Coverage Report

Created: 2025-07-23 08:18

/src/libjxl/lib/jxl/modular/encoding/enc_encoding.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include <jxl/memory_manager.h>
7
8
#include <algorithm>
9
#include <array>
10
#include <cstddef>
11
#include <cstdint>
12
#include <cstdlib>
13
#include <limits>
14
#include <queue>
15
#include <utility>
16
#include <vector>
17
18
#include "lib/jxl/base/bits.h"
19
#include "lib/jxl/base/common.h"
20
#include "lib/jxl/base/compiler_specific.h"
21
#include "lib/jxl/base/printf_macros.h"
22
#include "lib/jxl/base/status.h"
23
#include "lib/jxl/enc_ans.h"
24
#include "lib/jxl/enc_ans_params.h"
25
#include "lib/jxl/enc_aux_out.h"
26
#include "lib/jxl/enc_bit_writer.h"
27
#include "lib/jxl/enc_fields.h"
28
#include "lib/jxl/fields.h"
29
#include "lib/jxl/image.h"
30
#include "lib/jxl/image_ops.h"
31
#include "lib/jxl/modular/encoding/context_predict.h"
32
#include "lib/jxl/modular/encoding/dec_ma.h"
33
#include "lib/jxl/modular/encoding/enc_ma.h"
34
#include "lib/jxl/modular/encoding/encoding.h"
35
#include "lib/jxl/modular/encoding/ma_common.h"
36
#include "lib/jxl/modular/modular_image.h"
37
#include "lib/jxl/modular/options.h"
38
#include "lib/jxl/pack_signed.h"
39
40
namespace jxl {
41
42
namespace {
43
// Plot tree (if enabled) and predictor usage map.
44
constexpr bool kWantDebug = true;
45
// constexpr bool kPrintTree = false;
46
47
86.8M
inline std::array<uint8_t, 3> PredictorColor(Predictor p) {
48
86.8M
  switch (p) {
49
12.9M
    case Predictor::Zero:
50
12.9M
      return {{0, 0, 0}};
51
4.67M
    case Predictor::Left:
52
4.67M
      return {{255, 0, 0}};
53
0
    case Predictor::Top:
54
0
      return {{0, 255, 0}};
55
0
    case Predictor::Average0:
56
0
      return {{0, 0, 255}};
57
0
    case Predictor::Average4:
58
0
      return {{192, 128, 128}};
59
0
    case Predictor::Select:
60
0
      return {{255, 255, 0}};
61
69.2M
    case Predictor::Gradient:
62
69.2M
      return {{255, 0, 255}};
63
19.1k
    case Predictor::Weighted:
64
19.1k
      return {{0, 255, 255}};
65
      // TODO(jon)
66
0
    default:
67
0
      return {{255, 255, 255}};
68
86.8M
  };
69
0
}
70
71
// `cutoffs` must be sorted.
72
Tree MakeFixedTree(int property, const std::vector<int32_t> &cutoffs,
73
2.13k
                   Predictor pred, size_t num_pixels, int bitdepth) {
74
2.13k
  size_t log_px = CeilLog2Nonzero(num_pixels);
75
2.13k
  size_t min_gap = 0;
76
  // Reduce fixed tree height when encoding small images.
77
2.13k
  if (log_px < 14) {
78
1.69k
    min_gap = 8 * (14 - log_px);
79
1.69k
  }
80
2.13k
  const int shift = bitdepth > 11 ? std::min(4, bitdepth - 11) : 0;
81
2.13k
  const int mul = 1 << shift;
82
2.13k
  Tree tree;
83
2.13k
  struct NodeInfo {
84
2.13k
    size_t begin, end, pos;
85
2.13k
  };
86
2.13k
  std::queue<NodeInfo> q;
87
  // Leaf IDs will be set by roundtrip decoding the tree.
88
2.13k
  tree.push_back(PropertyDecisionNode::Leaf(pred));
89
2.13k
  q.push(NodeInfo{0, cutoffs.size(), 0});
90
36.6k
  while (!q.empty()) {
91
34.5k
    NodeInfo info = q.front();
92
34.5k
    q.pop();
93
34.5k
    if (info.begin + min_gap >= info.end) continue;
94
16.2k
    uint32_t split = (info.begin + info.end) / 2;
95
16.2k
    int32_t cutoff = cutoffs[split] * mul;
96
16.2k
    tree[info.pos] = PropertyDecisionNode::Split(property, cutoff, tree.size());
97
16.2k
    q.push(NodeInfo{split + 1, info.end, tree.size()});
98
16.2k
    tree.push_back(PropertyDecisionNode::Leaf(pred));
99
16.2k
    q.push(NodeInfo{info.begin, split, tree.size()});
100
16.2k
    tree.push_back(PropertyDecisionNode::Leaf(pred));
101
16.2k
  }
102
2.13k
  return tree;
103
2.13k
}
104
105
Status GatherTreeData(const Image &image, pixel_type chan, size_t group_id,
106
                      const weighted::Header &wp_header,
107
                      const ModularOptions &options, TreeSamples &tree_samples,
108
3.00k
                      size_t *total_pixels) {
109
3.00k
  const Channel &channel = image.channel[chan];
110
3.00k
  JxlMemoryManager *memory_manager = channel.memory_manager();
111
112
3.00k
  JXL_DEBUG_V(7, "Learning %" PRIuS "x%" PRIuS " channel %d", channel.w,
113
3.00k
              channel.h, chan);
114
115
3.00k
  std::array<pixel_type, kNumStaticProperties> static_props = {
116
3.00k
      {chan, static_cast<int>(group_id)}};
117
3.00k
  Properties properties(kNumNonrefProperties +
118
3.00k
                        kExtraPropsPerChannel * options.max_properties);
119
3.00k
  double pixel_fraction = std::min(1.0f, options.nb_repeats);
120
  // a fraction of 0 is used to disable learning entirely.
121
3.00k
  if (pixel_fraction > 0) {
122
3.00k
    pixel_fraction = std::max(pixel_fraction,
123
3.00k
                              std::min(1.0, 1024.0 / (channel.w * channel.h)));
124
3.00k
  }
125
3.00k
  uint64_t threshold =
126
3.00k
      (std::numeric_limits<uint64_t>::max() >> 32) * pixel_fraction;
127
3.00k
  uint64_t s[2] = {static_cast<uint64_t>(0x94D049BB133111EBull),
128
3.00k
                   static_cast<uint64_t>(0xBF58476D1CE4E5B9ull)};
129
  // Xorshift128+ adapted from xorshift128+-inl.h
130
23.5M
  auto use_sample = [&]() {
131
23.5M
    auto s1 = s[0];
132
23.5M
    const auto s0 = s[1];
133
23.5M
    const auto bits = s1 + s0;  // b, c
134
23.5M
    s[0] = s0;
135
23.5M
    s1 ^= s1 << 23;
136
23.5M
    s1 ^= s0 ^ (s1 >> 18) ^ (s0 >> 5);
137
23.5M
    s[1] = s1;
138
23.5M
    return (bits >> 32) <= threshold;
139
23.5M
  };
140
141
3.00k
  const intptr_t onerow = channel.plane.PixelsPerRow();
142
3.00k
  JXL_ASSIGN_OR_RETURN(
143
3.00k
      Channel references,
144
3.00k
      Channel::Create(memory_manager, properties.size() - kNumNonrefProperties,
145
3.00k
                      channel.w));
146
3.00k
  weighted::State wp_state(wp_header, channel.w, channel.h);
147
3.00k
  tree_samples.PrepareForSamples(pixel_fraction * channel.h * channel.w + 64);
148
3.00k
  const bool multiple_predictors = tree_samples.NumPredictors() != 1;
149
1.18M
  auto compute_sample = [&](const pixel_type *p, size_t x, size_t y) {
150
1.18M
    pixel_type_w pred[kNumModularPredictors];
151
1.18M
    if (multiple_predictors) {
152
0
      PredictLearnAll(&properties, channel.w, p + x, onerow, x, y, references,
153
0
                      &wp_state, pred);
154
1.18M
    } else {
155
1.18M
      pred[static_cast<int>(tree_samples.PredictorFromIndex(0))] =
156
1.18M
          PredictLearn(&properties, channel.w, p + x, onerow, x, y,
157
1.18M
                       tree_samples.PredictorFromIndex(0), references,
158
1.18M
                       &wp_state)
159
1.18M
              .guess;
160
1.18M
    }
161
1.18M
    (*total_pixels)++;
162
1.18M
    if (use_sample()) {
163
663k
      tree_samples.AddSample(p[x], properties, pred);
164
663k
    }
165
1.18M
    wp_state.UpdateErrors(p[x], x, y, channel.w);
166
1.18M
  };
167
168
200k
  for (size_t y = 0; y < channel.h; y++) {
169
197k
    const pixel_type *JXL_RESTRICT p = channel.Row(y);
170
197k
    PrecomputeReferences(channel, y, image, chan, &references);
171
197k
    InitPropsRow(&properties, static_props, y);
172
173
    // TODO(veluca): avoid computing WP if we don't use its property or
174
    // predictions.
175
197k
    if (y > 1 && channel.w > 8 && references.w == 0) {
176
571k
      for (size_t x = 0; x < 2; x++) {
177
381k
        compute_sample(p, x, y);
178
381k
      }
179
22.5M
      for (size_t x = 2; x < channel.w - 2; x++) {
180
22.3M
        pixel_type_w pred[kNumModularPredictors];
181
22.3M
        if (multiple_predictors) {
182
0
          PredictLearnAllNEC(&properties, channel.w, p + x, onerow, x, y,
183
0
                             references, &wp_state, pred);
184
22.3M
        } else {
185
22.3M
          pred[static_cast<int>(tree_samples.PredictorFromIndex(0))] =
186
22.3M
              PredictLearnNEC(&properties, channel.w, p + x, onerow, x, y,
187
22.3M
                              tree_samples.PredictorFromIndex(0), references,
188
22.3M
                              &wp_state)
189
22.3M
                  .guess;
190
22.3M
        }
191
22.3M
        (*total_pixels)++;
192
22.3M
        if (use_sample()) {
193
11.5M
          tree_samples.AddSample(p[x], properties, pred);
194
11.5M
        }
195
22.3M
        wp_state.UpdateErrors(p[x], x, y, channel.w);
196
22.3M
      }
197
571k
      for (size_t x = channel.w - 2; x < channel.w; x++) {
198
381k
        compute_sample(p, x, y);
199
381k
      }
200
190k
    } else {
201
431k
      for (size_t x = 0; x < channel.w; x++) {
202
424k
        compute_sample(p, x, y);
203
424k
      }
204
6.57k
    }
205
197k
  }
206
3.00k
  return true;
207
3.00k
}
208
209
StatusOr<Tree> LearnTree(
210
    TreeSamples &&tree_samples, size_t total_pixels,
211
    const ModularOptions &options,
212
    const std::vector<ModularMultiplierInfo> &multiplier_info = {},
213
1.00k
    StaticPropRange static_prop_range = {}) {
214
1.00k
  Tree tree;
215
3.00k
  for (size_t i = 0; i < kNumStaticProperties; i++) {
216
2.00k
    if (static_prop_range[i][1] == 0) {
217
0
      static_prop_range[i][1] = std::numeric_limits<uint32_t>::max();
218
0
    }
219
2.00k
  }
220
1.00k
  if (!tree_samples.HasSamples()) {
221
0
    tree.emplace_back();
222
0
    tree.back().predictor = tree_samples.PredictorFromIndex(0);
223
0
    tree.back().property = -1;
224
0
    tree.back().predictor_offset = 0;
225
0
    tree.back().multiplier = 1;
226
0
    return tree;
227
0
  }
228
1.00k
  float pixel_fraction = tree_samples.NumSamples() * 1.0f / total_pixels;
229
1.00k
  float required_cost = pixel_fraction * 0.9 + 0.1;
230
1.00k
  tree_samples.AllSamplesDone();
231
1.00k
  JXL_RETURN_IF_ERROR(ComputeBestTree(
232
1.00k
      tree_samples, options.splitting_heuristics_node_threshold * required_cost,
233
1.00k
      multiplier_info, static_prop_range, options.fast_decode_multiplier,
234
1.00k
      &tree));
235
1.00k
  return tree;
236
1.00k
}
237
238
Status EncodeModularChannelMAANS(const Image &image, pixel_type chan,
239
                                 const weighted::Header &wp_header,
240
                                 const Tree &global_tree, Token **tokenpp,
241
17.9k
                                 size_t group_id, bool skip_encoder_fast_path) {
242
17.9k
  const Channel &channel = image.channel[chan];
243
17.9k
  JxlMemoryManager *memory_manager = channel.memory_manager();
244
17.9k
  Token *tokenp = *tokenpp;
245
17.9k
  JXL_ENSURE(channel.w != 0 && channel.h != 0);
246
247
17.9k
  Image3F predictor_img;
248
17.9k
  if (kWantDebug) {
249
17.9k
    JXL_ASSIGN_OR_RETURN(predictor_img,
250
17.9k
                         Image3F::Create(memory_manager, channel.w, channel.h));
251
17.9k
  }
252
253
17.9k
  JXL_DEBUG_V(6,
254
17.9k
              "Encoding %" PRIuS "x%" PRIuS
255
17.9k
              " channel %d, "
256
17.9k
              "(shift=%i,%i)",
257
17.9k
              channel.w, channel.h, chan, channel.hshift, channel.vshift);
258
259
17.9k
  std::array<pixel_type, kNumStaticProperties> static_props = {
260
17.9k
      {chan, static_cast<int>(group_id)}};
261
17.9k
  bool use_wp;
262
17.9k
  bool is_wp_only;
263
17.9k
  bool is_gradient_only;
264
17.9k
  size_t num_props;
265
17.9k
  FlatTree tree = FilterTree(global_tree, static_props, &num_props, &use_wp,
266
17.9k
                             &is_wp_only, &is_gradient_only);
267
17.9k
  MATreeLookup tree_lookup(tree);
268
17.9k
  JXL_DEBUG_V(3, "Encoding using a MA tree with %" PRIuS " nodes", tree.size());
269
270
  // Check if this tree is a WP-only tree with a small enough property value
271
  // range.
272
  // Initialized to avoid clang-tidy complaining.
273
17.9k
  auto tree_lut = jxl::make_unique<TreeLut<uint16_t, false, false>>();
274
17.9k
  if (is_wp_only) {
275
6.39k
    is_wp_only = TreeToLookupTable(tree, *tree_lut);
276
6.39k
  }
277
17.9k
  if (is_gradient_only) {
278
2.88k
    is_gradient_only = TreeToLookupTable(tree, *tree_lut);
279
2.88k
  }
280
281
17.9k
  if (is_wp_only && !skip_encoder_fast_path) {
282
25.5k
    for (size_t c = 0; c < 3; c++) {
283
19.1k
      FillImage(static_cast<float>(PredictorColor(Predictor::Weighted)[c]),
284
19.1k
                &predictor_img.Plane(c));
285
19.1k
    }
286
6.39k
    const intptr_t onerow = channel.plane.PixelsPerRow();
287
6.39k
    weighted::State wp_state(wp_header, channel.w, channel.h);
288
6.39k
    Properties properties(1);
289
197k
    for (size_t y = 0; y < channel.h; y++) {
290
190k
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
291
8.88M
      for (size_t x = 0; x < channel.w; x++) {
292
8.69M
        size_t offset = 0;
293
8.69M
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
294
8.69M
        pixel_type_w top = (y ? *(r + x - onerow) : left);
295
8.69M
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
296
8.69M
        pixel_type_w topright =
297
8.69M
            (x + 1 < channel.w && y ? *(r + x + 1 - onerow) : top);
298
8.69M
        pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top);
299
8.69M
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
300
8.69M
            x, y, channel.w, top, left, topright, topleft, toptop, &properties,
301
8.69M
            offset);
302
8.69M
        uint32_t pos =
303
8.69M
            kPropRangeFast +
304
8.69M
            jxl::Clamp1(properties[0], -kPropRangeFast, kPropRangeFast - 1);
305
8.69M
        uint32_t ctx_id = tree_lut->context_lookup[pos];
306
8.69M
        int32_t residual = r[x] - guess;
307
8.69M
        *tokenp++ = Token(ctx_id, PackSigned(residual));
308
8.69M
        wp_state.UpdateErrors(r[x], x, y, channel.w);
309
8.69M
      }
310
190k
    }
311
11.5k
  } else if (tree.size() == 1 && tree[0].predictor == Predictor::Gradient &&
312
11.5k
             tree[0].multiplier == 1 && tree[0].predictor_offset == 0 &&
313
11.5k
             !skip_encoder_fast_path) {
314
9.79k
    for (size_t c = 0; c < 3; c++) {
315
7.34k
      FillImage(static_cast<float>(PredictorColor(Predictor::Gradient)[c]),
316
7.34k
                &predictor_img.Plane(c));
317
7.34k
    }
318
2.44k
    const intptr_t onerow = channel.plane.PixelsPerRow();
319
19.6k
    for (size_t y = 0; y < channel.h; y++) {
320
17.2k
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
321
231k
      for (size_t x = 0; x < channel.w; x++) {
322
213k
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
323
213k
        pixel_type_w top = (y ? *(r + x - onerow) : left);
324
213k
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
325
213k
        int32_t guess = ClampedGradient(top, left, topleft);
326
213k
        int32_t residual = r[x] - guess;
327
213k
        *tokenp++ = Token(tree[0].childID, PackSigned(residual));
328
213k
      }
329
17.2k
    }
330
9.07k
  } else if (is_gradient_only && !skip_encoder_fast_path) {
331
1.74k
    for (size_t c = 0; c < 3; c++) {
332
1.30k
      FillImage(static_cast<float>(PredictorColor(Predictor::Gradient)[c]),
333
1.30k
                &predictor_img.Plane(c));
334
1.30k
    }
335
436
    const intptr_t onerow = channel.plane.PixelsPerRow();
336
11.1k
    for (size_t y = 0; y < channel.h; y++) {
337
10.7k
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
338
360k
      for (size_t x = 0; x < channel.w; x++) {
339
349k
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
340
349k
        pixel_type_w top = (y ? *(r + x - onerow) : left);
341
349k
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
342
349k
        int32_t guess = ClampedGradient(top, left, topleft);
343
349k
        uint32_t pos =
344
349k
            kPropRangeFast +
345
349k
            std::min<pixel_type_w>(
346
349k
                std::max<pixel_type_w>(-kPropRangeFast, top + left - topleft),
347
349k
                kPropRangeFast - 1);
348
349k
        uint32_t ctx_id = tree_lut->context_lookup[pos];
349
349k
        int32_t residual = r[x] - guess;
350
349k
        *tokenp++ = Token(ctx_id, PackSigned(residual));
351
349k
      }
352
10.7k
    }
353
8.64k
  } else if (tree.size() == 1 && tree[0].predictor == Predictor::Zero &&
354
8.64k
             tree[0].multiplier == 1 && tree[0].predictor_offset == 0 &&
355
8.64k
             !skip_encoder_fast_path) {
356
0
    for (size_t c = 0; c < 3; c++) {
357
0
      FillImage(static_cast<float>(PredictorColor(Predictor::Zero)[c]),
358
0
                &predictor_img.Plane(c));
359
0
    }
360
0
    for (size_t y = 0; y < channel.h; y++) {
361
0
      const pixel_type *JXL_RESTRICT p = channel.Row(y);
362
0
      for (size_t x = 0; x < channel.w; x++) {
363
0
        *tokenp++ = Token(tree[0].childID, PackSigned(p[x]));
364
0
      }
365
0
    }
366
8.64k
  } else if (tree.size() == 1 && tree[0].predictor != Predictor::Weighted &&
367
8.64k
             (tree[0].multiplier & (tree[0].multiplier - 1)) == 0 &&
368
8.64k
             tree[0].predictor_offset == 0 && !skip_encoder_fast_path) {
369
    // multiplier is a power of 2.
370
16.8k
    for (size_t c = 0; c < 3; c++) {
371
12.6k
      FillImage(static_cast<float>(PredictorColor(tree[0].predictor)[c]),
372
12.6k
                &predictor_img.Plane(c));
373
12.6k
    }
374
4.22k
    uint32_t mul_shift =
375
4.22k
        FloorLog2Nonzero(static_cast<uint32_t>(tree[0].multiplier));
376
4.22k
    const intptr_t onerow = channel.plane.PixelsPerRow();
377
22.6k
    for (size_t y = 0; y < channel.h; y++) {
378
18.4k
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
379
237k
      for (size_t x = 0; x < channel.w; x++) {
380
218k
        PredictionResult pred = PredictNoTreeNoWP(channel.w, r + x, onerow, x,
381
218k
                                                  y, tree[0].predictor);
382
218k
        pixel_type_w residual = r[x] - pred.guess;
383
218k
        JXL_DASSERT((residual >> mul_shift) * tree[0].multiplier == residual);
384
218k
        *tokenp++ = Token(tree[0].childID, PackSigned(residual >> mul_shift));
385
218k
      }
386
18.4k
    }
387
388
4.41k
  } else if (!use_wp && !skip_encoder_fast_path) {
389
2.90k
    const intptr_t onerow = channel.plane.PixelsPerRow();
390
2.90k
    Properties properties(num_props);
391
2.90k
    JXL_ASSIGN_OR_RETURN(
392
2.90k
        Channel references,
393
2.90k
        Channel::Create(memory_manager,
394
2.90k
                        properties.size() - kNumNonrefProperties, channel.w));
395
100k
    for (size_t y = 0; y < channel.h; y++) {
396
97.7k
      const pixel_type *JXL_RESTRICT p = channel.Row(y);
397
97.7k
      PrecomputeReferences(channel, y, image, chan, &references);
398
97.7k
      float *pred_img_row[3];
399
97.7k
      if (kWantDebug) {
400
390k
        for (size_t c = 0; c < 3; c++) {
401
293k
          pred_img_row[c] = predictor_img.PlaneRow(c, y);
402
293k
        }
403
97.7k
      }
404
97.7k
      InitPropsRow(&properties, static_props, y);
405
9.78M
      for (size_t x = 0; x < channel.w; x++) {
406
9.68M
        PredictionResult res =
407
9.68M
            PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
408
9.68M
                            tree_lookup, references);
409
9.68M
        if (kWantDebug) {
410
38.7M
          for (size_t i = 0; i < 3; i++) {
411
29.0M
            pred_img_row[i][x] = PredictorColor(res.predictor)[i];
412
29.0M
          }
413
9.68M
        }
414
9.68M
        pixel_type_w residual = p[x] - res.guess;
415
9.68M
        JXL_DASSERT(residual % res.multiplier == 0);
416
9.68M
        *tokenp++ = Token(res.context, PackSigned(residual / res.multiplier));
417
9.68M
      }
418
97.7k
    }
419
2.90k
  } else {
420
1.51k
    const intptr_t onerow = channel.plane.PixelsPerRow();
421
1.51k
    Properties properties(num_props);
422
1.51k
    JXL_ASSIGN_OR_RETURN(
423
1.51k
        Channel references,
424
1.51k
        Channel::Create(memory_manager,
425
1.51k
                        properties.size() - kNumNonrefProperties, channel.w));
426
1.51k
    weighted::State wp_state(wp_header, channel.w, channel.h);
427
139k
    for (size_t y = 0; y < channel.h; y++) {
428
138k
      const pixel_type *JXL_RESTRICT p = channel.Row(y);
429
138k
      PrecomputeReferences(channel, y, image, chan, &references);
430
138k
      float *pred_img_row[3];
431
138k
      if (kWantDebug) {
432
553k
        for (size_t c = 0; c < 3; c++) {
433
414k
          pred_img_row[c] = predictor_img.PlaneRow(c, y);
434
414k
        }
435
138k
      }
436
138k
      InitPropsRow(&properties, static_props, y);
437
19.3M
      for (size_t x = 0; x < channel.w; x++) {
438
19.2M
        PredictionResult res =
439
19.2M
            PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
440
19.2M
                          tree_lookup, references, &wp_state);
441
19.2M
        if (kWantDebug) {
442
77.0M
          for (size_t i = 0; i < 3; i++) {
443
57.7M
            pred_img_row[i][x] = PredictorColor(res.predictor)[i];
444
57.7M
          }
445
19.2M
        }
446
19.2M
        pixel_type_w residual = p[x] - res.guess;
447
19.2M
        JXL_DASSERT(residual % res.multiplier == 0);
448
19.2M
        *tokenp++ = Token(res.context, PackSigned(residual / res.multiplier));
449
19.2M
        wp_state.UpdateErrors(p[x], x, y, channel.w);
450
19.2M
      }
451
138k
    }
452
1.51k
  }
453
  /* TODO(szabadka): Add cparams to the call stack here.
454
  if (kWantDebug && WantDebugOutput(cparams)) {
455
    DumpImage(
456
        cparams,
457
        ("pred_" + ToString(group_id) + "_" + ToString(chan)).c_str(),
458
        predictor_img);
459
  }
460
  */
461
17.9k
  *tokenpp = tokenp;
462
17.9k
  return true;
463
17.9k
}
464
465
}  // namespace
466
467
Tree PredefinedTree(ModularOptions::TreeKind tree_kind, size_t total_pixels,
468
4.26k
                    int bitdepth, int prevprop) {
469
4.26k
  switch (tree_kind) {
470
0
    case ModularOptions::TreeKind::kJpegTranscodeACMeta:
471
      // All the data is 0, so no need for a fancy tree.
472
0
      return {PropertyDecisionNode::Leaf(Predictor::Zero)};
473
0
    case ModularOptions::TreeKind::kTrivialTreeNoPredictor:
474
      // All the data is 0, so no need for a fancy tree.
475
0
      return {PropertyDecisionNode::Leaf(Predictor::Zero)};
476
0
    case ModularOptions::TreeKind::kFalconACMeta:
477
      // All the data is 0 except the quant field. TODO(veluca): make that 0
478
      // too.
479
0
      return {PropertyDecisionNode::Leaf(Predictor::Left)};
480
2.13k
    case ModularOptions::TreeKind::kACMeta: {
481
      // Small image.
482
2.13k
      if (total_pixels < 1024) {
483
1.05k
        return {PropertyDecisionNode::Leaf(Predictor::Left)};
484
1.05k
      }
485
1.07k
      Tree tree;
486
      // 0: c > 1
487
1.07k
      tree.push_back(PropertyDecisionNode::Split(0, 1, 1));
488
      // 1: c > 2
489
1.07k
      tree.push_back(PropertyDecisionNode::Split(0, 2, 3));
490
      // 2: c > 0
491
1.07k
      tree.push_back(PropertyDecisionNode::Split(0, 0, 5));
492
      // 3: EPF control field (all 0 or 4), top > 3
493
1.07k
      tree.push_back(PropertyDecisionNode::Split(6, 3, 21));
494
      // 4: ACS+QF, y > 0
495
1.07k
      tree.push_back(PropertyDecisionNode::Split(2, 0, 7));
496
      // 5: CfL x
497
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Gradient));
498
      // 6: CfL b
499
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Gradient));
500
      // 7: QF: split according to the left quant value.
501
1.07k
      tree.push_back(PropertyDecisionNode::Split(7, 5, 9));
502
      // 8: ACS: split in 4 segments (8x8 from 0 to 3, large square 4-5, large
503
      // rectangular 6-11, 8x8 12+), according to previous ACS value.
504
1.07k
      tree.push_back(PropertyDecisionNode::Split(7, 5, 15));
505
      // QF
506
1.07k
      tree.push_back(PropertyDecisionNode::Split(7, 11, 11));
507
1.07k
      tree.push_back(PropertyDecisionNode::Split(7, 3, 13));
508
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
509
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
510
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
511
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
512
      // ACS
513
1.07k
      tree.push_back(PropertyDecisionNode::Split(7, 11, 17));
514
1.07k
      tree.push_back(PropertyDecisionNode::Split(7, 3, 19));
515
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
516
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
517
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
518
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
519
      // EPF, left > 3
520
1.07k
      tree.push_back(PropertyDecisionNode::Split(7, 3, 23));
521
1.07k
      tree.push_back(PropertyDecisionNode::Split(7, 3, 25));
522
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
523
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
524
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
525
1.07k
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
526
1.07k
      return tree;
527
2.13k
    }
528
2.13k
    case ModularOptions::TreeKind::kWPFixedDC: {
529
2.13k
      std::vector<int32_t> cutoffs = {
530
2.13k
          -500, -392, -255, -191, -127, -95, -63, -47, -31, -23, -15,
531
2.13k
          -11,  -7,   -4,   -3,   -1,   0,   1,   3,   5,   7,   11,
532
2.13k
          15,   23,   31,   47,   63,   95,  127, 191, 255, 392, 500};
533
2.13k
      return MakeFixedTree(kWPProp, cutoffs, Predictor::Weighted, total_pixels,
534
2.13k
                           bitdepth);
535
2.13k
    }
536
0
    case ModularOptions::TreeKind::kGradientFixedDC: {
537
0
      std::vector<int32_t> cutoffs = {
538
0
          -500, -392, -255, -191, -127, -95, -63, -47, -31, -23, -15,
539
0
          -11,  -7,   -4,   -3,   -1,   0,   1,   3,   5,   7,   11,
540
0
          15,   23,   31,   47,   63,   95,  127, 191, 255, 392, 500};
541
0
      return MakeFixedTree(
542
0
          prevprop > 0 ? kNumNonrefProperties + 2 : kGradientProp, cutoffs,
543
0
          Predictor::Gradient, total_pixels, bitdepth);
544
2.13k
    }
545
0
    case ModularOptions::TreeKind::kLearn: {
546
0
      JXL_DEBUG_ABORT("internal: kLearn is not predefined tree");
547
0
      return {};
548
0
    }
549
4.26k
  }
550
0
  JXL_DEBUG_ABORT("internal: unexpected TreeKind: %d",
551
0
                  static_cast<int>(tree_kind));
552
0
  return {};
553
0
}
554
555
StatusOr<Tree> LearnTree(
556
    const Image *images, const ModularOptions *options, const uint32_t start,
557
    const uint32_t stop,
558
1.00k
    const std::vector<ModularMultiplierInfo> &multiplier_info = {}) {
559
1.00k
  TreeSamples tree_samples;
560
1.00k
  JXL_RETURN_IF_ERROR(tree_samples.SetPredictor(options[start].predictor,
561
1.00k
                                                options[start].wp_tree_mode));
562
1.00k
  JXL_RETURN_IF_ERROR(
563
1.00k
      tree_samples.SetProperties(options[start].splitting_heuristics_properties,
564
1.00k
                                 options[start].wp_tree_mode));
565
1.00k
  uint32_t max_c = 0;
566
1.00k
  std::vector<pixel_type> pixel_samples;
567
1.00k
  std::vector<pixel_type> diff_samples;
568
1.00k
  std::vector<uint32_t> group_pixel_count;
569
1.00k
  std::vector<uint32_t> channel_pixel_count;
570
2.00k
  for (uint32_t i = start; i < stop; i++) {
571
1.00k
    max_c = std::max<uint32_t>(images[i].channel.size(), max_c);
572
1.00k
    CollectPixelSamples(images[i], options[i], i, group_pixel_count,
573
1.00k
                        channel_pixel_count, pixel_samples, diff_samples);
574
1.00k
  }
575
1.00k
  StaticPropRange range;
576
1.00k
  range[0] = {{0, max_c}};
577
1.00k
  range[1] = {{start, stop}};
578
579
1.00k
  tree_samples.PreQuantizeProperties(
580
1.00k
      range, multiplier_info, group_pixel_count, channel_pixel_count,
581
1.00k
      pixel_samples, diff_samples, options[start].max_property_values);
582
583
1.00k
  size_t total_pixels = 0;
584
4.00k
  for (size_t i = 0; i < images[start].channel.size(); i++) {
585
3.00k
    if (i >= images[start].nb_meta_channels &&
586
3.00k
        (images[start].channel[i].w > options[start].max_chan_size ||
587
3.00k
         images[start].channel[i].h > options[start].max_chan_size)) {
588
0
      break;
589
0
    }
590
3.00k
    total_pixels += images[start].channel[i].w * images[start].channel[i].h;
591
3.00k
  }
592
1.00k
  total_pixels = std::max<size_t>(total_pixels, 1);
593
594
1.00k
  weighted::Header wp_header;
595
596
2.00k
  for (size_t i = start; i < stop; i++) {
597
1.00k
    size_t nb_channels = images[i].channel.size();
598
599
1.00k
    if (images[i].w == 0 || images[i].h == 0 || nb_channels < 1)
600
0
      continue;  // is there any use for a zero-channel image?
601
1.00k
    if (images[i].error) return JXL_FAILURE("Invalid image");
602
1.00k
    JXL_ENSURE(options[i].tree_kind == ModularOptions::TreeKind::kLearn);
603
604
1.00k
    JXL_DEBUG_V(
605
1.00k
        2, "Encoding %" PRIuS "-channel, %i-bit, %" PRIuS "x%" PRIuS " image.",
606
1.00k
        nb_channels, images[i].bitdepth, images[i].w, images[i].h);
607
608
    // encode transforms
609
1.00k
    Bundle::Init(&wp_header);
610
1.00k
    if (options[i].predictor == Predictor::Weighted) {
611
0
      weighted::PredictorMode(options[i].wp_mode, &wp_header);
612
0
    }
613
614
    // Gather tree data
615
4.00k
    for (size_t c = 0; c < nb_channels; c++) {
616
3.00k
      if (c >= images[i].nb_meta_channels &&
617
3.00k
          (images[i].channel[c].w > options[i].max_chan_size ||
618
3.00k
           images[i].channel[c].h > options[i].max_chan_size)) {
619
0
        break;
620
0
      }
621
3.00k
      if (!images[i].channel[c].w || !images[i].channel[c].h) {
622
0
        continue;  // skip empty channels
623
0
      }
624
3.00k
      JXL_RETURN_IF_ERROR(GatherTreeData(images[i], c, i, wp_header, options[i],
625
3.00k
                                         tree_samples, &total_pixels));
626
3.00k
    }
627
1.00k
  }
628
629
  // TODO(veluca): parallelize more.
630
1.00k
  JXL_ASSIGN_OR_RETURN(Tree tree,
631
1.00k
                       LearnTree(std::move(tree_samples), total_pixels,
632
1.00k
                                 options[start], multiplier_info, range));
633
1.00k
  return tree;
634
1.00k
}
635
636
Status ModularCompress(const Image &image, const ModularOptions &options,
637
                       size_t group_id, const Tree &tree, GroupHeader &header,
638
72.0k
                       std::vector<Token> &tokens, size_t *width) {
639
72.0k
  size_t nb_channels = image.channel.size();
640
641
72.0k
  if (image.w == 0 || image.h == 0 || nb_channels < 1)
642
66.7k
    return true;  // is there any use for a zero-channel image?
643
5.26k
  if (image.error) return JXL_FAILURE("Invalid image");
644
645
5.26k
  JXL_DEBUG_V(
646
5.26k
      2, "Encoding %" PRIuS "-channel, %i-bit, %" PRIuS "x%" PRIuS " image.",
647
5.26k
      nb_channels, image.bitdepth, image.w, image.h);
648
649
  // encode transforms
650
5.26k
  Bundle::Init(&header);
651
5.26k
  if (options.predictor == Predictor::Weighted) {
652
2.13k
    weighted::PredictorMode(options.wp_mode, &header.wp_header);
653
2.13k
  }
654
5.26k
  header.transforms = image.transform;
655
5.26k
  header.use_global_tree = true;
656
657
5.26k
  size_t image_width = 0;
658
5.26k
  size_t total_tokens = 0;
659
23.1k
  for (size_t i = 0; i < nb_channels; i++) {
660
17.9k
    if (i >= image.nb_meta_channels &&
661
17.9k
        (image.channel[i].w > options.max_chan_size ||
662
17.9k
         image.channel[i].h > options.max_chan_size)) {
663
0
      break;
664
0
    }
665
17.9k
    if (image.channel[i].w > image_width) image_width = image.channel[i].w;
666
17.9k
    total_tokens += image.channel[i].w * image.channel[i].h;
667
17.9k
  }
668
5.26k
  if (options.zero_tokens) {
669
0
    tokens.resize(tokens.size() + total_tokens, {0, 0});
670
5.26k
  } else {
671
    // Do one big allocation for all the tokens we'll need,
672
    // to avoid reallocs that might require copying.
673
5.26k
    size_t pos = tokens.size();
674
5.26k
    tokens.resize(pos + total_tokens);
675
5.26k
    Token *tokenp = tokens.data() + pos;
676
23.1k
    for (size_t i = 0; i < nb_channels; i++) {
677
17.9k
      if (i >= image.nb_meta_channels &&
678
17.9k
          (image.channel[i].w > options.max_chan_size ||
679
17.9k
           image.channel[i].h > options.max_chan_size)) {
680
0
        break;
681
0
      }
682
17.9k
      if (!image.channel[i].w || !image.channel[i].h) {
683
0
        continue;  // skip empty channels
684
0
      }
685
17.9k
      JXL_RETURN_IF_ERROR(
686
17.9k
          EncodeModularChannelMAANS(image, i, header.wp_header, tree, &tokenp,
687
17.9k
                                    group_id, options.skip_encoder_fast_path));
688
17.9k
    }
689
    // Make sure we actually wrote all tokens
690
5.26k
    JXL_ENSURE(tokenp == tokens.data() + tokens.size());
691
5.26k
  }
692
693
5.26k
  *width = image_width;
694
695
5.26k
  return true;
696
5.26k
}
697
698
Status ModularGenericCompress(const Image &image, const ModularOptions &opts,
699
                              BitWriter &writer, AuxOut *aux_out,
700
0
                              LayerType layer, size_t group_id) {
701
0
  size_t nb_channels = image.channel.size();
702
703
0
  if (image.w == 0 || image.h == 0 || nb_channels < 1)
704
0
    return true;  // is there any use for a zero-channel image?
705
0
  if (image.error) return JXL_FAILURE("Invalid image");
706
707
0
  ModularOptions options = opts;  // Make a copy to modify it.
708
0
  if (options.predictor == kUndefinedPredictor) {
709
0
    options.predictor = Predictor::Gradient;
710
0
  }
711
712
0
  size_t bits = writer.BitsWritten();
713
714
0
  JxlMemoryManager *memory_manager = image.memory_manager();
715
0
  JXL_DEBUG_V(
716
0
      2, "Encoding %" PRIuS "-channel, %i-bit, %" PRIuS "x%" PRIuS " image.",
717
0
      nb_channels, image.bitdepth, image.w, image.h);
718
719
  // encode transforms
720
0
  GroupHeader header;
721
0
  Bundle::Init(&header);
722
0
  if (options.predictor == Predictor::Weighted) {
723
0
    weighted::PredictorMode(options.wp_mode, &header.wp_header);
724
0
  }
725
0
  header.transforms = image.transform;
726
727
0
  JXL_RETURN_IF_ERROR(Bundle::Write(header, &writer, layer, aux_out));
728
729
  // Compute tree.
730
0
  Tree tree;
731
0
  if (options.tree_kind == ModularOptions::TreeKind::kLearn) {
732
0
    JXL_ASSIGN_OR_RETURN(tree, LearnTree(&image, &options, 0, 1));
733
0
  } else {
734
0
    size_t total_pixels = 0;
735
0
    for (size_t i = 0; i < nb_channels; i++) {
736
0
      if (i >= image.nb_meta_channels &&
737
0
          (image.channel[i].w > options.max_chan_size ||
738
0
           image.channel[i].h > options.max_chan_size)) {
739
0
        break;
740
0
      }
741
0
      total_pixels += image.channel[i].w * image.channel[i].h;
742
0
    }
743
0
    total_pixels = std::max<size_t>(total_pixels, 1);
744
745
0
    tree = PredefinedTree(options.tree_kind, total_pixels, image.bitdepth,
746
0
                          options.max_properties);
747
0
  }
748
749
0
  Tree decoded_tree;
750
0
  std::vector<std::vector<Token>> tree_tokens(1);
751
0
  JXL_RETURN_IF_ERROR(TokenizeTree(tree, tree_tokens.data(), &decoded_tree));
752
0
  JXL_ENSURE(tree.size() == decoded_tree.size());
753
0
  tree = std::move(decoded_tree);
754
755
  /* TODO(szabadka) Add text output callback
756
  if (kWantDebug && kPrintTree && WantDebugOutput(aux_out)) {
757
    PrintTree(*tree, aux_out->debug_prefix + "/tree_" + ToString(group_id));
758
  } */
759
760
  // Write tree
761
0
  EntropyEncodingData code;
762
0
  JXL_ASSIGN_OR_RETURN(
763
0
      size_t cost,
764
0
      BuildAndEncodeHistograms(memory_manager, options.histogram_params,
765
0
                               kNumTreeContexts, tree_tokens, &code, &writer,
766
0
                               LayerType::ModularTree, aux_out));
767
0
  JXL_RETURN_IF_ERROR(WriteTokens(tree_tokens[0], code, 0, &writer,
768
0
                                  LayerType::ModularTree, aux_out));
769
770
0
  size_t image_width = 0;
771
0
  std::vector<std::vector<Token>> tokens(1);
772
  // it puts `use_global_tree = true` in the header, but this is not used
773
  // further
774
0
  JXL_RETURN_IF_ERROR(ModularCompress(image, options, group_id, tree, header,
775
0
                                      tokens[0], &image_width));
776
777
  // Write data
778
0
  code = {};
779
0
  HistogramParams histo_params = options.histogram_params;
780
0
  histo_params.image_widths.push_back(image_width);
781
0
  JXL_ASSIGN_OR_RETURN(
782
0
      cost, BuildAndEncodeHistograms(memory_manager, histo_params,
783
0
                                     (tree.size() + 1) / 2, tokens, &code,
784
0
                                     &writer, layer, aux_out));
785
0
  (void)cost;
786
0
  JXL_RETURN_IF_ERROR(WriteTokens(tokens[0], code, 0, &writer, layer, aux_out));
787
788
0
  bits = writer.BitsWritten() - bits;
789
0
  JXL_DEBUG_V(4,
790
0
              "Modular-encoded a %" PRIuS "x%" PRIuS
791
0
              " bitdepth=%i nbchans=%" PRIuS " image in %" PRIuS " bytes",
792
0
              image.w, image.h, image.bitdepth, image.channel.size(), bits / 8);
793
0
  (void)bits;
794
795
0
  return true;
796
0
}
797
798
}  // namespace jxl