applied.
32
331k
static JXL_INLINE bool Compare(const HuffmanTree& v0, const HuffmanTree& v1) {
33
331k
  return v0.total_count != v1.total_count
34
331k
             ? v0.total_count < v1.total_count
35
331k
             : v0.index_right_or_value > v1.index_right_or_value;
36
331k
}
37
38
// This function will create a Huffman tree.
39
//
40
// The catch here is that the tree cannot be arbitrarily deep.
41
// Brotli specifies a maximum depth of 15 bits for "code trees"
42
// and 7 bits for "code length code trees."
43
//
44
// count_limit is the value that is to be faked as the minimum value
45
// and this minimum value is raised until the tree matches the
46
// maximum length requirement.
47
//
48
// This algorithm is not of excellent performance for very long data blocks,
49
// especially when population counts are longer than 2**tree_limit, but
50
// we are not planning to use this with extremely long blocks.
51
//
52
// See http://en.wikipedia.org/wiki/Huffman_coding
53
void CreateHuffmanTree(const uint32_t* data, const size_t length,
54
34.2k
                       const int tree_limit, uint8_t* depth) {
55
  // For block sizes below 64 kB, we never need to do a second iteration
56
  // of this loop. Probably all of our block sizes will be smaller than
57
  // that, so this loop is mostly of academic interest. If we actually
58
  // would need this, we would be better off with the Katajainen algorithm.
59
34.2k
  for (uint32_t count_limit = 1;; count_limit *= 2) {
60
34.2k
    std::vector<HuffmanTree> tree;
61
34.2k
    tree.reserve(2 * length + 1);
62
63
416k
    for (size_t i = length; i != 0;) {
64
382k
      --i;
65
382k
      if (data[i]) {
66
168k
        const uint32_t count = std::max(data[i], count_limit - 1);
67
168k
        tree.emplace_back(count, -1, static_cast<int16_t>(i));
68
168k
      }
69
382k
    }
70
71
34.2k
    const size_t n = tree.size();
72
34.2k
    if (n == 1) {
73
      // Fake value; will be fixed on upper level.
74
94
      depth[tree[0].index_right_or_value] = 1;
75
94
      break;
76
94
    }
77
78
34.1k
    std::sort(tree.begin(), tree.end(), Compare);
79
80
    // The nodes are:
81
    // [0, n): the sorted leaf nodes that we start with.
82
    // [n]: we add a sentinel here.
83
    // [n + 1, 2n): new parent nodes are added here, starting from
84
    //              (n+1). These are naturally in ascending order.
85
    // [2n]: we add a sentinel at the end as well.
86
    // There will be (2n+1) elements at the end.
87
34.1k
    const HuffmanTree sentinel(std::numeric_limits<uint32_t>::max(), -1, -1);
88
34.1k
    tree.push_back(sentinel);
89
34.1k
    tree.push_back(sentinel);
90
91
34.1k
    size_t i = 0;      // Points to the next leaf node.
92
34.1k
    size_t j = n + 1;  // Points to the next non-leaf node.
93
168k
    for (size_t k = n - 1; k != 0; --k) {
94
134k
      size_t left;
95
134k
      size_t right;
96
134k
      if (tree[i].total_count <= tree[j].total_count) {
97
90.4k
        left = i;
98
90.4k
        ++i;
99
90.4k
      } else {
100
43.8k
        left = j;
101
43.8k
        ++j;
102
43.8k
      }
103
134k
      if (tree[i].total_count <= tree[j].total_count) {
104
78.0k
        right = i;
105
78.0k
        ++i;
106
78.0k
      } else {
107
56.2k
        right = j;
108
56.2k
        ++j;
109
56.2k
      }
110
111
      // The sentinel node becomes the parent node.
112
134k
      size_t j_end = tree.size() - 1;
113
134k
      tree[j_end].total_count =
114
134k
          tree[left].total_count + tree[right].total_count;
115
134k
      tree[j_end].index_left = static_cast<int16_t>(left);
116
134k
      tree[j_end].index_right_or_value = static_cast<int16_t>(right);
117
118
      // Add back the last sentinel node.
119
134k
      tree.push_back(sentinel);
120
134k
    }
121
34.1k
    JXL_DASSERT(tree.size() == 2 * n + 1);
122
34.1k
    SetDepth(tree[2 * n - 1], tree.data(), depth, 0);
123
124
    // We need to pack the Huffman tree in tree_limit bits.
125
    // If this was not successful, add fake entities to the lowest values
126
    // and retry.
127
34.1k
    if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
128
34.1k
      break;
129
34.1k
    }
130
34.1k
  }
131
34.2k
}
132
133
1.73k
void Reverse(uint8_t* v, size_t start, size_t end) {
134
1.73k
  --end;
135
2.15k
  while (start < end) {
136
422
    uint8_t tmp = v[start];
137
422
    v[start] = v[end];
138
422
    v[end] = tmp;
139
422
    ++start;
140
422
    --end;
141
422
  }
142
1.73k
}
143
144
void WriteHuffmanTreeRepetitions(const uint8_t previous_value,
145
                                 const uint8_t value, size_t repetitions,
146
                                 size_t* tree_size, uint8_t* tree,
147
96.5k
                                 uint8_t* extra_bits_data) {
148
96.5k
  JXL_DASSERT(repetitions > 0);
149
96.5k
  if (previous_value != value) {
150
58.5k
    tree[*tree_size] = value;
151
58.5k
    extra_bits_data[*tree_size] = 0;
152
58.5k
    ++(*tree_size);
153
58.5k
    --repetitions;
154
58.5k
  }
155
96.5k
  if (repetitions == 7) {
156
11
    tree[*tree_size] = value;
157
11
    extra_bits_data[*tree_size] = 0;
158
11
    ++(*tree_size);
159
11
    --repetitions;
160
11
  }
161
96.5k
  if (repetitions < 3) {
162
134k
    for (size_t i = 0; i < repetitions; ++i) {
163
38.0k
      tree[*tree_size] = value;
164
38.0k
      extra_bits_data[*tree_size] = 0;
165
38.0k
      ++(*tree_size);
166
38.0k
    }
167
96.4k
  } else {
168
118
    repetitions -= 3;
169
118
    size_t start = *tree_size;
170
121
    while (true) {
171
121
      tree[*tree_size] = 16;
172
121
      extra_bits_data[*tree_size] = repetitions & 0x3;
173
121
      ++(*tree_size);
174
121
      repetitions >>= 2;
175
121
      if (repetitions == 0) {
176
118
        break;
177
118
      }
178
3
      --repetitions;
179
3
    }
180
118
    Reverse(tree, start, *tree_size);
181
118
    Reverse(extra_bits_data, start, *tree_size);
182
118
  }
183
96.5k
}
184
185
void WriteHuffmanTreeRepetitionsZeros(size_t repetitions, size_t* tree_size,
186
3.80k
                                      uint8_t* tree, uint8_t* extra_bits_data) {
187
3.80k
  if (repetitions == 11) {
188
20
    tree[*tree_size] = 0;
189
20
    extra_bits_data[*tree_size] = 0;
190
20
    ++(*tree_size);
191
20
    --repetitions;
192
20
  }
193
3.80k
  if (repetitions < 3) {
194
6.74k
    for (size_t i = 0; i < repetitions; ++i) {
195
3.69k
      tree[*tree_size] = 0;
196
3.69k
      extra_bits_data[*tree_size] = 0;
197
3.69k
      ++(*tree_size);
198
3.69k
    }
199
3.05k
  } else {
200
750
    repetitions -= 3;
201
750
    size_t start = *tree_size;
202
1.10k
    while (true) {
203
1.10k
      tree[*tree_size] = 17;
204
1.10k
      extra_bits_data[*tree_size] = repetitions & 0x7;
205
1.10k
      ++(*tree_size);
206
1.10k
      repetitions >>= 3;
207
1.10k
      if (repetitions == 0) {
208
750
        break;
209
750
      }
210
354
      --repetitions;
211
354
    }
212
750
    Reverse(tree, start, *tree_size);
213
750
    Reverse(extra_bits_data, start, *tree_size);
214
750
  }
215
3.80k
}
216
217
static void DecideOverRleUse(const uint8_t* depth, const size_t length,
218
                             bool* use_rle_for_non_zero,
219
258
                             bool* use_rle_for_zero) {
220
258
  size_t total_reps_zero = 0;
221
258
  size_t total_reps_non_zero = 0;
222
258
  size_t count_reps_zero = 1;
223
258
  size_t count_reps_non_zero = 1;
224
4.83k
  for (size_t i = 0; i < length;) {
225
4.57k
    const uint8_t value = depth[i];
226
4.57k
    size_t reps = 1;
227
40.8k
    for (size_t k = i + 1; k < length && depth[k] == value; ++k) {
228
36.3k
      ++reps;
229
36.3k
    }
230
4.57k
    if (reps >= 3 && value == 0) {
231
751
      total_reps_zero += reps;
232
751
      ++count_reps_zero;
233
751
    }
234
4.57k
    if (reps >= 4 && value != 0) {
235
118
      total_reps_non_zero += reps;
236
118
      ++count_reps_non_zero;
237
118
    }
238
4.57k
    i += reps;
239
4.57k
  }
240
258
  *use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero * 2;
241
258
  *use_rle_for_zero = total_reps_zero > count_reps_zero * 2;
242
258
}
243
244
void WriteHuffmanTree(const uint8_t* depth, size_t length, size_t* tree_size,
245
12.0k
                      uint8_t* tree, uint8_t* extra_bits_data) {
246
12.0k
  uint8_t previous_value = 8;
247
248
  // Throw away trailing zeros.
249
12.0k
  size_t new_length = length;
250
12.0k
  for (size_t i = 0; i < length; ++i) {
251
12.0k
    if (depth[length - i - 1] == 0) {
252
0
      --new_length;
253
12.0k
    } else {
254
12.0k
      break;
255
12.0k
    }
256
12.0k
  }
257
258
  // First gather statistics on if it is a good idea to do rle.
259
12.0k
  bool use_rle_for_non_zero = false;
260
12.0k
  bool use_rle_for_zero = false;
261
12.0k
  if (length > 50) {
262
    // Find rle coding for longer codes.
263
    // Shorter codes seem not to benefit from rle.
264
258
    DecideOverRleUse(depth, new_length, &use_rle_for_non_zero,
265
258
                     &use_rle_for_zero);
266
258
  }
267
268
  // Actual rle coding.
269
112k
  for (size_t i = 0; i < new_length;) {
270
100k
    const uint8_t value = depth[i];
271
100k
    size_t reps = 1;
272
100k
    if ((value != 0 && use_rle_for_non_zero) ||
273
100k
        (value == 0 && use_rle_for_zero)) {
274
37.7k
      for (size_t k = i + 1; k < new_length && depth[k] == value; ++k) {
275
35.5k
        ++reps;
276
35.5k
      }
277
2.16k
    }
278
100k
    if (value == 0) {
279
3.80k
      WriteHuffmanTreeRepetitionsZeros(reps, tree_size, tree, extra_bits_data);
280
96.5k
    } else {
281
96.5k
      WriteHuffmanTreeRepetitions(previous_value, value, reps, tree_size, tree,
282
96.5k
                                  extra_bits_data);
283
96.5k
      previous_value = value;
284
96.5k
    }
285
100k
    i += reps;
286
100k
  }
287
12.0k
}
288
289
namespace {
290
291
168k
uint16_t ReverseBits(int num_bits, uint16_t bits) {
292
168k
  static const size_t kLut[16] = {// Pre-reversed 4-bit values.
293
168k
                                  0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
294
168k
                                  0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf};
295
168k
  size_t retval = kLut[bits & 0xf];
296
193k
  for (int i = 4; i < num_bits; i += 4) {
297
24.6k
    retval <<= 4;
298
24.6k
    bits = static_cast<uint16_t>(bits >> 4);
299
24.6k
    retval |= kLut[bits & 0xf];
300
24.6k
  }
301
168k
  retval >>= (-num_bits & 0x3);
302
168k
  return static_cast<uint16_t>(retval);
303
168k
}
304
305
}  // namespace
306
307
void ConvertBitDepthsToSymbols(const uint8_t* depth, size_t len,
308
34.2k
                               uint16_t* bits) {
309
  // In Brotli, all bit depths are [1..15]
310
  // 0 bit depth means that the symbol does not exist.
311
34.2k
  const int kMaxBits = 16;  // 0..15 are values for bits
312
34.2k
  uint16_t bl_count[kMaxBits] = {0};
313
34.2k
  {
314
416k
    for (size_t i = 0; i < len; ++i) {
315
382k
      ++bl_count[depth[i]];
316
382k
    }
317
34.2k
    bl_count[0] = 0;
318
34.2k
  }
319
34.2k
  uint16_t next_code[kMaxBits];
320
34.2k
  next_code[0] = 0;
321
34.2k
  {
322
34.2k
    int code = 0;
323
548k
    for (size_t i = 1; i < kMaxBits; ++i) {
324
514k
      code = (code + bl_count[i - 1]) << 1;
325
514k
      next_code[i] = static_cast<uint16_t>(code);
326
514k
    }
327
34.2k
  }
328
416k
  for (size_t i = 0; i < len; ++i) {
329
382k
    if (depth[i]) {
330
168k
      bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
331
168k
    }
332
382k
  }
333
34.2k
}
334
335
}  // namespace jxl