Coverage Report

Created: 2025-07-23 08:18

/src/libpng/png.c
Line
Count
Source (jump to first uncovered line)
1
/* png.c - location for general purpose libpng functions
2
 *
3
 * Copyright (c) 2018-2025 Cosmin Truta
4
 * Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson
5
 * Copyright (c) 1996-1997 Andreas Dilger
6
 * Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.
7
 *
8
 * This code is released under the libpng license.
9
 * For conditions of distribution and use, see the disclaimer
10
 * and license in png.h
11
 */
12
13
#include "pngpriv.h"
14
15
/* Generate a compiler error if there is an old png.h in the search path. */
16
typedef png_libpng_version_1_6_51_git Your_png_h_is_not_version_1_6_51_git;
17
18
/* Sanity check the chunks definitions - PNG_KNOWN_CHUNKS from pngpriv.h and the
19
 * corresponding macro definitions.  This causes a compile time failure if
20
 * something is wrong but generates no code.
21
 *
22
 * (1) The first check is that the PNG_CHUNK(cHNK, index) 'index' values must
23
 * increment from 0 to the last value.
24
 */
25
#define PNG_CHUNK(cHNK, index) != (index) || ((index)+1)
26
27
#if 0 PNG_KNOWN_CHUNKS < 0
28
#  error PNG_KNOWN_CHUNKS chunk definitions are not in order
29
#endif
30
31
#undef PNG_CHUNK
32
33
/* (2) The chunk name macros, png_cHNK, must all be valid and defined.  Since
34
 * this is a preprocessor test undefined pp-tokens come out as zero and will
35
 * fail this test.
36
 */
37
#define PNG_CHUNK(cHNK, index) !PNG_CHUNK_NAME_VALID(png_ ## cHNK) ||
38
39
#if PNG_KNOWN_CHUNKS 0
40
#  error png_cHNK not defined for some known cHNK
41
#endif
42
43
#undef PNG_CHUNK
44
45
/* Tells libpng that we have already handled the first "num_bytes" bytes
46
 * of the PNG file signature.  If the PNG data is embedded into another
47
 * stream we can set num_bytes = 8 so that libpng will not attempt to read
48
 * or write any of the magic bytes before it starts on the IHDR.
49
 */
50
51
#ifdef PNG_READ_SUPPORTED
52
void PNGAPI
53
png_set_sig_bytes(png_structrp png_ptr, int num_bytes)
54
125k
{
55
125k
   unsigned int nb = (unsigned int)num_bytes;
56
57
125k
   png_debug(1, "in png_set_sig_bytes");
58
59
125k
   if (png_ptr == NULL)
60
0
      return;
61
62
125k
   if (num_bytes < 0)
63
0
      nb = 0;
64
65
125k
   if (nb > 8)
66
0
      png_error(png_ptr, "Too many bytes for PNG signature");
67
68
125k
   png_ptr->sig_bytes = (png_byte)nb;
69
125k
}
70
71
/* Checks whether the supplied bytes match the PNG signature.  We allow
72
 * checking less than the full 8-byte signature so that those apps that
73
 * already read the first few bytes of a file to determine the file type
74
 * can simply check the remaining bytes for extra assurance.  Returns
75
 * an integer less than, equal to, or greater than zero if sig is found,
76
 * respectively, to be less than, to match, or be greater than the correct
77
 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
78
 */
79
int PNGAPI
80
png_sig_cmp(png_const_bytep sig, size_t start, size_t num_to_check)
81
0
{
82
0
   static const png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
83
84
0
   if (num_to_check > 8)
85
0
      num_to_check = 8;
86
87
0
   else if (num_to_check < 1)
88
0
      return -1;
89
90
0
   if (start > 7)
91
0
      return -1;
92
93
0
   if (start + num_to_check > 8)
94
0
      num_to_check = 8 - start;
95
96
0
   return memcmp(&sig[start], &png_signature[start], num_to_check);
97
0
}
98
99
#endif /* READ */
100
101
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
102
/* Function to allocate memory for zlib */
103
PNG_FUNCTION(voidpf /* PRIVATE */,
104
png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
105
687k
{
106
687k
   png_alloc_size_t num_bytes = size;
107
108
687k
   if (png_ptr == NULL)
109
0
      return NULL;
110
111
   /* This check against overflow is vestigial, dating back from
112
    * the old times when png_zalloc used to be an exported function.
113
    * We're still keeping it here for now, as an extra-cautious
114
    * prevention against programming errors inside zlib, although it
115
    * should rather be a debug-time assertion instead.
116
    */
117
687k
   if (size != 0 && items >= (~(png_alloc_size_t)0) / size)
118
0
   {
119
0
      png_warning(png_voidcast(png_structrp, png_ptr),
120
0
                  "Potential overflow in png_zalloc()");
121
0
      return NULL;
122
0
   }
123
124
687k
   num_bytes *= items;
125
687k
   return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes);
126
687k
}
127
128
/* Function to free memory for zlib */
129
void /* PRIVATE */
130
png_zfree(voidpf png_ptr, voidpf ptr)
131
687k
{
132
687k
   png_free(png_voidcast(png_const_structrp,png_ptr), ptr);
133
687k
}
134
135
/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
136
 * in case CRC is > 32 bits to leave the top bits 0.
137
 */
138
void /* PRIVATE */
139
png_reset_crc(png_structrp png_ptr)
140
1.59M
{
141
   /* The cast is safe because the crc is a 32-bit value. */
142
1.59M
   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
143
1.59M
}
144
145
/* Calculate the CRC over a section of data.  We can only pass as
146
 * much data to this routine as the largest single buffer size.  We
147
 * also check that this data will actually be used before going to the
148
 * trouble of calculating it.
149
 */
150
void /* PRIVATE */
151
png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, size_t length)
152
3.24M
{
153
3.24M
   int need_crc = 1;
154
155
3.24M
   if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0)
156
2.33M
   {
157
2.33M
      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
158
2.33M
          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
159
2.03M
         need_crc = 0;
160
2.33M
   }
161
162
911k
   else /* critical */
163
911k
   {
164
911k
      if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0)
165
615k
         need_crc = 0;
166
911k
   }
167
168
   /* 'uLong' is defined in zlib.h as unsigned long; this means that on some
169
    * systems it is a 64-bit value.  crc32, however, returns 32 bits so the
170
    * following cast is safe.  'uInt' may be no more than 16 bits, so it is
171
    * necessary to perform a loop here.
172
    */
173
3.24M
   if (need_crc != 0 && length > 0)
174
594k
   {
175
594k
      uLong crc = png_ptr->crc; /* Should never issue a warning */
176
177
594k
      do
178
594k
      {
179
594k
         uInt safe_length = (uInt)length;
180
594k
#ifndef __COVERITY__
181
594k
         if (safe_length == 0)
182
0
            safe_length = (uInt)-1; /* evil, but safe */
183
594k
#endif
184
185
594k
         crc = crc32(crc, ptr, safe_length);
186
187
         /* The following should never issue compiler warnings; if they do the
188
          * target system has characteristics that will probably violate other
189
          * assumptions within the libpng code.
190
          */
191
594k
         ptr += safe_length;
192
594k
         length -= safe_length;
193
594k
      }
194
594k
      while (length > 0);
195
196
      /* And the following is always safe because the crc is only 32 bits. */
197
594k
      png_ptr->crc = (png_uint_32)crc;
198
594k
   }
199
3.24M
}
200
201
/* Check a user supplied version number, called from both read and write
202
 * functions that create a png_struct.
203
 */
204
int
205
png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver)
206
136k
{
207
   /* Libpng versions 1.0.0 and later are binary compatible if the version
208
    * string matches through the second '.'; we must recompile any
209
    * applications that use any older library version.
210
    */
211
212
136k
   if (user_png_ver != NULL)
213
136k
   {
214
136k
      int i = -1;
215
136k
      int found_dots = 0;
216
217
136k
      do
218
545k
      {
219
545k
         i++;
220
545k
         if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i])
221
0
            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
222
545k
         if (user_png_ver[i] == '.')
223
272k
            found_dots++;
224
545k
      } while (found_dots < 2 && user_png_ver[i] != 0 &&
225
545k
            PNG_LIBPNG_VER_STRING[i] != 0);
226
136k
   }
227
228
0
   else
229
0
      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
230
231
136k
   if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0)
232
0
   {
233
0
#ifdef PNG_WARNINGS_SUPPORTED
234
0
      size_t pos = 0;
235
0
      char m[128];
236
237
0
      pos = png_safecat(m, (sizeof m), pos,
238
0
          "Application built with libpng-");
239
0
      pos = png_safecat(m, (sizeof m), pos, user_png_ver);
240
0
      pos = png_safecat(m, (sizeof m), pos, " but running with ");
241
0
      pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING);
242
0
      PNG_UNUSED(pos)
243
244
0
      png_warning(png_ptr, m);
245
0
#endif
246
247
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
248
      png_ptr->flags = 0;
249
#endif
250
251
0
      return 0;
252
0
   }
253
254
   /* Success return. */
255
136k
   return 1;
256
136k
}
257
258
/* Generic function to create a png_struct for either read or write - this
259
 * contains the common initialization.
260
 */
261
PNG_FUNCTION(png_structp /* PRIVATE */,
262
png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
263
    png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
264
    png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
265
136k
{
266
136k
   png_struct create_struct;
267
136k
#  ifdef PNG_SETJMP_SUPPORTED
268
136k
      jmp_buf create_jmp_buf;
269
136k
#  endif
270
271
   /* This temporary stack-allocated structure is used to provide a place to
272
    * build enough context to allow the user provided memory allocator (if any)
273
    * to be called.
274
    */
275
136k
   memset(&create_struct, 0, (sizeof create_struct));
276
277
136k
#  ifdef PNG_USER_LIMITS_SUPPORTED
278
136k
      create_struct.user_width_max = PNG_USER_WIDTH_MAX;
279
136k
      create_struct.user_height_max = PNG_USER_HEIGHT_MAX;
280
281
136k
#     ifdef PNG_USER_CHUNK_CACHE_MAX
282
136k
      create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
283
136k
#     endif
284
285
136k
#     if PNG_USER_CHUNK_MALLOC_MAX > 0 /* default to compile-time limit */
286
136k
      create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
287
288
      /* No compile-time limit, so initialize to the system limit: */
289
#     elif defined PNG_MAX_MALLOC_64K /* legacy system limit */
290
      create_struct.user_chunk_malloc_max = 65536U;
291
292
#     else /* modern system limit SIZE_MAX (C99) */
293
      create_struct.user_chunk_malloc_max = PNG_SIZE_MAX;
294
#     endif
295
136k
#  endif
296
297
   /* The following two API calls simply set fields in png_struct, so it is safe
298
    * to do them now even though error handling is not yet set up.
299
    */
300
136k
#  ifdef PNG_USER_MEM_SUPPORTED
301
136k
      png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn);
302
#  else
303
      PNG_UNUSED(mem_ptr)
304
      PNG_UNUSED(malloc_fn)
305
      PNG_UNUSED(free_fn)
306
#  endif
307
308
   /* (*error_fn) can return control to the caller after the error_ptr is set,
309
    * this will result in a memory leak unless the error_fn does something
310
    * extremely sophisticated.  The design lacks merit but is implicit in the
311
    * API.
312
    */
313
136k
   png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn);
314
315
136k
#  ifdef PNG_SETJMP_SUPPORTED
316
136k
      if (!setjmp(create_jmp_buf))
317
136k
#  endif
318
136k
      {
319
136k
#  ifdef PNG_SETJMP_SUPPORTED
320
         /* Temporarily fake out the longjmp information until we have
321
          * successfully completed this function.  This only works if we have
322
          * setjmp() support compiled in, but it is safe - this stuff should
323
          * never happen.
324
          */
325
136k
         create_struct.jmp_buf_ptr = &create_jmp_buf;
326
136k
         create_struct.jmp_buf_size = 0; /*stack allocation*/
327
136k
         create_struct.longjmp_fn = longjmp;
328
136k
#  endif
329
         /* Call the general version checker (shared with read and write code):
330
          */
331
136k
         if (png_user_version_check(&create_struct, user_png_ver) != 0)
332
136k
         {
333
136k
            png_structrp png_ptr = png_voidcast(png_structrp,
334
136k
                png_malloc_warn(&create_struct, (sizeof *png_ptr)));
335
336
136k
            if (png_ptr != NULL)
337
136k
            {
338
               /* png_ptr->zstream holds a back-pointer to the png_struct, so
339
                * this can only be done now:
340
                */
341
136k
               create_struct.zstream.zalloc = png_zalloc;
342
136k
               create_struct.zstream.zfree = png_zfree;
343
136k
               create_struct.zstream.opaque = png_ptr;
344
345
136k
#              ifdef PNG_SETJMP_SUPPORTED
346
               /* Eliminate the local error handling: */
347
136k
               create_struct.jmp_buf_ptr = NULL;
348
136k
               create_struct.jmp_buf_size = 0;
349
136k
               create_struct.longjmp_fn = 0;
350
136k
#              endif
351
352
136k
               *png_ptr = create_struct;
353
354
               /* This is the successful return point */
355
136k
               return png_ptr;
356
136k
            }
357
136k
         }
358
136k
      }
359
360
   /* A longjmp because of a bug in the application storage allocator or a
361
    * simple failure to allocate the png_struct.
362
    */
363
0
   return NULL;
364
136k
}
365
366
/* Allocate the memory for an info_struct for the application. */
367
PNG_FUNCTION(png_infop,PNGAPI
368
png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED)
369
236k
{
370
236k
   png_inforp info_ptr;
371
372
236k
   png_debug(1, "in png_create_info_struct");
373
374
236k
   if (png_ptr == NULL)
375
0
      return NULL;
376
377
   /* Use the internal API that does not (or at least should not) error out, so
378
    * that this call always returns ok.  The application typically sets up the
379
    * error handling *after* creating the info_struct because this is the way it
380
    * has always been done in 'example.c'.
381
    */
382
236k
   info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr,
383
236k
       (sizeof *info_ptr)));
384
385
236k
   if (info_ptr != NULL)
386
236k
      memset(info_ptr, 0, (sizeof *info_ptr));
387
388
236k
   return info_ptr;
389
236k
}
390
391
/* This function frees the memory associated with a single info struct.
392
 * Normally, one would use either png_destroy_read_struct() or
393
 * png_destroy_write_struct() to free an info struct, but this may be
394
 * useful for some applications.  From libpng 1.6.0 this function is also used
395
 * internally to implement the png_info release part of the 'struct' destroy
396
 * APIs.  This ensures that all possible approaches free the same data (all of
397
 * it).
398
 */
399
void PNGAPI
400
png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr)
401
236k
{
402
236k
   png_inforp info_ptr = NULL;
403
404
236k
   png_debug(1, "in png_destroy_info_struct");
405
406
236k
   if (png_ptr == NULL)
407
0
      return;
408
409
236k
   if (info_ptr_ptr != NULL)
410
236k
      info_ptr = *info_ptr_ptr;
411
412
236k
   if (info_ptr != NULL)
413
236k
   {
414
      /* Do this first in case of an error below; if the app implements its own
415
       * memory management this can lead to png_free calling png_error, which
416
       * will abort this routine and return control to the app error handler.
417
       * An infinite loop may result if it then tries to free the same info
418
       * ptr.
419
       */
420
236k
      *info_ptr_ptr = NULL;
421
422
236k
      png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
423
236k
      memset(info_ptr, 0, (sizeof *info_ptr));
424
236k
      png_free(png_ptr, info_ptr);
425
236k
   }
426
236k
}
427
428
/* Initialize the info structure.  This is now an internal function (0.89)
429
 * and applications using it are urged to use png_create_info_struct()
430
 * instead.  Use deprecated in 1.6.0, internal use removed (used internally it
431
 * is just a memset).
432
 *
433
 * NOTE: it is almost inconceivable that this API is used because it bypasses
434
 * the user-memory mechanism and the user error handling/warning mechanisms in
435
 * those cases where it does anything other than a memset.
436
 */
437
PNG_FUNCTION(void,PNGAPI
438
png_info_init_3,(png_infopp ptr_ptr, size_t png_info_struct_size),
439
    PNG_DEPRECATED)
440
0
{
441
0
   png_inforp info_ptr = *ptr_ptr;
442
443
0
   png_debug(1, "in png_info_init_3");
444
445
0
   if (info_ptr == NULL)
446
0
      return;
447
448
0
   if ((sizeof (png_info)) > png_info_struct_size)
449
0
   {
450
0
      *ptr_ptr = NULL;
451
      /* The following line is why this API should not be used: */
452
0
      free(info_ptr);
453
0
      info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL,
454
0
          (sizeof *info_ptr)));
455
0
      if (info_ptr == NULL)
456
0
         return;
457
0
      *ptr_ptr = info_ptr;
458
0
   }
459
460
   /* Set everything to 0 */
461
0
   memset(info_ptr, 0, (sizeof *info_ptr));
462
0
}
463
464
void PNGAPI
465
png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr,
466
    int freer, png_uint_32 mask)
467
0
{
468
0
   png_debug(1, "in png_data_freer");
469
470
0
   if (png_ptr == NULL || info_ptr == NULL)
471
0
      return;
472
473
0
   if (freer == PNG_DESTROY_WILL_FREE_DATA)
474
0
      info_ptr->free_me |= mask;
475
476
0
   else if (freer == PNG_USER_WILL_FREE_DATA)
477
0
      info_ptr->free_me &= ~mask;
478
479
0
   else
480
0
      png_error(png_ptr, "Unknown freer parameter in png_data_freer");
481
0
}
482
483
void PNGAPI
484
png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask,
485
    int num)
486
270k
{
487
270k
   png_debug(1, "in png_free_data");
488
489
270k
   if (png_ptr == NULL || info_ptr == NULL)
490
0
      return;
491
492
270k
#ifdef PNG_TEXT_SUPPORTED
493
   /* Free text item num or (if num == -1) all text items */
494
270k
   if (info_ptr->text != NULL &&
495
270k
       ((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0)
496
20.1k
   {
497
20.1k
      if (num != -1)
498
0
      {
499
0
         png_free(png_ptr, info_ptr->text[num].key);
500
0
         info_ptr->text[num].key = NULL;
501
0
      }
502
503
20.1k
      else
504
20.1k
      {
505
20.1k
         int i;
506
507
379k
         for (i = 0; i < info_ptr->num_text; i++)
508
359k
            png_free(png_ptr, info_ptr->text[i].key);
509
510
20.1k
         png_free(png_ptr, info_ptr->text);
511
20.1k
         info_ptr->text = NULL;
512
20.1k
         info_ptr->num_text = 0;
513
20.1k
         info_ptr->max_text = 0;
514
20.1k
      }
515
20.1k
   }
516
270k
#endif
517
518
270k
#ifdef PNG_tRNS_SUPPORTED
519
   /* Free any tRNS entry */
520
270k
   if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0)
521
10.5k
   {
522
10.5k
      info_ptr->valid &= ~PNG_INFO_tRNS;
523
10.5k
      png_free(png_ptr, info_ptr->trans_alpha);
524
10.5k
      info_ptr->trans_alpha = NULL;
525
10.5k
      info_ptr->num_trans = 0;
526
10.5k
   }
527
270k
#endif
528
529
270k
#ifdef PNG_sCAL_SUPPORTED
530
   /* Free any sCAL entry */
531
270k
   if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0)
532
0
   {
533
0
      png_free(png_ptr, info_ptr->scal_s_width);
534
0
      png_free(png_ptr, info_ptr->scal_s_height);
535
0
      info_ptr->scal_s_width = NULL;
536
0
      info_ptr->scal_s_height = NULL;
537
0
      info_ptr->valid &= ~PNG_INFO_sCAL;
538
0
   }
539
270k
#endif
540
541
270k
#ifdef PNG_pCAL_SUPPORTED
542
   /* Free any pCAL entry */
543
270k
   if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0)
544
0
   {
545
0
      png_free(png_ptr, info_ptr->pcal_purpose);
546
0
      png_free(png_ptr, info_ptr->pcal_units);
547
0
      info_ptr->pcal_purpose = NULL;
548
0
      info_ptr->pcal_units = NULL;
549
550
0
      if (info_ptr->pcal_params != NULL)
551
0
         {
552
0
            int i;
553
554
0
            for (i = 0; i < info_ptr->pcal_nparams; i++)
555
0
               png_free(png_ptr, info_ptr->pcal_params[i]);
556
557
0
            png_free(png_ptr, info_ptr->pcal_params);
558
0
            info_ptr->pcal_params = NULL;
559
0
         }
560
0
      info_ptr->valid &= ~PNG_INFO_pCAL;
561
0
   }
562
270k
#endif
563
564
270k
#ifdef PNG_iCCP_SUPPORTED
565
   /* Free any profile entry */
566
270k
   if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0)
567
297
   {
568
297
      png_free(png_ptr, info_ptr->iccp_name);
569
297
      png_free(png_ptr, info_ptr->iccp_profile);
570
297
      info_ptr->iccp_name = NULL;
571
297
      info_ptr->iccp_profile = NULL;
572
297
      info_ptr->valid &= ~PNG_INFO_iCCP;
573
297
   }
574
270k
#endif
575
576
270k
#ifdef PNG_sPLT_SUPPORTED
577
   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
578
270k
   if (info_ptr->splt_palettes != NULL &&
579
270k
       ((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0)
580
0
   {
581
0
      if (num != -1)
582
0
      {
583
0
         png_free(png_ptr, info_ptr->splt_palettes[num].name);
584
0
         png_free(png_ptr, info_ptr->splt_palettes[num].entries);
585
0
         info_ptr->splt_palettes[num].name = NULL;
586
0
         info_ptr->splt_palettes[num].entries = NULL;
587
0
      }
588
589
0
      else
590
0
      {
591
0
         int i;
592
593
0
         for (i = 0; i < info_ptr->splt_palettes_num; i++)
594
0
         {
595
0
            png_free(png_ptr, info_ptr->splt_palettes[i].name);
596
0
            png_free(png_ptr, info_ptr->splt_palettes[i].entries);
597
0
         }
598
599
0
         png_free(png_ptr, info_ptr->splt_palettes);
600
0
         info_ptr->splt_palettes = NULL;
601
0
         info_ptr->splt_palettes_num = 0;
602
0
         info_ptr->valid &= ~PNG_INFO_sPLT;
603
0
      }
604
0
   }
605
270k
#endif
606
607
270k
#ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
608
270k
   if (info_ptr->unknown_chunks != NULL &&
609
270k
       ((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0)
610
10.9k
   {
611
10.9k
      if (num != -1)
612
0
      {
613
0
          png_free(png_ptr, info_ptr->unknown_chunks[num].data);
614
0
          info_ptr->unknown_chunks[num].data = NULL;
615
0
      }
616
617
10.9k
      else
618
10.9k
      {
619
10.9k
         int i;
620
621
204k
         for (i = 0; i < info_ptr->unknown_chunks_num; i++)
622
193k
            png_free(png_ptr, info_ptr->unknown_chunks[i].data);
623
624
10.9k
         png_free(png_ptr, info_ptr->unknown_chunks);
625
10.9k
         info_ptr->unknown_chunks = NULL;
626
10.9k
         info_ptr->unknown_chunks_num = 0;
627
10.9k
      }
628
10.9k
   }
629
270k
#endif
630
631
270k
#ifdef PNG_eXIf_SUPPORTED
632
   /* Free any eXIf entry */
633
270k
   if (((mask & PNG_FREE_EXIF) & info_ptr->free_me) != 0)
634
0
   {
635
0
      if (info_ptr->exif)
636
0
      {
637
0
         png_free(png_ptr, info_ptr->exif);
638
0
         info_ptr->exif = NULL;
639
0
      }
640
0
      info_ptr->valid &= ~PNG_INFO_eXIf;
641
0
   }
642
270k
#endif
643
644
270k
#ifdef PNG_hIST_SUPPORTED
645
   /* Free any hIST entry */
646
270k
   if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0)
647
0
   {
648
0
      png_free(png_ptr, info_ptr->hist);
649
0
      info_ptr->hist = NULL;
650
0
      info_ptr->valid &= ~PNG_INFO_hIST;
651
0
   }
652
270k
#endif
653
654
   /* Free any PLTE entry that was internally allocated */
655
270k
   if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0)
656
22.7k
   {
657
22.7k
      png_free(png_ptr, info_ptr->palette);
658
22.7k
      info_ptr->palette = NULL;
659
22.7k
      info_ptr->valid &= ~PNG_INFO_PLTE;
660
22.7k
      info_ptr->num_palette = 0;
661
22.7k
   }
662
663
270k
#ifdef PNG_INFO_IMAGE_SUPPORTED
664
   /* Free any image bits attached to the info structure */
665
270k
   if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0)
666
0
   {
667
0
      if (info_ptr->row_pointers != NULL)
668
0
      {
669
0
         png_uint_32 row;
670
0
         for (row = 0; row < info_ptr->height; row++)
671
0
            png_free(png_ptr, info_ptr->row_pointers[row]);
672
673
0
         png_free(png_ptr, info_ptr->row_pointers);
674
0
         info_ptr->row_pointers = NULL;
675
0
      }
676
0
      info_ptr->valid &= ~PNG_INFO_IDAT;
677
0
   }
678
270k
#endif
679
680
270k
   if (num != -1)
681
33.5k
      mask &= ~PNG_FREE_MUL;
682
683
270k
   info_ptr->free_me &= ~mask;
684
270k
}
685
#endif /* READ || WRITE */
686
687
/* This function returns a pointer to the io_ptr associated with the user
688
 * functions.  The application should free any memory associated with this
689
 * pointer before png_write_destroy() or png_read_destroy() are called.
690
 */
691
png_voidp PNGAPI
692
png_get_io_ptr(png_const_structrp png_ptr)
693
4.87M
{
694
4.87M
   if (png_ptr == NULL)
695
0
      return NULL;
696
697
4.87M
   return png_ptr->io_ptr;
698
4.87M
}
699
700
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
701
#  ifdef PNG_STDIO_SUPPORTED
702
/* Initialize the default input/output functions for the PNG file.  If you
703
 * use your own read or write routines, you can call either png_set_read_fn()
704
 * or png_set_write_fn() instead of png_init_io().  If you have defined
705
 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
706
 * function of your own because "FILE *" isn't necessarily available.
707
 */
708
void PNGAPI
709
png_init_io(png_structrp png_ptr, FILE *fp)
710
0
{
711
0
   png_debug(1, "in png_init_io");
712
713
0
   if (png_ptr == NULL)
714
0
      return;
715
716
0
   png_ptr->io_ptr = (png_voidp)fp;
717
0
}
718
#  endif
719
720
#  ifdef PNG_SAVE_INT_32_SUPPORTED
721
/* PNG signed integers are saved in 32-bit 2's complement format.  ANSI C-90
722
 * defines a cast of a signed integer to an unsigned integer either to preserve
723
 * the value, if it is positive, or to calculate:
724
 *
725
 *     (UNSIGNED_MAX+1) + integer
726
 *
727
 * Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the
728
 * negative integral value is added the result will be an unsigned value
729
 * corresponding to the 2's complement representation.
730
 */
731
void PNGAPI
732
png_save_int_32(png_bytep buf, png_int_32 i)
733
1.82k
{
734
1.82k
   png_save_uint_32(buf, (png_uint_32)i);
735
1.82k
}
736
#  endif
737
738
#  ifdef PNG_TIME_RFC1123_SUPPORTED
739
/* Convert the supplied time into an RFC 1123 string suitable for use in
740
 * a "Creation Time" or other text-based time string.
741
 */
742
int PNGAPI
743
png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime)
744
0
{
745
0
   static const char short_months[12][4] =
746
0
        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
747
0
         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
748
749
0
   if (out == NULL)
750
0
      return 0;
751
752
0
   if (ptime->year > 9999 /* RFC1123 limitation */ ||
753
0
       ptime->month == 0    ||  ptime->month > 12  ||
754
0
       ptime->day   == 0    ||  ptime->day   > 31  ||
755
0
       ptime->hour  > 23    ||  ptime->minute > 59 ||
756
0
       ptime->second > 60)
757
0
      return 0;
758
759
0
   {
760
0
      size_t pos = 0;
761
0
      char number_buf[5] = {0, 0, 0, 0, 0}; /* enough for a four-digit year */
762
763
0
#     define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string))
764
0
#     define APPEND_NUMBER(format, value)\
765
0
         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
766
0
#     define APPEND(ch) if (pos < 28) out[pos++] = (ch)
767
768
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
769
0
      APPEND(' ');
770
0
      APPEND_STRING(short_months[(ptime->month - 1)]);
771
0
      APPEND(' ');
772
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
773
0
      APPEND(' ');
774
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
775
0
      APPEND(':');
776
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
777
0
      APPEND(':');
778
0
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
779
0
      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
780
0
      PNG_UNUSED (pos)
781
782
0
#     undef APPEND
783
0
#     undef APPEND_NUMBER
784
0
#     undef APPEND_STRING
785
0
   }
786
787
0
   return 1;
788
0
}
789
790
#    if PNG_LIBPNG_VER < 10700
791
/* To do: remove the following from libpng-1.7 */
792
/* Original API that uses a private buffer in png_struct.
793
 * Deprecated because it causes png_struct to carry a spurious temporary
794
 * buffer (png_struct::time_buffer), better to have the caller pass this in.
795
 */
796
png_const_charp PNGAPI
797
png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime)
798
0
{
799
0
   if (png_ptr != NULL)
800
0
   {
801
      /* The only failure above if png_ptr != NULL is from an invalid ptime */
802
0
      if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0)
803
0
         png_warning(png_ptr, "Ignoring invalid time value");
804
805
0
      else
806
0
         return png_ptr->time_buffer;
807
0
   }
808
809
0
   return NULL;
810
0
}
811
#    endif /* LIBPNG_VER < 10700 */
812
#  endif /* TIME_RFC1123 */
813
814
#endif /* READ || WRITE */
815
816
png_const_charp PNGAPI
817
png_get_copyright(png_const_structrp png_ptr)
818
0
{
819
0
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
820
#ifdef PNG_STRING_COPYRIGHT
821
   return PNG_STRING_COPYRIGHT
822
#else
823
0
   return PNG_STRING_NEWLINE \
824
0
      "libpng version 1.6.51.git" PNG_STRING_NEWLINE \
825
0
      "Copyright (c) 2018-2025 Cosmin Truta" PNG_STRING_NEWLINE \
826
0
      "Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson" \
827
0
      PNG_STRING_NEWLINE \
828
0
      "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
829
0
      "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
830
0
      PNG_STRING_NEWLINE;
831
0
#endif
832
0
}
833
834
/* The following return the library version as a short string in the
835
 * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
836
 * used with your application, print out PNG_LIBPNG_VER_STRING, which
837
 * is defined in png.h.
838
 * Note: now there is no difference between png_get_libpng_ver() and
839
 * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
840
 * it is guaranteed that png.c uses the correct version of png.h.
841
 */
842
png_const_charp PNGAPI
843
png_get_libpng_ver(png_const_structrp png_ptr)
844
35.9k
{
845
   /* Version of *.c files used when building libpng */
846
35.9k
   return png_get_header_ver(png_ptr);
847
35.9k
}
848
849
png_const_charp PNGAPI
850
png_get_header_ver(png_const_structrp png_ptr)
851
36.0k
{
852
   /* Version of *.h files used when building libpng */
853
36.0k
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
854
36.0k
   return PNG_LIBPNG_VER_STRING;
855
36.0k
}
856
857
png_const_charp PNGAPI
858
png_get_header_version(png_const_structrp png_ptr)
859
0
{
860
   /* Returns longer string containing both version and date */
861
0
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
862
0
#ifdef __STDC__
863
0
   return PNG_HEADER_VERSION_STRING
864
#  ifndef PNG_READ_SUPPORTED
865
      " (NO READ SUPPORT)"
866
#  endif
867
0
      PNG_STRING_NEWLINE;
868
#else
869
   return PNG_HEADER_VERSION_STRING;
870
#endif
871
0
}
872
873
#ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED
874
/* NOTE: this routine is not used internally! */
875
/* Build a grayscale palette.  Palette is assumed to be 1 << bit_depth
876
 * large of png_color.  This lets grayscale images be treated as
877
 * paletted.  Most useful for gamma correction and simplification
878
 * of code.  This API is not used internally.
879
 */
880
void PNGAPI
881
png_build_grayscale_palette(int bit_depth, png_colorp palette)
882
0
{
883
0
   int num_palette;
884
0
   int color_inc;
885
0
   int i;
886
0
   int v;
887
888
0
   png_debug(1, "in png_do_build_grayscale_palette");
889
890
0
   if (palette == NULL)
891
0
      return;
892
893
0
   switch (bit_depth)
894
0
   {
895
0
      case 1:
896
0
         num_palette = 2;
897
0
         color_inc = 0xff;
898
0
         break;
899
900
0
      case 2:
901
0
         num_palette = 4;
902
0
         color_inc = 0x55;
903
0
         break;
904
905
0
      case 4:
906
0
         num_palette = 16;
907
0
         color_inc = 0x11;
908
0
         break;
909
910
0
      case 8:
911
0
         num_palette = 256;
912
0
         color_inc = 1;
913
0
         break;
914
915
0
      default:
916
0
         num_palette = 0;
917
0
         color_inc = 0;
918
0
         break;
919
0
   }
920
921
0
   for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
922
0
   {
923
0
      palette[i].red = (png_byte)(v & 0xff);
924
0
      palette[i].green = (png_byte)(v & 0xff);
925
0
      palette[i].blue = (png_byte)(v & 0xff);
926
0
   }
927
0
}
928
#endif
929
930
#ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
931
int PNGAPI
932
png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name)
933
1.20M
{
934
   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
935
1.20M
   png_const_bytep p, p_end;
936
937
1.20M
   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0)
938
0
      return PNG_HANDLE_CHUNK_AS_DEFAULT;
939
940
1.20M
   p_end = png_ptr->chunk_list;
941
1.20M
   p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
942
943
   /* The code is the fifth byte after each four byte string.  Historically this
944
    * code was always searched from the end of the list, this is no longer
945
    * necessary because the 'set' routine handles duplicate entries correctly.
946
    */
947
1.20M
   do /* num_chunk_list > 0, so at least one */
948
9.40M
   {
949
9.40M
      p -= 5;
950
951
9.40M
      if (memcmp(chunk_name, p, 4) == 0)
952
60.7k
         return p[4];
953
9.40M
   }
954
9.34M
   while (p > p_end);
955
956
   /* This means that known chunks should be processed and unknown chunks should
957
    * be handled according to the value of png_ptr->unknown_default; this can be
958
    * confusing because, as a result, there are two levels of defaulting for
959
    * unknown chunks.
960
    */
961
1.14M
   return PNG_HANDLE_CHUNK_AS_DEFAULT;
962
1.20M
}
963
964
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\
965
   defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
966
int /* PRIVATE */
967
png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name)
968
1.20M
{
969
1.20M
   png_byte chunk_string[5];
970
971
1.20M
   PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
972
1.20M
   return png_handle_as_unknown(png_ptr, chunk_string);
973
1.20M
}
974
#endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */
975
#endif /* SET_UNKNOWN_CHUNKS */
976
977
#ifdef PNG_READ_SUPPORTED
978
/* This function, added to libpng-1.0.6g, is untested. */
979
int PNGAPI
980
png_reset_zstream(png_structrp png_ptr)
981
0
{
982
0
   if (png_ptr == NULL)
983
0
      return Z_STREAM_ERROR;
984
985
   /* WARNING: this resets the window bits to the maximum! */
986
0
   return inflateReset(&png_ptr->zstream);
987
0
}
988
#endif /* READ */
989
990
/* This function was added to libpng-1.0.7 */
991
png_uint_32 PNGAPI
992
png_access_version_number(void)
993
0
{
994
   /* Version of *.c files used when building libpng */
995
0
   return (png_uint_32)PNG_LIBPNG_VER;
996
0
}
997
998
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
999
/* Ensure that png_ptr->zstream.msg holds some appropriate error message string.
1000
 * If it doesn't 'ret' is used to set it to something appropriate, even in cases
1001
 * like Z_OK or Z_STREAM_END where the error code is apparently a success code.
1002
 */
1003
void /* PRIVATE */
1004
png_zstream_error(png_structrp png_ptr, int ret)
1005
439k
{
1006
   /* Translate 'ret' into an appropriate error string, priority is given to the
1007
    * one in zstream if set.  This always returns a string, even in cases like
1008
    * Z_OK or Z_STREAM_END where the error code is a success code.
1009
    */
1010
439k
   if (png_ptr->zstream.msg == NULL) switch (ret)
1011
194k
   {
1012
0
      default:
1013
53.5k
      case Z_OK:
1014
53.5k
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code");
1015
53.5k
         break;
1016
1017
68.7k
      case Z_STREAM_END:
1018
         /* Normal exit */
1019
68.7k
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream");
1020
68.7k
         break;
1021
1022
1.55k
      case Z_NEED_DICT:
1023
         /* This means the deflate stream did not have a dictionary; this
1024
          * indicates a bogus PNG.
1025
          */
1026
1.55k
         png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary");
1027
1.55k
         break;
1028
1029
0
      case Z_ERRNO:
1030
         /* gz APIs only: should not happen */
1031
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error");
1032
0
         break;
1033
1034
0
      case Z_STREAM_ERROR:
1035
         /* internal libpng error */
1036
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib");
1037
0
         break;
1038
1039
0
      case Z_DATA_ERROR:
1040
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream");
1041
0
         break;
1042
1043
0
      case Z_MEM_ERROR:
1044
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory");
1045
0
         break;
1046
1047
70.8k
      case Z_BUF_ERROR:
1048
         /* End of input or output; not a problem if the caller is doing
1049
          * incremental read or write.
1050
          */
1051
70.8k
         png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated");
1052
70.8k
         break;
1053
1054
0
      case Z_VERSION_ERROR:
1055
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version");
1056
0
         break;
1057
1058
0
      case PNG_UNEXPECTED_ZLIB_RETURN:
1059
         /* Compile errors here mean that zlib now uses the value co-opted in
1060
          * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
1061
          * and change pngpriv.h.  Note that this message is "... return",
1062
          * whereas the default/Z_OK one is "... return code".
1063
          */
1064
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return");
1065
0
         break;
1066
194k
   }
1067
439k
}
1068
1069
#ifdef PNG_COLORSPACE_SUPPORTED
1070
static png_int_32
1071
png_fp_add(png_int_32 addend0, png_int_32 addend1, int *error)
1072
0
{
1073
   /* Safely add two fixed point values setting an error flag and returning 0.5
1074
    * on overflow.
1075
    * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
1076
    * relying on addition of two positive values producing a negative one is not
1077
    * safe.
1078
    */
1079
0
   if (addend0 > 0)
1080
0
   {
1081
0
      if (0x7fffffff - addend0 >= addend1)
1082
0
         return addend0+addend1;
1083
0
   }
1084
0
   else if (addend0 < 0)
1085
0
   {
1086
0
      if (-0x7fffffff - addend0 <= addend1)
1087
0
         return addend0+addend1;
1088
0
   }
1089
0
   else
1090
0
      return addend1;
1091
1092
0
   *error = 1;
1093
0
   return PNG_FP_1/2;
1094
0
}
1095
1096
static png_int_32
1097
png_fp_sub(png_int_32 addend0, png_int_32 addend1, int *error)
1098
0
{
1099
   /* As above but calculate addend0-addend1. */
1100
0
   if (addend1 > 0)
1101
0
   {
1102
0
      if (-0x7fffffff + addend1 <= addend0)
1103
0
         return addend0-addend1;
1104
0
   }
1105
0
   else if (addend1 < 0)
1106
0
   {
1107
0
      if (0x7fffffff + addend1 >= addend0)
1108
0
         return addend0-addend1;
1109
0
   }
1110
0
   else
1111
0
      return addend0;
1112
1113
0
   *error = 1;
1114
0
   return PNG_FP_1/2;
1115
0
}
1116
1117
static int
1118
png_safe_add(png_int_32 *addend0_and_result, png_int_32 addend1,
1119
      png_int_32 addend2)
1120
0
{
1121
   /* Safely add three integers.  Returns 0 on success, 1 on overflow.  Does not
1122
    * set the result on overflow.
1123
    */
1124
0
   int error = 0;
1125
0
   int result = png_fp_add(*addend0_and_result,
1126
0
                           png_fp_add(addend1, addend2, &error),
1127
0
                           &error);
1128
0
   if (!error) *addend0_and_result = result;
1129
0
   return error;
1130
0
}
1131
1132
/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
1133
 * cHRM, as opposed to using chromaticities.  These internal APIs return
1134
 * non-zero on a parameter error.  The X, Y and Z values are required to be
1135
 * positive and less than 1.0.
1136
 */
1137
int /* PRIVATE */
1138
png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ)
1139
0
{
1140
   /* NOTE: returns 0 on success, 1 means error. */
1141
0
   png_int_32 d, dred, dgreen, dblue, dwhite, whiteX, whiteY;
1142
1143
   /* 'd' in each of the blocks below is just X+Y+Z for each component,
1144
    * x, y and z are X,Y,Z/(X+Y+Z).
1145
    */
1146
0
   d = XYZ->red_X;
1147
0
   if (png_safe_add(&d, XYZ->red_Y, XYZ->red_Z))
1148
0
      return 1;
1149
0
   dred = d;
1150
0
   if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, dred) == 0)
1151
0
      return 1;
1152
0
   if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, dred) == 0)
1153
0
      return 1;
1154
1155
0
   d = XYZ->green_X;
1156
0
   if (png_safe_add(&d, XYZ->green_Y, XYZ->green_Z))
1157
0
      return 1;
1158
0
   dgreen = d;
1159
0
   if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, dgreen) == 0)
1160
0
      return 1;
1161
0
   if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, dgreen) == 0)
1162
0
      return 1;
1163
1164
0
   d = XYZ->blue_X;
1165
0
   if (png_safe_add(&d, XYZ->blue_Y, XYZ->blue_Z))
1166
0
      return 1;
1167
0
   dblue = d;
1168
0
   if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, dblue) == 0)
1169
0
      return 1;
1170
0
   if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, dblue) == 0)
1171
0
      return 1;
1172
1173
   /* The reference white is simply the sum of the end-point (X,Y,Z) vectors so
1174
    * the fillowing calculates (X+Y+Z) of the reference white (media white,
1175
    * encoding white) itself:
1176
    */
1177
0
   d = dblue;
1178
0
   if (png_safe_add(&d, dred, dgreen))
1179
0
      return 1;
1180
0
   dwhite = d;
1181
1182
   /* Find the white X,Y values from the sum of the red, green and blue X,Y
1183
    * values.
1184
    */
1185
0
   d = XYZ->red_X;
1186
0
   if (png_safe_add(&d, XYZ->green_X, XYZ->blue_X))
1187
0
      return 1;
1188
0
   whiteX = d;
1189
1190
0
   d = XYZ->red_Y;
1191
0
   if (png_safe_add(&d, XYZ->green_Y, XYZ->blue_Y))
1192
0
      return 1;
1193
0
   whiteY = d;
1194
1195
0
   if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0)
1196
0
      return 1;
1197
0
   if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0)
1198
0
      return 1;
1199
1200
0
   return 0;
1201
0
}
1202
1203
int /* PRIVATE */
1204
png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy)
1205
0
{
1206
   /* NOTE: returns 0 on success, 1 means error. */
1207
0
   png_fixed_point red_inverse, green_inverse, blue_scale;
1208
0
   png_fixed_point left, right, denominator;
1209
1210
   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
1211
    * have end points with 0 tristimulus values (these are impossible end
1212
    * points, but they are used to cover the possible colors).  We check
1213
    * xy->whitey against 5, not 0, to avoid a possible integer overflow.
1214
    *
1215
    * The limits here will *not* accept ACES AP0, where bluey is -7700
1216
    * (-0.0770) because the PNG spec itself requires the xy values to be
1217
    * unsigned.  whitey is also required to be 5 or more to avoid overflow.
1218
    *
1219
    * Instead the upper limits have been relaxed to accomodate ACES AP1 where
1220
    * redz ends up as -600 (-0.006).  ProPhotoRGB was already "in range."
1221
    * The new limit accomodates the AP0 and AP1 ranges for z but not AP0 redy.
1222
    */
1223
0
   const png_fixed_point fpLimit = PNG_FP_1+(PNG_FP_1/10);
1224
0
   if (xy->redx   < 0 || xy->redx > fpLimit) return 1;
1225
0
   if (xy->redy   < 0 || xy->redy > fpLimit-xy->redx) return 1;
1226
0
   if (xy->greenx < 0 || xy->greenx > fpLimit) return 1;
1227
0
   if (xy->greeny < 0 || xy->greeny > fpLimit-xy->greenx) return 1;
1228
0
   if (xy->bluex  < 0 || xy->bluex > fpLimit) return 1;
1229
0
   if (xy->bluey  < 0 || xy->bluey > fpLimit-xy->bluex) return 1;
1230
0
   if (xy->whitex < 0 || xy->whitex > fpLimit) return 1;
1231
0
   if (xy->whitey < 5 || xy->whitey > fpLimit-xy->whitex) return 1;
1232
1233
   /* The reverse calculation is more difficult because the original tristimulus
1234
    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
1235
    * derived values were recorded in the cHRM chunk;
1236
    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
1237
    * therefore an arbitrary ninth value has to be introduced to undo the
1238
    * original transformations.
1239
    *
1240
    * Think of the original end-points as points in (X,Y,Z) space.  The
1241
    * chromaticity values (c) have the property:
1242
    *
1243
    *           C
1244
    *   c = ---------
1245
    *       X + Y + Z
1246
    *
1247
    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
1248
    * three chromaticity values (x,y,z) for each end-point obey the
1249
    * relationship:
1250
    *
1251
    *   x + y + z = 1
1252
    *
1253
    * This describes the plane in (X,Y,Z) space that intersects each axis at the
1254
    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
1255
    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
1256
    * and chromaticity is the intersection of the vector from the origin to the
1257
    * (X,Y,Z) value with the chromaticity plane.
1258
    *
1259
    * To fully invert the chromaticity calculation we would need the three
1260
    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
1261
    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
1262
    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
1263
    * given all three of the scale factors since:
1264
    *
1265
    *    color-C = color-c * color-scale
1266
    *    white-C = red-C + green-C + blue-C
1267
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1268
    *
1269
    * But cHRM records only white-x and white-y, so we have lost the white scale
1270
    * factor:
1271
    *
1272
    *    white-C = white-c*white-scale
1273
    *
1274
    * To handle this the inverse transformation makes an arbitrary assumption
1275
    * about white-scale:
1276
    *
1277
    *    Assume: white-Y = 1.0
1278
    *    Hence:  white-scale = 1/white-y
1279
    *    Or:     red-Y + green-Y + blue-Y = 1.0
1280
    *
1281
    * Notice the last statement of the assumption gives an equation in three of
1282
    * the nine values we want to calculate.  8 more equations come from the
1283
    * above routine as summarised at the top above (the chromaticity
1284
    * calculation):
1285
    *
1286
    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
1287
    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
1288
    *
1289
    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
1290
    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
1291
    * determinants, however this is not as bad as it seems because only 28 of
1292
    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
1293
    * Cramer's rule is notoriously numerically unstable because the determinant
1294
    * calculation involves the difference of large, but similar, numbers.  It is
1295
    * difficult to be sure that the calculation is stable for real world values
1296
    * and it is certain that it becomes unstable where the end points are close
1297
    * together.
1298
    *
1299
    * So this code uses the perhaps slightly less optimal but more
1300
    * understandable and totally obvious approach of calculating color-scale.
1301
    *
1302
    * This algorithm depends on the precision in white-scale and that is
1303
    * (1/white-y), so we can immediately see that as white-y approaches 0 the
1304
    * accuracy inherent in the cHRM chunk drops off substantially.
1305
    *
1306
    * libpng arithmetic: a simple inversion of the above equations
1307
    * ------------------------------------------------------------
1308
    *
1309
    *    white_scale = 1/white-y
1310
    *    white-X = white-x * white-scale
1311
    *    white-Y = 1.0
1312
    *    white-Z = (1 - white-x - white-y) * white_scale
1313
    *
1314
    *    white-C = red-C + green-C + blue-C
1315
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1316
    *
1317
    * This gives us three equations in (red-scale,green-scale,blue-scale) where
1318
    * all the coefficients are now known:
1319
    *
1320
    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
1321
    *       = white-x/white-y
1322
    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
1323
    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
1324
    *       = (1 - white-x - white-y)/white-y
1325
    *
1326
    * In the last equation color-z is (1 - color-x - color-y) so we can add all
1327
    * three equations together to get an alternative third:
1328
    *
1329
    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
1330
    *
1331
    * So now we have a Cramer's rule solution where the determinants are just
1332
    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
1333
    * multiplication of three coefficients so we can't guarantee to avoid
1334
    * overflow in the libpng fixed point representation.  Using Cramer's rule in
1335
    * floating point is probably a good choice here, but it's not an option for
1336
    * fixed point.  Instead proceed to simplify the first two equations by
1337
    * eliminating what is likely to be the largest value, blue-scale:
1338
    *
1339
    *    blue-scale = white-scale - red-scale - green-scale
1340
    *
1341
    * Hence:
1342
    *
1343
    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1344
    *                (white-x - blue-x)*white-scale
1345
    *
1346
    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1347
    *                1 - blue-y*white-scale
1348
    *
1349
    * And now we can trivially solve for (red-scale,green-scale):
1350
    *
1351
    *    green-scale =
1352
    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1353
    *                -----------------------------------------------------------
1354
    *                                  green-x - blue-x
1355
    *
1356
    *    red-scale =
1357
    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1358
    *                ---------------------------------------------------------
1359
    *                                  red-y - blue-y
1360
    *
1361
    * Hence:
1362
    *
1363
    *    red-scale =
1364
    *          ( (green-x - blue-x) * (white-y - blue-y) -
1365
    *            (green-y - blue-y) * (white-x - blue-x) ) / white-y
1366
    * -------------------------------------------------------------------------
1367
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1368
    *
1369
    *    green-scale =
1370
    *          ( (red-y - blue-y) * (white-x - blue-x) -
1371
    *            (red-x - blue-x) * (white-y - blue-y) ) / white-y
1372
    * -------------------------------------------------------------------------
1373
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1374
    *
1375
    * Accuracy:
1376
    * The input values have 5 decimal digits of accuracy.
1377
    *
1378
    * In the previous implementation the values were all in the range 0 < value
1379
    * < 1, so simple products are in the same range but may need up to 10
1380
    * decimal digits to preserve the original precision and avoid underflow.
1381
    * Because we are using a 32-bit signed representation we cannot match this;
1382
    * the best is a little over 9 decimal digits, less than 10.
1383
    *
1384
    * This range has now been extended to allow values up to 1.1, or 110,000 in
1385
    * fixed point.
1386
    *
1387
    * The approach used here is to preserve the maximum precision within the
1388
    * signed representation.  Because the red-scale calculation above uses the
1389
    * difference between two products of values that must be in the range
1390
    * -1.1..+1.1 it is sufficient to divide the product by 8;
1391
    * ceil(121,000/32767*2).  The factor is irrelevant in the calculation
1392
    * because it is applied to both numerator and denominator.
1393
    *
1394
    * Note that the values of the differences of the products of the
1395
    * chromaticities in the above equations tend to be small, for example for
1396
    * the sRGB chromaticities they are:
1397
    *
1398
    * red numerator:    -0.04751
1399
    * green numerator:  -0.08788
1400
    * denominator:      -0.2241 (without white-y multiplication)
1401
    *
1402
    *  The resultant Y coefficients from the chromaticities of some widely used
1403
    *  color space definitions are (to 15 decimal places):
1404
    *
1405
    *  sRGB
1406
    *    0.212639005871510 0.715168678767756 0.072192315360734
1407
    *  Kodak ProPhoto
1408
    *    0.288071128229293 0.711843217810102 0.000085653960605
1409
    *  Adobe RGB
1410
    *    0.297344975250536 0.627363566255466 0.075291458493998
1411
    *  Adobe Wide Gamut RGB
1412
    *    0.258728243040113 0.724682314948566 0.016589442011321
1413
    */
1414
0
   {
1415
0
      int error = 0;
1416
1417
      /* By the argument above overflow should be impossible here, however the
1418
       * code now simply returns a failure code.  The xy subtracts in the
1419
       * arguments to png_muldiv are *not* checked for overflow because the
1420
       * checks at the start guarantee they are in the range 0..110000 and
1421
       * png_fixed_point is a 32-bit signed number.
1422
       */
1423
0
      if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 8) == 0)
1424
0
         return 1;
1425
0
      if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 8) ==
1426
0
            0)
1427
0
         return 1;
1428
0
      denominator = png_fp_sub(left, right, &error);
1429
0
      if (error) return 1;
1430
1431
      /* Now find the red numerator. */
1432
0
      if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 8) == 0)
1433
0
         return 1;
1434
0
      if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 8) ==
1435
0
            0)
1436
0
         return 1;
1437
1438
      /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1439
       * chunk values.  This calculation actually returns the reciprocal of the
1440
       * scale value because this allows us to delay the multiplication of
1441
       * white-y into the denominator, which tends to produce a small number.
1442
       */
1443
0
      if (png_muldiv(&red_inverse, xy->whitey, denominator,
1444
0
                     png_fp_sub(left, right, &error)) == 0 || error ||
1445
0
          red_inverse <= xy->whitey /* r+g+b scales = white scale */)
1446
0
         return 1;
1447
1448
      /* Similarly for green_inverse: */
1449
0
      if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 8) == 0)
1450
0
         return 1;
1451
0
      if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 8) == 0)
1452
0
         return 1;
1453
0
      if (png_muldiv(&green_inverse, xy->whitey, denominator,
1454
0
                     png_fp_sub(left, right, &error)) == 0 || error ||
1455
0
          green_inverse <= xy->whitey)
1456
0
         return 1;
1457
1458
      /* And the blue scale, the checks above guarantee this can't overflow but
1459
       * it can still produce 0 for extreme cHRM values.
1460
       */
1461
0
      blue_scale = png_fp_sub(png_fp_sub(png_reciprocal(xy->whitey),
1462
0
                                         png_reciprocal(red_inverse), &error),
1463
0
                              png_reciprocal(green_inverse), &error);
1464
0
      if (error || blue_scale <= 0)
1465
0
         return 1;
1466
0
   }
1467
1468
   /* And fill in the png_XYZ.  Again the subtracts are safe because of the
1469
    * checks on the xy values at the start (the subtracts just calculate the
1470
    * corresponding z values.)
1471
    */
1472
0
   if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0)
1473
0
      return 1;
1474
0
   if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0)
1475
0
      return 1;
1476
0
   if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
1477
0
       red_inverse) == 0)
1478
0
      return 1;
1479
1480
0
   if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0)
1481
0
      return 1;
1482
0
   if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0)
1483
0
      return 1;
1484
0
   if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
1485
0
       green_inverse) == 0)
1486
0
      return 1;
1487
1488
0
   if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0)
1489
0
      return 1;
1490
0
   if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0)
1491
0
      return 1;
1492
0
   if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
1493
0
       PNG_FP_1) == 0)
1494
0
      return 1;
1495
1496
0
   return 0; /*success*/
1497
0
}
1498
#endif /* COLORSPACE */
1499
1500
#ifdef PNG_READ_iCCP_SUPPORTED
1501
/* Error message generation */
1502
static char
1503
png_icc_tag_char(png_uint_32 byte)
1504
133k
{
1505
133k
   byte &= 0xff;
1506
133k
   if (byte >= 32 && byte <= 126)
1507
133k
      return (char)byte;
1508
0
   else
1509
0
      return '?';
1510
133k
}
1511
1512
static void
1513
png_icc_tag_name(char *name, png_uint_32 tag)
1514
33.3k
{
1515
33.3k
   name[0] = '\'';
1516
33.3k
   name[1] = png_icc_tag_char(tag >> 24);
1517
33.3k
   name[2] = png_icc_tag_char(tag >> 16);
1518
33.3k
   name[3] = png_icc_tag_char(tag >>  8);
1519
33.3k
   name[4] = png_icc_tag_char(tag      );
1520
33.3k
   name[5] = '\'';
1521
33.3k
}
1522
1523
static int
1524
is_ICC_signature_char(png_alloc_size_t it)
1525
519k
{
1526
519k
   return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
1527
519k
      (it >= 97 && it <= 122);
1528
519k
}
1529
1530
static int
1531
is_ICC_signature(png_alloc_size_t it)
1532
345k
{
1533
345k
   return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
1534
345k
      is_ICC_signature_char((it >> 16) & 0xff) &&
1535
345k
      is_ICC_signature_char((it >> 8) & 0xff) &&
1536
345k
      is_ICC_signature_char(it & 0xff);
1537
345k
}
1538
1539
static int
1540
png_icc_profile_error(png_const_structrp png_ptr, png_const_charp name,
1541
   png_alloc_size_t value, png_const_charp reason)
1542
345k
{
1543
345k
   size_t pos;
1544
345k
   char message[196]; /* see below for calculation */
1545
1546
345k
   pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
1547
345k
   pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
1548
345k
   pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
1549
345k
   if (is_ICC_signature(value) != 0)
1550
33.3k
   {
1551
      /* So 'value' is at most 4 bytes and the following cast is safe */
1552
33.3k
      png_icc_tag_name(message+pos, (png_uint_32)value);
1553
33.3k
      pos += 6; /* total +8; less than the else clause */
1554
33.3k
      message[pos++] = ':';
1555
33.3k
      message[pos++] = ' ';
1556
33.3k
   }
1557
311k
#  ifdef PNG_WARNINGS_SUPPORTED
1558
311k
   else
1559
311k
   {
1560
311k
      char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114 */
1561
1562
311k
      pos = png_safecat(message, (sizeof message), pos,
1563
311k
          png_format_number(number, number+(sizeof number),
1564
311k
          PNG_NUMBER_FORMAT_x, value));
1565
311k
      pos = png_safecat(message, (sizeof message), pos, "h: "); /* +2 = 116 */
1566
311k
   }
1567
345k
#  endif
1568
   /* The 'reason' is an arbitrary message, allow +79 maximum 195 */
1569
345k
   pos = png_safecat(message, (sizeof message), pos, reason);
1570
345k
   PNG_UNUSED(pos)
1571
1572
345k
   png_chunk_benign_error(png_ptr, message);
1573
1574
345k
   return 0;
1575
345k
}
1576
1577
/* Encoded value of D50 as an ICC XYZNumber.  From the ICC 2010 spec the value
1578
 * is XYZ(0.9642,1.0,0.8249), which scales to:
1579
 *
1580
 *    (63189.8112, 65536, 54060.6464)
1581
 */
1582
static const png_byte D50_nCIEXYZ[12] =
1583
   { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d };
1584
1585
static int /* bool */
1586
icc_check_length(png_const_structrp png_ptr, png_const_charp name,
1587
   png_uint_32 profile_length)
1588
57.2k
{
1589
57.2k
   if (profile_length < 132)
1590
1.27k
      return png_icc_profile_error(png_ptr, name, profile_length, "too short");
1591
56.0k
   return 1;
1592
57.2k
}
1593
1594
int /* PRIVATE */
1595
png_icc_check_length(png_const_structrp png_ptr, png_const_charp name,
1596
   png_uint_32 profile_length)
1597
57.2k
{
1598
57.2k
   if (!icc_check_length(png_ptr, name, profile_length))
1599
1.27k
      return 0;
1600
1601
   /* This needs to be here because the 'normal' check is in
1602
    * png_decompress_chunk, yet this happens after the attempt to
1603
    * png_malloc_base the required data.  We only need this on read; on write
1604
    * the caller supplies the profile buffer so libpng doesn't allocate it.  See
1605
    * the call to icc_check_length below (the write case).
1606
    */
1607
56.0k
   if (profile_length > png_chunk_max(png_ptr))
1608
2.25k
      return png_icc_profile_error(png_ptr, name, profile_length,
1609
2.25k
            "profile too long");
1610
1611
53.7k
   return 1;
1612
56.0k
}
1613
1614
int /* PRIVATE */
1615
png_icc_check_header(png_const_structrp png_ptr, png_const_charp name,
1616
   png_uint_32 profile_length,
1617
   png_const_bytep profile/* first 132 bytes only */, int color_type)
1618
53.7k
{
1619
53.7k
   png_uint_32 temp;
1620
1621
   /* Length check; this cannot be ignored in this code because profile_length
1622
    * is used later to check the tag table, so even if the profile seems over
1623
    * long profile_length from the caller must be correct.  The caller can fix
1624
    * this up on read or write by just passing in the profile header length.
1625
    */
1626
53.7k
   temp = png_get_uint_32(profile);
1627
53.7k
   if (temp != profile_length)
1628
0
      return png_icc_profile_error(png_ptr, name, temp,
1629
0
          "length does not match profile");
1630
1631
53.7k
   temp = (png_uint_32) (*(profile+8));
1632
53.7k
   if (temp > 3 && (profile_length & 3))
1633
1.42k
      return png_icc_profile_error(png_ptr, name, profile_length,
1634
1.42k
          "invalid length");
1635
1636
52.3k
   temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
1637
52.3k
   if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
1638
52.3k
      profile_length < 132+12*temp) /* truncated tag table */
1639
5.25k
      return png_icc_profile_error(png_ptr, name, temp,
1640
5.25k
          "tag count too large");
1641
1642
   /* The 'intent' must be valid or we can't store it, ICC limits the intent to
1643
    * 16 bits.
1644
    */
1645
47.0k
   temp = png_get_uint_32(profile+64);
1646
47.0k
   if (temp >= 0xffff) /* The ICC limit */
1647
898
      return png_icc_profile_error(png_ptr, name, temp,
1648
898
          "invalid rendering intent");
1649
1650
   /* This is just a warning because the profile may be valid in future
1651
    * versions.
1652
    */
1653
46.1k
   if (temp >= PNG_sRGB_INTENT_LAST)
1654
29.5k
      (void)png_icc_profile_error(png_ptr, name, temp,
1655
29.5k
          "intent outside defined range");
1656
1657
   /* At this point the tag table can't be checked because it hasn't necessarily
1658
    * been loaded; however, various header fields can be checked.  These checks
1659
    * are for values permitted by the PNG spec in an ICC profile; the PNG spec
1660
    * restricts the profiles that can be passed in an iCCP chunk (they must be
1661
    * appropriate to processing PNG data!)
1662
    */
1663
1664
   /* Data checks (could be skipped).  These checks must be independent of the
1665
    * version number; however, the version number doesn't accommodate changes in
1666
    * the header fields (just the known tags and the interpretation of the
1667
    * data.)
1668
    */
1669
46.1k
   temp = png_get_uint_32(profile+36); /* signature 'ascp' */
1670
46.1k
   if (temp != 0x61637370)
1671
4.34k
      return png_icc_profile_error(png_ptr, name, temp,
1672
4.34k
          "invalid signature");
1673
1674
   /* Currently the PCS illuminant/adopted white point (the computational
1675
    * white point) are required to be D50,
1676
    * however the profile contains a record of the illuminant so perhaps ICC
1677
    * expects to be able to change this in the future (despite the rationale in
1678
    * the introduction for using a fixed PCS adopted white.)  Consequently the
1679
    * following is just a warning.
1680
    */
1681
41.8k
   if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
1682
40.7k
      (void)png_icc_profile_error(png_ptr, name, 0/*no tag value*/,
1683
40.7k
          "PCS illuminant is not D50");
1684
1685
   /* The PNG spec requires this:
1686
    * "If the iCCP chunk is present, the image samples conform to the colour
1687
    * space represented by the embedded ICC profile as defined by the
1688
    * International Color Consortium [ICC]. The colour space of the ICC profile
1689
    * shall be an RGB colour space for colour images (PNG colour types 2, 3, and
1690
    * 6), or a greyscale colour space for greyscale images (PNG colour types 0
1691
    * and 4)."
1692
    *
1693
    * This checking code ensures the embedded profile (on either read or write)
1694
    * conforms to the specification requirements.  Notice that an ICC 'gray'
1695
    * color-space profile contains the information to transform the monochrome
1696
    * data to XYZ or L*a*b (according to which PCS the profile uses) and this
1697
    * should be used in preference to the standard libpng K channel replication
1698
    * into R, G and B channels.
1699
    *
1700
    * Previously it was suggested that an RGB profile on grayscale data could be
1701
    * handled.  However it it is clear that using an RGB profile in this context
1702
    * must be an error - there is no specification of what it means.  Thus it is
1703
    * almost certainly more correct to ignore the profile.
1704
    */
1705
41.8k
   temp = png_get_uint_32(profile+16); /* data colour space field */
1706
41.8k
   switch (temp)
1707
41.8k
   {
1708
29.9k
      case 0x52474220: /* 'RGB ' */
1709
29.9k
         if ((color_type & PNG_COLOR_MASK_COLOR) == 0)
1710
16.6k
            return png_icc_profile_error(png_ptr, name, temp,
1711
16.6k
                "RGB color space not permitted on grayscale PNG");
1712
13.3k
         break;
1713
1714
13.3k
      case 0x47524159: /* 'GRAY' */
1715
7.28k
         if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
1716
691
            return png_icc_profile_error(png_ptr, name, temp,
1717
691
                "Gray color space not permitted on RGB PNG");
1718
6.59k
         break;
1719
1720
6.59k
      default:
1721
4.56k
         return png_icc_profile_error(png_ptr, name, temp,
1722
4.56k
             "invalid ICC profile color space");
1723
41.8k
   }
1724
1725
   /* It is up to the application to check that the profile class matches the
1726
    * application requirements; the spec provides no guidance, but it's pretty
1727
    * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
1728
    * ('prtr') or 'spac' (for generic color spaces).  Issue a warning in these
1729
    * cases.  Issue an error for device link or abstract profiles - these don't
1730
    * contain the records necessary to transform the color-space to anything
1731
    * other than the target device (and not even that for an abstract profile).
1732
    * Profiles of these classes may not be embedded in images.
1733
    */
1734
19.9k
   temp = png_get_uint_32(profile+12); /* profile/device class */
1735
19.9k
   switch (temp)
1736
19.9k
   {
1737
310
      case 0x73636e72: /* 'scnr' */
1738
1.25k
      case 0x6d6e7472: /* 'mntr' */
1739
1.53k
      case 0x70727472: /* 'prtr' */
1740
3.63k
      case 0x73706163: /* 'spac' */
1741
         /* All supported */
1742
3.63k
         break;
1743
1744
56
      case 0x61627374: /* 'abst' */
1745
         /* May not be embedded in an image */
1746
56
         return png_icc_profile_error(png_ptr, name, temp,
1747
56
             "invalid embedded Abstract ICC profile");
1748
1749
46
      case 0x6c696e6b: /* 'link' */
1750
         /* DeviceLink profiles cannot be interpreted in a non-device specific
1751
          * fashion, if an app uses the AToB0Tag in the profile the results are
1752
          * undefined unless the result is sent to the intended device,
1753
          * therefore a DeviceLink profile should not be found embedded in a
1754
          * PNG.
1755
          */
1756
46
         return png_icc_profile_error(png_ptr, name, temp,
1757
46
             "unexpected DeviceLink ICC profile class");
1758
1759
609
      case 0x6e6d636c: /* 'nmcl' */
1760
         /* A NamedColor profile is also device specific, however it doesn't
1761
          * contain an AToB0 tag that is open to misinterpretation.  Almost
1762
          * certainly it will fail the tests below.
1763
          */
1764
609
         (void)png_icc_profile_error(png_ptr, name, temp,
1765
609
             "unexpected NamedColor ICC profile class");
1766
609
         break;
1767
1768
15.5k
      default:
1769
         /* To allow for future enhancements to the profile accept unrecognized
1770
          * profile classes with a warning, these then hit the test below on the
1771
          * tag content to ensure they are backward compatible with one of the
1772
          * understood profiles.
1773
          */
1774
15.5k
         (void)png_icc_profile_error(png_ptr, name, temp,
1775
15.5k
             "unrecognized ICC profile class");
1776
15.5k
         break;
1777
19.9k
   }
1778
1779
   /* For any profile other than a device link one the PCS must be encoded
1780
    * either in XYZ or Lab.
1781
    */
1782
19.8k
   temp = png_get_uint_32(profile+20);
1783
19.8k
   switch (temp)
1784
19.8k
   {
1785
11.4k
      case 0x58595a20: /* 'XYZ ' */
1786
16.3k
      case 0x4c616220: /* 'Lab ' */
1787
16.3k
         break;
1788
1789
3.47k
      default:
1790
3.47k
         return png_icc_profile_error(png_ptr, name, temp,
1791
3.47k
             "unexpected ICC PCS encoding");
1792
19.8k
   }
1793
1794
16.3k
   return 1;
1795
19.8k
}
1796
1797
int /* PRIVATE */
1798
png_icc_check_tag_table(png_const_structrp png_ptr, png_const_charp name,
1799
   png_uint_32 profile_length,
1800
   png_const_bytep profile /* header plus whole tag table */)
1801
14.2k
{
1802
14.2k
   png_uint_32 tag_count = png_get_uint_32(profile+128);
1803
14.2k
   png_uint_32 itag;
1804
14.2k
   png_const_bytep tag = profile+132; /* The first tag */
1805
1806
   /* First scan all the tags in the table and add bits to the icc_info value
1807
    * (temporarily in 'tags').
1808
    */
1809
375k
   for (itag=0; itag < tag_count; ++itag, tag += 12)
1810
363k
   {
1811
363k
      png_uint_32 tag_id = png_get_uint_32(tag+0);
1812
363k
      png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
1813
363k
      png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
1814
1815
      /* The ICC specification does not exclude zero length tags, therefore the
1816
       * start might actually be anywhere if there is no data, but this would be
1817
       * a clear abuse of the intent of the standard so the start is checked for
1818
       * being in range.  All defined tag types have an 8 byte header - a 4 byte
1819
       * type signature then 0.
1820
       */
1821
1822
      /* This is a hard error; potentially it can cause read outside the
1823
       * profile.
1824
       */
1825
363k
      if (tag_start > profile_length || tag_length > profile_length - tag_start)
1826
2.50k
         return png_icc_profile_error(png_ptr, name, tag_id,
1827
2.50k
             "ICC profile tag outside profile");
1828
1829
361k
      if ((tag_start & 3) != 0)
1830
215k
      {
1831
         /* CNHP730S.icc shipped with Microsoft Windows 64 violates this; it is
1832
          * only a warning here because libpng does not care about the
1833
          * alignment.
1834
          */
1835
215k
         (void)png_icc_profile_error(png_ptr, name, tag_id,
1836
215k
             "ICC profile tag start not a multiple of 4");
1837
215k
      }
1838
361k
   }
1839
1840
11.7k
   return 1; /* success, maybe with warnings */
1841
14.2k
}
1842
#endif /* READ_iCCP */
1843
1844
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
1845
#if (defined PNG_READ_mDCV_SUPPORTED) || (defined PNG_READ_cHRM_SUPPORTED)
1846
static int
1847
have_chromaticities(png_const_structrp png_ptr)
1848
0
{
1849
   /* Handle new PNGv3 chunks and the precedence rules to determine whether
1850
    * png_struct::chromaticities must be processed.  Only required for RGB to
1851
    * gray.
1852
    *
1853
    * mDCV: this is the mastering colour space and it is independent of the
1854
    *       encoding so it needs to be used regardless of the encoded space.
1855
    *
1856
    * cICP: first in priority but not yet implemented - the chromaticities come
1857
    *       from the 'primaries'.
1858
    *
1859
    * iCCP: not supported by libpng (so ignored)
1860
    *
1861
    * sRGB: the defaults match sRGB
1862
    *
1863
    * cHRM: calculate the coefficients
1864
    */
1865
0
#  ifdef PNG_READ_mDCV_SUPPORTED
1866
0
      if (png_has_chunk(png_ptr, mDCV))
1867
0
         return 1;
1868
0
#     define check_chromaticities 1
1869
0
#  endif /*mDCV*/
1870
1871
0
#  ifdef PNG_READ_sRGB_SUPPORTED
1872
0
      if (png_has_chunk(png_ptr, sRGB))
1873
0
         return 0;
1874
0
#  endif /*sRGB*/
1875
1876
0
#  ifdef PNG_READ_cHRM_SUPPORTED
1877
0
      if (png_has_chunk(png_ptr, cHRM))
1878
0
         return 1;
1879
0
#     define check_chromaticities 1
1880
0
#  endif /*cHRM*/
1881
1882
0
   return 0; /* sRGB defaults */
1883
0
}
1884
#endif /* READ_mDCV || READ_cHRM */
1885
1886
void /* PRIVATE */
1887
png_set_rgb_coefficients(png_structrp png_ptr)
1888
0
{
1889
   /* Set the rgb_to_gray coefficients from the colorspace if available.  Note
1890
    * that '_set' means that png_rgb_to_gray was called **and** it successfully
1891
    * set up the coefficients.
1892
    */
1893
0
   if (png_ptr->rgb_to_gray_coefficients_set == 0)
1894
0
   {
1895
0
#  if check_chromaticities
1896
0
      png_XYZ xyz;
1897
1898
0
      if (have_chromaticities(png_ptr) &&
1899
0
          png_XYZ_from_xy(&xyz, &png_ptr->chromaticities) == 0)
1900
0
      {
1901
         /* png_set_rgb_to_gray has not set the coefficients, get them from the
1902
          * Y * values of the colorspace colorants.
1903
          */
1904
0
         png_fixed_point r = xyz.red_Y;
1905
0
         png_fixed_point g = xyz.green_Y;
1906
0
         png_fixed_point b = xyz.blue_Y;
1907
0
         png_fixed_point total = r+g+b;
1908
1909
0
         if (total > 0 &&
1910
0
            r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
1911
0
            g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
1912
0
            b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
1913
0
            r+g+b <= 32769)
1914
0
         {
1915
            /* We allow 0 coefficients here.  r+g+b may be 32769 if two or
1916
             * all of the coefficients were rounded up.  Handle this by
1917
             * reducing the *largest* coefficient by 1; this matches the
1918
             * approach used for the default coefficients in pngrtran.c
1919
             */
1920
0
            int add = 0;
1921
1922
0
            if (r+g+b > 32768)
1923
0
               add = -1;
1924
0
            else if (r+g+b < 32768)
1925
0
               add = 1;
1926
1927
0
            if (add != 0)
1928
0
            {
1929
0
               if (g >= r && g >= b)
1930
0
                  g += add;
1931
0
               else if (r >= g && r >= b)
1932
0
                  r += add;
1933
0
               else
1934
0
                  b += add;
1935
0
            }
1936
1937
            /* Check for an internal error. */
1938
0
            if (r+g+b != 32768)
1939
0
               png_error(png_ptr,
1940
0
                   "internal error handling cHRM coefficients");
1941
1942
0
            else
1943
0
            {
1944
0
               png_ptr->rgb_to_gray_red_coeff   = (png_uint_16)r;
1945
0
               png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g;
1946
0
            }
1947
0
         }
1948
0
      }
1949
0
      else
1950
0
#  endif /* check_chromaticities */
1951
0
      {
1952
         /* Use the historical REC 709 (etc) values: */
1953
0
         png_ptr->rgb_to_gray_red_coeff   = 6968;
1954
0
         png_ptr->rgb_to_gray_green_coeff = 23434;
1955
         /* png_ptr->rgb_to_gray_blue_coeff  = 2366; */
1956
0
      }
1957
0
   }
1958
0
}
1959
#endif /* READ_RGB_TO_GRAY */
1960
1961
void /* PRIVATE */
1962
png_check_IHDR(png_const_structrp png_ptr,
1963
    png_uint_32 width, png_uint_32 height, int bit_depth,
1964
    int color_type, int interlace_type, int compression_type,
1965
    int filter_type)
1966
190k
{
1967
190k
   int error = 0;
1968
1969
   /* Check for width and height valid values */
1970
190k
   if (width == 0)
1971
36
   {
1972
36
      png_warning(png_ptr, "Image width is zero in IHDR");
1973
36
      error = 1;
1974
36
   }
1975
1976
190k
   if (width > PNG_UINT_31_MAX)
1977
0
   {
1978
0
      png_warning(png_ptr, "Invalid image width in IHDR");
1979
0
      error = 1;
1980
0
   }
1981
1982
   /* The bit mask on the first line below must be at least as big as a
1983
    * png_uint_32.  "~7U" is not adequate on 16-bit systems because it will
1984
    * be an unsigned 16-bit value.  Casting to (png_alloc_size_t) makes the
1985
    * type of the result at least as bit (in bits) as the RHS of the > operator
1986
    * which also avoids a common warning on 64-bit systems that the comparison
1987
    * of (png_uint_32) against the constant value on the RHS will always be
1988
    * false.
1989
    */
1990
190k
   if (((width + 7) & ~(png_alloc_size_t)7) >
1991
190k
       (((PNG_SIZE_MAX
1992
190k
           - 48        /* big_row_buf hack */
1993
190k
           - 1)        /* filter byte */
1994
190k
           / 8)        /* 8-byte RGBA pixels */
1995
190k
           - 1))       /* extra max_pixel_depth pad */
1996
0
   {
1997
      /* The size of the row must be within the limits of this architecture.
1998
       * Because the read code can perform arbitrary transformations the
1999
       * maximum size is checked here.  Because the code in png_read_start_row
2000
       * adds extra space "for safety's sake" in several places a conservative
2001
       * limit is used here.
2002
       *
2003
       * NOTE: it would be far better to check the size that is actually used,
2004
       * but the effect in the real world is minor and the changes are more
2005
       * extensive, therefore much more dangerous and much more difficult to
2006
       * write in a way that avoids compiler warnings.
2007
       */
2008
0
      png_warning(png_ptr, "Image width is too large for this architecture");
2009
0
      error = 1;
2010
0
   }
2011
2012
190k
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2013
190k
   if (width > png_ptr->user_width_max)
2014
#else
2015
   if (width > PNG_USER_WIDTH_MAX)
2016
#endif
2017
483
   {
2018
483
      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
2019
483
      error = 1;
2020
483
   }
2021
2022
190k
   if (height == 0)
2023
55
   {
2024
55
      png_warning(png_ptr, "Image height is zero in IHDR");
2025
55
      error = 1;
2026
55
   }
2027
2028
190k
   if (height > PNG_UINT_31_MAX)
2029
0
   {
2030
0
      png_warning(png_ptr, "Invalid image height in IHDR");
2031
0
      error = 1;
2032
0
   }
2033
2034
190k
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2035
190k
   if (height > png_ptr->user_height_max)
2036
#else
2037
   if (height > PNG_USER_HEIGHT_MAX)
2038
#endif
2039
542
   {
2040
542
      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
2041
542
      error = 1;
2042
542
   }
2043
2044
   /* Check other values */
2045
190k
   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
2046
190k
       bit_depth != 8 && bit_depth != 16)
2047
640
   {
2048
640
      png_warning(png_ptr, "Invalid bit depth in IHDR");
2049
640
      error = 1;
2050
640
   }
2051
2052
190k
   if (color_type < 0 || color_type == 1 ||
2053
190k
       color_type == 5 || color_type > 6)
2054
666
   {
2055
666
      png_warning(png_ptr, "Invalid color type in IHDR");
2056
666
      error = 1;
2057
666
   }
2058
2059
190k
   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
2060
190k
       ((color_type == PNG_COLOR_TYPE_RGB ||
2061
190k
         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
2062
190k
         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
2063
88
   {
2064
88
      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
2065
88
      error = 1;
2066
88
   }
2067
2068
190k
   if (interlace_type >= PNG_INTERLACE_LAST)
2069
473
   {
2070
473
      png_warning(png_ptr, "Unknown interlace method in IHDR");
2071
473
      error = 1;
2072
473
   }
2073
2074
190k
   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
2075
479
   {
2076
479
      png_warning(png_ptr, "Unknown compression method in IHDR");
2077
479
      error = 1;
2078
479
   }
2079
2080
190k
#ifdef PNG_MNG_FEATURES_SUPPORTED
2081
   /* Accept filter_method 64 (intrapixel differencing) only if
2082
    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
2083
    * 2. Libpng did not read a PNG signature (this filter_method is only
2084
    *    used in PNG datastreams that are embedded in MNG datastreams) and
2085
    * 3. The application called png_permit_mng_features with a mask that
2086
    *    included PNG_FLAG_MNG_FILTER_64 and
2087
    * 4. The filter_method is 64 and
2088
    * 5. The color_type is RGB or RGBA
2089
    */
2090
190k
   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 &&
2091
190k
       png_ptr->mng_features_permitted != 0)
2092
0
      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
2093
2094
190k
   if (filter_type != PNG_FILTER_TYPE_BASE)
2095
21.6k
   {
2096
21.6k
      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
2097
21.6k
          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
2098
21.6k
          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
2099
21.6k
          (color_type == PNG_COLOR_TYPE_RGB ||
2100
21.1k
          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
2101
469
      {
2102
469
         png_warning(png_ptr, "Unknown filter method in IHDR");
2103
469
         error = 1;
2104
469
      }
2105
2106
21.6k
      if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0)
2107
0
      {
2108
0
         png_warning(png_ptr, "Invalid filter method in IHDR");
2109
0
         error = 1;
2110
0
      }
2111
21.6k
   }
2112
2113
#else
2114
   if (filter_type != PNG_FILTER_TYPE_BASE)
2115
   {
2116
      png_warning(png_ptr, "Unknown filter method in IHDR");
2117
      error = 1;
2118
   }
2119
#endif
2120
2121
190k
   if (error == 1)
2122
1.02k
      png_error(png_ptr, "Invalid IHDR data");
2123
190k
}
2124
2125
#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
2126
/* ASCII to fp functions */
2127
/* Check an ASCII formatted floating point value, see the more detailed
2128
 * comments in pngpriv.h
2129
 */
2130
/* The following is used internally to preserve the sticky flags */
2131
0
#define png_fp_add(state, flags) ((state) |= (flags))
2132
0
#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
2133
2134
int /* PRIVATE */
2135
png_check_fp_number(png_const_charp string, size_t size, int *statep,
2136
    size_t *whereami)
2137
0
{
2138
0
   int state = *statep;
2139
0
   size_t i = *whereami;
2140
2141
0
   while (i < size)
2142
0
   {
2143
0
      int type;
2144
      /* First find the type of the next character */
2145
0
      switch (string[i])
2146
0
      {
2147
0
      case 43:  type = PNG_FP_SAW_SIGN;                   break;
2148
0
      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
2149
0
      case 46:  type = PNG_FP_SAW_DOT;                    break;
2150
0
      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
2151
0
      case 49: case 50: case 51: case 52:
2152
0
      case 53: case 54: case 55: case 56:
2153
0
      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
2154
0
      case 69:
2155
0
      case 101: type = PNG_FP_SAW_E;                      break;
2156
0
      default:  goto PNG_FP_End;
2157
0
      }
2158
2159
      /* Now deal with this type according to the current
2160
       * state, the type is arranged to not overlap the
2161
       * bits of the PNG_FP_STATE.
2162
       */
2163
0
      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
2164
0
      {
2165
0
      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
2166
0
         if ((state & PNG_FP_SAW_ANY) != 0)
2167
0
            goto PNG_FP_End; /* not a part of the number */
2168
2169
0
         png_fp_add(state, type);
2170
0
         break;
2171
2172
0
      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
2173
         /* Ok as trailer, ok as lead of fraction. */
2174
0
         if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */
2175
0
            goto PNG_FP_End;
2176
2177
0
         else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */
2178
0
            png_fp_add(state, type);
2179
2180
0
         else
2181
0
            png_fp_set(state, PNG_FP_FRACTION | type);
2182
2183
0
         break;
2184
2185
0
      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
2186
0
         if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */
2187
0
            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
2188
2189
0
         png_fp_add(state, type | PNG_FP_WAS_VALID);
2190
2191
0
         break;
2192
2193
0
      case PNG_FP_INTEGER + PNG_FP_SAW_E:
2194
0
         if ((state & PNG_FP_SAW_DIGIT) == 0)
2195
0
            goto PNG_FP_End;
2196
2197
0
         png_fp_set(state, PNG_FP_EXPONENT);
2198
2199
0
         break;
2200
2201
   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
2202
         goto PNG_FP_End; ** no sign in fraction */
2203
2204
   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
2205
         goto PNG_FP_End; ** Because SAW_DOT is always set */
2206
2207
0
      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
2208
0
         png_fp_add(state, type | PNG_FP_WAS_VALID);
2209
0
         break;
2210
2211
0
      case PNG_FP_FRACTION + PNG_FP_SAW_E:
2212
         /* This is correct because the trailing '.' on an
2213
          * integer is handled above - so we can only get here
2214
          * with the sequence ".E" (with no preceding digits).
2215
          */
2216
0
         if ((state & PNG_FP_SAW_DIGIT) == 0)
2217
0
            goto PNG_FP_End;
2218
2219
0
         png_fp_set(state, PNG_FP_EXPONENT);
2220
2221
0
         break;
2222
2223
0
      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
2224
0
         if ((state & PNG_FP_SAW_ANY) != 0)
2225
0
            goto PNG_FP_End; /* not a part of the number */
2226
2227
0
         png_fp_add(state, PNG_FP_SAW_SIGN);
2228
2229
0
         break;
2230
2231
   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
2232
         goto PNG_FP_End; */
2233
2234
0
      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
2235
0
         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
2236
2237
0
         break;
2238
2239
   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
2240
         goto PNG_FP_End; */
2241
2242
0
      default: goto PNG_FP_End; /* I.e. break 2 */
2243
0
      }
2244
2245
      /* The character seems ok, continue. */
2246
0
      ++i;
2247
0
   }
2248
2249
0
PNG_FP_End:
2250
   /* Here at the end, update the state and return the correct
2251
    * return code.
2252
    */
2253
0
   *statep = state;
2254
0
   *whereami = i;
2255
2256
0
   return (state & PNG_FP_SAW_DIGIT) != 0;
2257
0
}
2258
2259
2260
/* The same but for a complete string. */
2261
int
2262
png_check_fp_string(png_const_charp string, size_t size)
2263
0
{
2264
0
   int        state=0;
2265
0
   size_t char_index=0;
2266
2267
0
   if (png_check_fp_number(string, size, &state, &char_index) != 0 &&
2268
0
      (char_index == size || string[char_index] == 0))
2269
0
      return state /* must be non-zero - see above */;
2270
2271
0
   return 0; /* i.e. fail */
2272
0
}
2273
#endif /* pCAL || sCAL */
2274
2275
#ifdef PNG_sCAL_SUPPORTED
2276
#  ifdef PNG_FLOATING_POINT_SUPPORTED
2277
/* Utility used below - a simple accurate power of ten from an integral
2278
 * exponent.
2279
 */
2280
static double
2281
png_pow10(int power)
2282
0
{
2283
0
   int recip = 0;
2284
0
   double d = 1;
2285
2286
   /* Handle negative exponent with a reciprocal at the end because
2287
    * 10 is exact whereas .1 is inexact in base 2
2288
    */
2289
0
   if (power < 0)
2290
0
   {
2291
0
      if (power < DBL_MIN_10_EXP) return 0;
2292
0
      recip = 1; power = -power;
2293
0
   }
2294
2295
0
   if (power > 0)
2296
0
   {
2297
      /* Decompose power bitwise. */
2298
0
      double mult = 10;
2299
0
      do
2300
0
      {
2301
0
         if (power & 1) d *= mult;
2302
0
         mult *= mult;
2303
0
         power >>= 1;
2304
0
      }
2305
0
      while (power > 0);
2306
2307
0
      if (recip != 0) d = 1/d;
2308
0
   }
2309
   /* else power is 0 and d is 1 */
2310
2311
0
   return d;
2312
0
}
2313
2314
/* Function to format a floating point value in ASCII with a given
2315
 * precision.
2316
 */
2317
void /* PRIVATE */
2318
png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, size_t size,
2319
    double fp, unsigned int precision)
2320
0
{
2321
   /* We use standard functions from math.h, but not printf because
2322
    * that would require stdio.  The caller must supply a buffer of
2323
    * sufficient size or we will png_error.  The tests on size and
2324
    * the space in ascii[] consumed are indicated below.
2325
    */
2326
0
   if (precision < 1)
2327
0
      precision = DBL_DIG;
2328
2329
   /* Enforce the limit of the implementation precision too. */
2330
0
   if (precision > DBL_DIG+1)
2331
0
      precision = DBL_DIG+1;
2332
2333
   /* Basic sanity checks */
2334
0
   if (size >= precision+5) /* See the requirements below. */
2335
0
   {
2336
0
      if (fp < 0)
2337
0
      {
2338
0
         fp = -fp;
2339
0
         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
2340
0
         --size;
2341
0
      }
2342
2343
0
      if (fp >= DBL_MIN && fp <= DBL_MAX)
2344
0
      {
2345
0
         int exp_b10;   /* A base 10 exponent */
2346
0
         double base;   /* 10^exp_b10 */
2347
2348
         /* First extract a base 10 exponent of the number,
2349
          * the calculation below rounds down when converting
2350
          * from base 2 to base 10 (multiply by log10(2) -
2351
          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
2352
          * be increased.  Note that the arithmetic shift
2353
          * performs a floor() unlike C arithmetic - using a
2354
          * C multiply would break the following for negative
2355
          * exponents.
2356
          */
2357
0
         (void)frexp(fp, &exp_b10); /* exponent to base 2 */
2358
2359
0
         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
2360
2361
         /* Avoid underflow here. */
2362
0
         base = png_pow10(exp_b10); /* May underflow */
2363
2364
0
         while (base < DBL_MIN || base < fp)
2365
0
         {
2366
            /* And this may overflow. */
2367
0
            double test = png_pow10(exp_b10+1);
2368
2369
0
            if (test <= DBL_MAX)
2370
0
            {
2371
0
               ++exp_b10; base = test;
2372
0
            }
2373
2374
0
            else
2375
0
               break;
2376
0
         }
2377
2378
         /* Normalize fp and correct exp_b10, after this fp is in the
2379
          * range [.1,1) and exp_b10 is both the exponent and the digit
2380
          * *before* which the decimal point should be inserted
2381
          * (starting with 0 for the first digit).  Note that this
2382
          * works even if 10^exp_b10 is out of range because of the
2383
          * test on DBL_MAX above.
2384
          */
2385
0
         fp /= base;
2386
0
         while (fp >= 1)
2387
0
         {
2388
0
            fp /= 10; ++exp_b10;
2389
0
         }
2390
2391
         /* Because of the code above fp may, at this point, be
2392
          * less than .1, this is ok because the code below can
2393
          * handle the leading zeros this generates, so no attempt
2394
          * is made to correct that here.
2395
          */
2396
2397
0
         {
2398
0
            unsigned int czero, clead, cdigits;
2399
0
            char exponent[10];
2400
2401
            /* Allow up to two leading zeros - this will not lengthen
2402
             * the number compared to using E-n.
2403
             */
2404
0
            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
2405
0
            {
2406
0
               czero = 0U-exp_b10; /* PLUS 2 digits: TOTAL 3 */
2407
0
               exp_b10 = 0;      /* Dot added below before first output. */
2408
0
            }
2409
0
            else
2410
0
               czero = 0;    /* No zeros to add */
2411
2412
            /* Generate the digit list, stripping trailing zeros and
2413
             * inserting a '.' before a digit if the exponent is 0.
2414
             */
2415
0
            clead = czero; /* Count of leading zeros */
2416
0
            cdigits = 0;   /* Count of digits in list. */
2417
2418
0
            do
2419
0
            {
2420
0
               double d;
2421
2422
0
               fp *= 10;
2423
               /* Use modf here, not floor and subtract, so that
2424
                * the separation is done in one step.  At the end
2425
                * of the loop don't break the number into parts so
2426
                * that the final digit is rounded.
2427
                */
2428
0
               if (cdigits+czero+1 < precision+clead)
2429
0
                  fp = modf(fp, &d);
2430
2431
0
               else
2432
0
               {
2433
0
                  d = floor(fp + .5);
2434
2435
0
                  if (d > 9)
2436
0
                  {
2437
                     /* Rounding up to 10, handle that here. */
2438
0
                     if (czero > 0)
2439
0
                     {
2440
0
                        --czero; d = 1;
2441
0
                        if (cdigits == 0) --clead;
2442
0
                     }
2443
0
                     else
2444
0
                     {
2445
0
                        while (cdigits > 0 && d > 9)
2446
0
                        {
2447
0
                           int ch = *--ascii;
2448
2449
0
                           if (exp_b10 != (-1))
2450
0
                              ++exp_b10;
2451
2452
0
                           else if (ch == 46)
2453
0
                           {
2454
0
                              ch = *--ascii; ++size;
2455
                              /* Advance exp_b10 to '1', so that the
2456
                               * decimal point happens after the
2457
                               * previous digit.
2458
                               */
2459
0
                              exp_b10 = 1;
2460
0
                           }
2461
2462
0
                           --cdigits;
2463
0
                           d = ch - 47;  /* I.e. 1+(ch-48) */
2464
0
                        }
2465
2466
                        /* Did we reach the beginning? If so adjust the
2467
                         * exponent but take into account the leading
2468
                         * decimal point.
2469
                         */
2470
0
                        if (d > 9)  /* cdigits == 0 */
2471
0
                        {
2472
0
                           if (exp_b10 == (-1))
2473
0
                           {
2474
                              /* Leading decimal point (plus zeros?), if
2475
                               * we lose the decimal point here it must
2476
                               * be reentered below.
2477
                               */
2478
0
                              int ch = *--ascii;
2479
2480
0
                              if (ch == 46)
2481
0
                              {
2482
0
                                 ++size; exp_b10 = 1;
2483
0
                              }
2484
2485
                              /* Else lost a leading zero, so 'exp_b10' is
2486
                               * still ok at (-1)
2487
                               */
2488
0
                           }
2489
0
                           else
2490
0
                              ++exp_b10;
2491
2492
                           /* In all cases we output a '1' */
2493
0
                           d = 1;
2494
0
                        }
2495
0
                     }
2496
0
                  }
2497
0
                  fp = 0; /* Guarantees termination below. */
2498
0
               }
2499
2500
0
               if (d == 0)
2501
0
               {
2502
0
                  ++czero;
2503
0
                  if (cdigits == 0) ++clead;
2504
0
               }
2505
0
               else
2506
0
               {
2507
                  /* Included embedded zeros in the digit count. */
2508
0
                  cdigits += czero - clead;
2509
0
                  clead = 0;
2510
2511
0
                  while (czero > 0)
2512
0
                  {
2513
                     /* exp_b10 == (-1) means we just output the decimal
2514
                      * place - after the DP don't adjust 'exp_b10' any
2515
                      * more!
2516
                      */
2517
0
                     if (exp_b10 != (-1))
2518
0
                     {
2519
0
                        if (exp_b10 == 0)
2520
0
                        {
2521
0
                           *ascii++ = 46; --size;
2522
0
                        }
2523
                        /* PLUS 1: TOTAL 4 */
2524
0
                        --exp_b10;
2525
0
                     }
2526
0
                     *ascii++ = 48; --czero;
2527
0
                  }
2528
2529
0
                  if (exp_b10 != (-1))
2530
0
                  {
2531
0
                     if (exp_b10 == 0)
2532
0
                     {
2533
0
                        *ascii++ = 46; --size; /* counted above */
2534
0
                     }
2535
2536
0
                     --exp_b10;
2537
0
                  }
2538
0
                  *ascii++ = (char)(48 + (int)d); ++cdigits;
2539
0
               }
2540
0
            }
2541
0
            while (cdigits+czero < precision+clead && fp > DBL_MIN);
2542
2543
            /* The total output count (max) is now 4+precision */
2544
2545
            /* Check for an exponent, if we don't need one we are
2546
             * done and just need to terminate the string.  At this
2547
             * point, exp_b10==(-1) is effectively a flag: it got
2548
             * to '-1' because of the decrement, after outputting
2549
             * the decimal point above. (The exponent required is
2550
             * *not* -1.)
2551
             */
2552
0
            if (exp_b10 >= (-1) && exp_b10 <= 2)
2553
0
            {
2554
               /* The following only happens if we didn't output the
2555
                * leading zeros above for negative exponent, so this
2556
                * doesn't add to the digit requirement.  Note that the
2557
                * two zeros here can only be output if the two leading
2558
                * zeros were *not* output, so this doesn't increase
2559
                * the output count.
2560
                */
2561
0
               while (exp_b10-- > 0) *ascii++ = 48;
2562
2563
0
               *ascii = 0;
2564
2565
               /* Total buffer requirement (including the '\0') is
2566
                * 5+precision - see check at the start.
2567
                */
2568
0
               return;
2569
0
            }
2570
2571
            /* Here if an exponent is required, adjust size for
2572
             * the digits we output but did not count.  The total
2573
             * digit output here so far is at most 1+precision - no
2574
             * decimal point and no leading or trailing zeros have
2575
             * been output.
2576
             */
2577
0
            size -= cdigits;
2578
2579
0
            *ascii++ = 69; --size;    /* 'E': PLUS 1 TOTAL 2+precision */
2580
2581
            /* The following use of an unsigned temporary avoids ambiguities in
2582
             * the signed arithmetic on exp_b10 and permits GCC at least to do
2583
             * better optimization.
2584
             */
2585
0
            {
2586
0
               unsigned int uexp_b10;
2587
2588
0
               if (exp_b10 < 0)
2589
0
               {
2590
0
                  *ascii++ = 45; --size; /* '-': PLUS 1 TOTAL 3+precision */
2591
0
                  uexp_b10 = 0U-exp_b10;
2592
0
               }
2593
2594
0
               else
2595
0
                  uexp_b10 = 0U+exp_b10;
2596
2597
0
               cdigits = 0;
2598
2599
0
               while (uexp_b10 > 0)
2600
0
               {
2601
0
                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
2602
0
                  uexp_b10 /= 10;
2603
0
               }
2604
0
            }
2605
2606
            /* Need another size check here for the exponent digits, so
2607
             * this need not be considered above.
2608
             */
2609
0
            if (size > cdigits)
2610
0
            {
2611
0
               while (cdigits > 0) *ascii++ = exponent[--cdigits];
2612
2613
0
               *ascii = 0;
2614
2615
0
               return;
2616
0
            }
2617
0
         }
2618
0
      }
2619
0
      else if (!(fp >= DBL_MIN))
2620
0
      {
2621
0
         *ascii++ = 48; /* '0' */
2622
0
         *ascii = 0;
2623
0
         return;
2624
0
      }
2625
0
      else
2626
0
      {
2627
0
         *ascii++ = 105; /* 'i' */
2628
0
         *ascii++ = 110; /* 'n' */
2629
0
         *ascii++ = 102; /* 'f' */
2630
0
         *ascii = 0;
2631
0
         return;
2632
0
      }
2633
0
   }
2634
2635
   /* Here on buffer too small. */
2636
0
   png_error(png_ptr, "ASCII conversion buffer too small");
2637
0
}
2638
#  endif /* FLOATING_POINT */
2639
2640
#  ifdef PNG_FIXED_POINT_SUPPORTED
2641
/* Function to format a fixed point value in ASCII.
2642
 */
2643
void /* PRIVATE */
2644
png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii,
2645
    size_t size, png_fixed_point fp)
2646
0
{
2647
   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
2648
    * trailing \0, 13 characters:
2649
    */
2650
0
   if (size > 12)
2651
0
   {
2652
0
      png_uint_32 num;
2653
2654
      /* Avoid overflow here on the minimum integer. */
2655
0
      if (fp < 0)
2656
0
      {
2657
0
         *ascii++ = 45; num = (png_uint_32)(-fp);
2658
0
      }
2659
0
      else
2660
0
         num = (png_uint_32)fp;
2661
2662
0
      if (num <= 0x80000000) /* else overflowed */
2663
0
      {
2664
0
         unsigned int ndigits = 0, first = 16 /* flag value */;
2665
0
         char digits[10] = {0};
2666
2667
0
         while (num)
2668
0
         {
2669
            /* Split the low digit off num: */
2670
0
            unsigned int tmp = num/10;
2671
0
            num -= tmp*10;
2672
0
            digits[ndigits++] = (char)(48 + num);
2673
            /* Record the first non-zero digit, note that this is a number
2674
             * starting at 1, it's not actually the array index.
2675
             */
2676
0
            if (first == 16 && num > 0)
2677
0
               first = ndigits;
2678
0
            num = tmp;
2679
0
         }
2680
2681
0
         if (ndigits > 0)
2682
0
         {
2683
0
            while (ndigits > 5) *ascii++ = digits[--ndigits];
2684
            /* The remaining digits are fractional digits, ndigits is '5' or
2685
             * smaller at this point.  It is certainly not zero.  Check for a
2686
             * non-zero fractional digit:
2687
             */
2688
0
            if (first <= 5)
2689
0
            {
2690
0
               unsigned int i;
2691
0
               *ascii++ = 46; /* decimal point */
2692
               /* ndigits may be <5 for small numbers, output leading zeros
2693
                * then ndigits digits to first:
2694
                */
2695
0
               i = 5;
2696
0
               while (ndigits < i)
2697
0
               {
2698
0
                  *ascii++ = 48; --i;
2699
0
               }
2700
0
               while (ndigits >= first) *ascii++ = digits[--ndigits];
2701
               /* Don't output the trailing zeros! */
2702
0
            }
2703
0
         }
2704
0
         else
2705
0
            *ascii++ = 48;
2706
2707
         /* And null terminate the string: */
2708
0
         *ascii = 0;
2709
0
         return;
2710
0
      }
2711
0
   }
2712
2713
   /* Here on buffer too small. */
2714
0
   png_error(png_ptr, "ASCII conversion buffer too small");
2715
0
}
2716
#   endif /* FIXED_POINT */
2717
#endif /* SCAL */
2718
2719
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
2720
   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
2721
   (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \
2722
   defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2723
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \
2724
   (defined(PNG_sCAL_SUPPORTED) && \
2725
   defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))
2726
png_fixed_point
2727
png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text)
2728
22.9k
{
2729
22.9k
   double r = floor(100000 * fp + .5);
2730
2731
22.9k
   if (r > 2147483647. || r < -2147483648.)
2732
6
      png_fixed_error(png_ptr, text);
2733
2734
#  ifndef PNG_ERROR_TEXT_SUPPORTED
2735
   PNG_UNUSED(text)
2736
#  endif
2737
2738
22.9k
   return (png_fixed_point)r;
2739
22.9k
}
2740
#endif
2741
2742
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
2743
   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
2744
   (defined(PNG_cLLI_SUPPORTED) || defined(PNG_mDCV_SUPPORTED))
2745
png_uint_32
2746
png_fixed_ITU(png_const_structrp png_ptr, double fp, png_const_charp text)
2747
0
{
2748
0
   double r = floor(10000 * fp + .5);
2749
2750
0
   if (r > 2147483647. || r < 0)
2751
0
      png_fixed_error(png_ptr, text);
2752
2753
#  ifndef PNG_ERROR_TEXT_SUPPORTED
2754
   PNG_UNUSED(text)
2755
#  endif
2756
2757
0
   return (png_uint_32)r;
2758
0
}
2759
#endif
2760
2761
2762
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\
2763
    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
2764
/* muldiv functions */
2765
/* This API takes signed arguments and rounds the result to the nearest
2766
 * integer (or, for a fixed point number - the standard argument - to
2767
 * the nearest .00001).  Overflow and divide by zero are signalled in
2768
 * the result, a boolean - true on success, false on overflow.
2769
 */
2770
int /* PRIVATE */
2771
png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
2772
    png_int_32 divisor)
2773
0
{
2774
   /* Return a * times / divisor, rounded. */
2775
0
   if (divisor != 0)
2776
0
   {
2777
0
      if (a == 0 || times == 0)
2778
0
      {
2779
0
         *res = 0;
2780
0
         return 1;
2781
0
      }
2782
0
      else
2783
0
      {
2784
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2785
0
         double r = a;
2786
0
         r *= times;
2787
0
         r /= divisor;
2788
0
         r = floor(r+.5);
2789
2790
         /* A png_fixed_point is a 32-bit integer. */
2791
0
         if (r <= 2147483647. && r >= -2147483648.)
2792
0
         {
2793
0
            *res = (png_fixed_point)r;
2794
0
            return 1;
2795
0
         }
2796
#else
2797
         int negative = 0;
2798
         png_uint_32 A, T, D;
2799
         png_uint_32 s16, s32, s00;
2800
2801
         if (a < 0)
2802
            negative = 1, A = -a;
2803
         else
2804
            A = a;
2805
2806
         if (times < 0)
2807
            negative = !negative, T = -times;
2808
         else
2809
            T = times;
2810
2811
         if (divisor < 0)
2812
            negative = !negative, D = -divisor;
2813
         else
2814
            D = divisor;
2815
2816
         /* Following can't overflow because the arguments only
2817
          * have 31 bits each, however the result may be 32 bits.
2818
          */
2819
         s16 = (A >> 16) * (T & 0xffff) +
2820
                           (A & 0xffff) * (T >> 16);
2821
         /* Can't overflow because the a*times bit is only 30
2822
          * bits at most.
2823
          */
2824
         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
2825
         s00 = (A & 0xffff) * (T & 0xffff);
2826
2827
         s16 = (s16 & 0xffff) << 16;
2828
         s00 += s16;
2829
2830
         if (s00 < s16)
2831
            ++s32; /* carry */
2832
2833
         if (s32 < D) /* else overflow */
2834
         {
2835
            /* s32.s00 is now the 64-bit product, do a standard
2836
             * division, we know that s32 < D, so the maximum
2837
             * required shift is 31.
2838
             */
2839
            int bitshift = 32;
2840
            png_fixed_point result = 0; /* NOTE: signed */
2841
2842
            while (--bitshift >= 0)
2843
            {
2844
               png_uint_32 d32, d00;
2845
2846
               if (bitshift > 0)
2847
                  d32 = D >> (32-bitshift), d00 = D << bitshift;
2848
2849
               else
2850
                  d32 = 0, d00 = D;
2851
2852
               if (s32 > d32)
2853
               {
2854
                  if (s00 < d00) --s32; /* carry */
2855
                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
2856
               }
2857
2858
               else
2859
                  if (s32 == d32 && s00 >= d00)
2860
                     s32 = 0, s00 -= d00, result += 1<<bitshift;
2861
            }
2862
2863
            /* Handle the rounding. */
2864
            if (s00 >= (D >> 1))
2865
               ++result;
2866
2867
            if (negative != 0)
2868
               result = -result;
2869
2870
            /* Check for overflow. */
2871
            if ((negative != 0 && result <= 0) ||
2872
                (negative == 0 && result >= 0))
2873
            {
2874
               *res = result;
2875
               return 1;
2876
            }
2877
         }
2878
#endif
2879
0
      }
2880
0
   }
2881
2882
0
   return 0;
2883
0
}
2884
2885
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
2886
png_fixed_point
2887
png_reciprocal(png_fixed_point a)
2888
832
{
2889
832
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2890
832
   double r = floor(1E10/a+.5);
2891
2892
832
   if (r <= 2147483647. && r >= -2147483648.)
2893
820
      return (png_fixed_point)r;
2894
#else
2895
   png_fixed_point res;
2896
2897
   if (png_muldiv(&res, 100000, 100000, a) != 0)
2898
      return res;
2899
#endif
2900
2901
12
   return 0; /* error/overflow */
2902
832
}
2903
#endif /* READ_GAMMA || COLORSPACE || INCH_CONVERSIONS || READ_pHYS */
2904
2905
#ifdef PNG_READ_GAMMA_SUPPORTED
2906
/* This is the shared test on whether a gamma value is 'significant' - whether
2907
 * it is worth doing gamma correction.
2908
 */
2909
int /* PRIVATE */
2910
png_gamma_significant(png_fixed_point gamma_val)
2911
60.4k
{
2912
   /* sRGB:       1/2.2 == 0.4545(45)
2913
    * AdobeRGB:   1/(2+51/256) ~= 0.45471 5dp
2914
    *
2915
    * So the correction from AdobeRGB to sRGB (output) is:
2916
    *
2917
    *    2.2/(2+51/256) == 1.00035524
2918
    *
2919
    * I.e. vanishly small (<4E-4) but still detectable in 16-bit linear (+/-
2920
    * 23).  Note that the Adobe choice seems to be something intended to give an
2921
    * exact number with 8 binary fractional digits - it is the closest to 2.2
2922
    * that is possible a base 2 .8p representation.
2923
    */
2924
60.4k
   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
2925
60.4k
       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
2926
60.4k
}
2927
2928
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2929
/* A local convenience routine. */
2930
static png_fixed_point
2931
png_product2(png_fixed_point a, png_fixed_point b)
2932
{
2933
   /* The required result is a * b; the following preserves accuracy. */
2934
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED /* Should now be unused */
2935
   double r = a * 1E-5;
2936
   r *= b;
2937
   r = floor(r+.5);
2938
2939
   if (r <= 2147483647. && r >= -2147483648.)
2940
      return (png_fixed_point)r;
2941
#else
2942
   png_fixed_point res;
2943
2944
   if (png_muldiv(&res, a, b, 100000) != 0)
2945
      return res;
2946
#endif
2947
2948
   return 0; /* overflow */
2949
}
2950
#endif /* FLOATING_ARITHMETIC */
2951
2952
png_fixed_point
2953
png_reciprocal2(png_fixed_point a, png_fixed_point b)
2954
0
{
2955
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
2956
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2957
0
   if (a != 0 && b != 0)
2958
0
   {
2959
0
      double r = 1E15/a;
2960
0
      r /= b;
2961
0
      r = floor(r+.5);
2962
2963
0
      if (r <= 2147483647. && r >= -2147483648.)
2964
0
         return (png_fixed_point)r;
2965
0
   }
2966
#else
2967
   /* This may overflow because the range of png_fixed_point isn't symmetric,
2968
    * but this API is only used for the product of file and screen gamma so it
2969
    * doesn't matter that the smallest number it can produce is 1/21474, not
2970
    * 1/100000
2971
    */
2972
   png_fixed_point res = png_product2(a, b);
2973
2974
   if (res != 0)
2975
      return png_reciprocal(res);
2976
#endif
2977
2978
0
   return 0; /* overflow */
2979
0
}
2980
#endif /* READ_GAMMA */
2981
2982
#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
2983
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2984
/* Fixed point gamma.
2985
 *
2986
 * The code to calculate the tables used below can be found in the shell script
2987
 * contrib/tools/intgamma.sh
2988
 *
2989
 * To calculate gamma this code implements fast log() and exp() calls using only
2990
 * fixed point arithmetic.  This code has sufficient precision for either 8-bit
2991
 * or 16-bit sample values.
2992
 *
2993
 * The tables used here were calculated using simple 'bc' programs, but C double
2994
 * precision floating point arithmetic would work fine.
2995
 *
2996
 * 8-bit log table
2997
 *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
2998
 *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
2999
 *   mantissa.  The numbers are 32-bit fractions.
3000
 */
3001
static const png_uint_32
3002
png_8bit_l2[128] =
3003
{
3004
   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
3005
   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3006
   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
3007
   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
3008
   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
3009
   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
3010
   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
3011
   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
3012
   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
3013
   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
3014
   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
3015
   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
3016
   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
3017
   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
3018
   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
3019
   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
3020
   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
3021
   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
3022
   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
3023
   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
3024
   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
3025
   24347096U, 0U
3026
3027
#if 0
3028
   /* The following are the values for 16-bit tables - these work fine for the
3029
    * 8-bit conversions but produce very slightly larger errors in the 16-bit
3030
    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
3031
    * use these all the shifts below must be adjusted appropriately.
3032
    */
3033
   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
3034
   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
3035
   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
3036
   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
3037
   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
3038
   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
3039
   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
3040
   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
3041
   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
3042
   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
3043
   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
3044
   1119, 744, 372
3045
#endif
3046
};
3047
3048
static png_int_32
3049
png_log8bit(unsigned int x)
3050
{
3051
   unsigned int lg2 = 0;
3052
   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
3053
    * because the log is actually negate that means adding 1.  The final
3054
    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
3055
    * input), return -1 for the overflow (log 0) case, - so the result is
3056
    * always at most 19 bits.
3057
    */
3058
   if ((x &= 0xff) == 0)
3059
      return -1;
3060
3061
   if ((x & 0xf0) == 0)
3062
      lg2  = 4, x <<= 4;
3063
3064
   if ((x & 0xc0) == 0)
3065
      lg2 += 2, x <<= 2;
3066
3067
   if ((x & 0x80) == 0)
3068
      lg2 += 1, x <<= 1;
3069
3070
   /* result is at most 19 bits, so this cast is safe: */
3071
   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
3072
}
3073
3074
/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
3075
 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
3076
 * get an approximation then multiply the approximation by a correction factor
3077
 * determined by the remaining up to 8 bits.  This requires an additional step
3078
 * in the 16-bit case.
3079
 *
3080
 * We want log2(value/65535), we have log2(v'/255), where:
3081
 *
3082
 *    value = v' * 256 + v''
3083
 *          = v' * f
3084
 *
3085
 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
3086
 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
3087
 * than 258.  The final factor also needs to correct for the fact that our 8-bit
3088
 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
3089
 *
3090
 * This gives a final formula using a calculated value 'x' which is value/v' and
3091
 * scaling by 65536 to match the above table:
3092
 *
3093
 *   log2(x/257) * 65536
3094
 *
3095
 * Since these numbers are so close to '1' we can use simple linear
3096
 * interpolation between the two end values 256/257 (result -368.61) and 258/257
3097
 * (result 367.179).  The values used below are scaled by a further 64 to give
3098
 * 16-bit precision in the interpolation:
3099
 *
3100
 * Start (256): -23591
3101
 * Zero  (257):      0
3102
 * End   (258):  23499
3103
 */
3104
#ifdef PNG_16BIT_SUPPORTED
3105
static png_int_32
3106
png_log16bit(png_uint_32 x)
3107
{
3108
   unsigned int lg2 = 0;
3109
3110
   /* As above, but now the input has 16 bits. */
3111
   if ((x &= 0xffff) == 0)
3112
      return -1;
3113
3114
   if ((x & 0xff00) == 0)
3115
      lg2  = 8, x <<= 8;
3116
3117
   if ((x & 0xf000) == 0)
3118
      lg2 += 4, x <<= 4;
3119
3120
   if ((x & 0xc000) == 0)
3121
      lg2 += 2, x <<= 2;
3122
3123
   if ((x & 0x8000) == 0)
3124
      lg2 += 1, x <<= 1;
3125
3126
   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
3127
    * value.
3128
    */
3129
   lg2 <<= 28;
3130
   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
3131
3132
   /* Now we need to interpolate the factor, this requires a division by the top
3133
    * 8 bits.  Do this with maximum precision.
3134
    */
3135
   x = ((x << 16) + (x >> 9)) / (x >> 8);
3136
3137
   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
3138
    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
3139
    * 16 bits to interpolate to get the low bits of the result.  Round the
3140
    * answer.  Note that the end point values are scaled by 64 to retain overall
3141
    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
3142
    * the overall scaling by 6-12.  Round at every step.
3143
    */
3144
   x -= 1U << 24;
3145
3146
   if (x <= 65536U) /* <= '257' */
3147
      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
3148
3149
   else
3150
      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
3151
3152
   /* Safe, because the result can't have more than 20 bits: */
3153
   return (png_int_32)((lg2 + 2048) >> 12);
3154
}
3155
#endif /* 16BIT */
3156
3157
/* The 'exp()' case must invert the above, taking a 20-bit fixed point
3158
 * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
3159
 * each case only the low 16 bits are relevant - the fraction - since the
3160
 * integer bits (the top 4) simply determine a shift.
3161
 *
3162
 * The worst case is the 16-bit distinction between 65535 and 65534. This
3163
 * requires perhaps spurious accuracy in the decoding of the logarithm to
3164
 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
3165
 * of getting this accuracy in practice.
3166
 *
3167
 * To deal with this the following exp() function works out the exponent of the
3168
 * fractional part of the logarithm by using an accurate 32-bit value from the
3169
 * top four fractional bits then multiplying in the remaining bits.
3170
 */
3171
static const png_uint_32
3172
png_32bit_exp[16] =
3173
{
3174
   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
3175
   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3176
   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
3177
   2553802834U, 2445529972U, 2341847524U, 2242560872U
3178
};
3179
3180
/* Adjustment table; provided to explain the numbers in the code below. */
3181
#if 0
3182
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
3183
   11 44937.64284865548751208448
3184
   10 45180.98734845585101160448
3185
    9 45303.31936980687359311872
3186
    8 45364.65110595323018870784
3187
    7 45395.35850361789624614912
3188
    6 45410.72259715102037508096
3189
    5 45418.40724413220722311168
3190
    4 45422.25021786898173001728
3191
    3 45424.17186732298419044352
3192
    2 45425.13273269940811464704
3193
    1 45425.61317555035558641664
3194
    0 45425.85339951654943850496
3195
#endif
3196
3197
static png_uint_32
3198
png_exp(png_fixed_point x)
3199
{
3200
   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
3201
   {
3202
      /* Obtain a 4-bit approximation */
3203
      png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f];
3204
3205
      /* Incorporate the low 12 bits - these decrease the returned value by
3206
       * multiplying by a number less than 1 if the bit is set.  The multiplier
3207
       * is determined by the above table and the shift. Notice that the values
3208
       * converge on 45426 and this is used to allow linear interpolation of the
3209
       * low bits.
3210
       */
3211
      if (x & 0x800)
3212
         e -= (((e >> 16) * 44938U) +  16U) >> 5;
3213
3214
      if (x & 0x400)
3215
         e -= (((e >> 16) * 45181U) +  32U) >> 6;
3216
3217
      if (x & 0x200)
3218
         e -= (((e >> 16) * 45303U) +  64U) >> 7;
3219
3220
      if (x & 0x100)
3221
         e -= (((e >> 16) * 45365U) + 128U) >> 8;
3222
3223
      if (x & 0x080)
3224
         e -= (((e >> 16) * 45395U) + 256U) >> 9;
3225
3226
      if (x & 0x040)
3227
         e -= (((e >> 16) * 45410U) + 512U) >> 10;
3228
3229
      /* And handle the low 6 bits in a single block. */
3230
      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
3231
3232
      /* Handle the upper bits of x. */
3233
      e >>= x >> 16;
3234
      return e;
3235
   }
3236
3237
   /* Check for overflow */
3238
   if (x <= 0)
3239
      return png_32bit_exp[0];
3240
3241
   /* Else underflow */
3242
   return 0;
3243
}
3244
3245
static png_byte
3246
png_exp8bit(png_fixed_point lg2)
3247
{
3248
   /* Get a 32-bit value: */
3249
   png_uint_32 x = png_exp(lg2);
3250
3251
   /* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the
3252
    * second, rounding, step can't overflow because of the first, subtraction,
3253
    * step.
3254
    */
3255
   x -= x >> 8;
3256
   return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff);
3257
}
3258
3259
#ifdef PNG_16BIT_SUPPORTED
3260
static png_uint_16
3261
png_exp16bit(png_fixed_point lg2)
3262
{
3263
   /* Get a 32-bit value: */
3264
   png_uint_32 x = png_exp(lg2);
3265
3266
   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
3267
   x -= x >> 16;
3268
   return (png_uint_16)((x + 32767U) >> 16);
3269
}
3270
#endif /* 16BIT */
3271
#endif /* FLOATING_ARITHMETIC */
3272
3273
png_byte
3274
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
3275
0
{
3276
0
   if (value > 0 && value < 255)
3277
0
   {
3278
0
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3279
         /* 'value' is unsigned, ANSI-C90 requires the compiler to correctly
3280
          * convert this to a floating point value.  This includes values that
3281
          * would overflow if 'value' were to be converted to 'int'.
3282
          *
3283
          * Apparently GCC, however, does an intermediate conversion to (int)
3284
          * on some (ARM) but not all (x86) platforms, possibly because of
3285
          * hardware FP limitations.  (E.g. if the hardware conversion always
3286
          * assumes the integer register contains a signed value.)  This results
3287
          * in ANSI-C undefined behavior for large values.
3288
          *
3289
          * Other implementations on the same machine might actually be ANSI-C90
3290
          * conformant and therefore compile spurious extra code for the large
3291
          * values.
3292
          *
3293
          * We can be reasonably sure that an unsigned to float conversion
3294
          * won't be faster than an int to float one.  Therefore this code
3295
          * assumes responsibility for the undefined behavior, which it knows
3296
          * can't happen because of the check above.
3297
          *
3298
          * Note the argument to this routine is an (unsigned int) because, on
3299
          * 16-bit platforms, it is assigned a value which might be out of
3300
          * range for an (int); that would result in undefined behavior in the
3301
          * caller if the *argument* ('value') were to be declared (int).
3302
          */
3303
0
         double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5);
3304
0
         return (png_byte)r;
3305
#     else
3306
         png_int_32 lg2 = png_log8bit(value);
3307
         png_fixed_point res;
3308
3309
         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3310
            return png_exp8bit(res);
3311
3312
         /* Overflow. */
3313
         value = 0;
3314
#     endif
3315
0
   }
3316
3317
0
   return (png_byte)(value & 0xff);
3318
0
}
3319
3320
#ifdef PNG_16BIT_SUPPORTED
3321
png_uint_16
3322
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
3323
0
{
3324
0
   if (value > 0 && value < 65535)
3325
0
   {
3326
0
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3327
      /* The same (unsigned int)->(double) constraints apply here as above,
3328
       * however in this case the (unsigned int) to (int) conversion can
3329
       * overflow on an ANSI-C90 compliant system so the cast needs to ensure
3330
       * that this is not possible.
3331
       */
3332
0
      double r = floor(65535*pow((png_int_32)value/65535.,
3333
0
          gamma_val*.00001)+.5);
3334
0
      return (png_uint_16)r;
3335
# else
3336
      png_int_32 lg2 = png_log16bit(value);
3337
      png_fixed_point res;
3338
3339
      if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3340
         return png_exp16bit(res);
3341
3342
      /* Overflow. */
3343
      value = 0;
3344
# endif
3345
0
   }
3346
3347
0
   return (png_uint_16)value;
3348
0
}
3349
#endif /* 16BIT */
3350
3351
/* This does the right thing based on the bit_depth field of the
3352
 * png_struct, interpreting values as 8-bit or 16-bit.  While the result
3353
 * is nominally a 16-bit value if bit depth is 8 then the result is
3354
 * 8-bit (as are the arguments.)
3355
 */
3356
png_uint_16 /* PRIVATE */
3357
png_gamma_correct(png_structrp png_ptr, unsigned int value,
3358
    png_fixed_point gamma_val)
3359
0
{
3360
0
   if (png_ptr->bit_depth == 8)
3361
0
      return png_gamma_8bit_correct(value, gamma_val);
3362
3363
0
#ifdef PNG_16BIT_SUPPORTED
3364
0
   else
3365
0
      return png_gamma_16bit_correct(value, gamma_val);
3366
#else
3367
      /* should not reach this */
3368
      return 0;
3369
#endif /* 16BIT */
3370
0
}
3371
3372
#ifdef PNG_16BIT_SUPPORTED
3373
/* Internal function to build a single 16-bit table - the table consists of
3374
 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
3375
 * to shift the input values right (or 16-number_of_signifiant_bits).
3376
 *
3377
 * The caller is responsible for ensuring that the table gets cleaned up on
3378
 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
3379
 * should be somewhere that will be cleaned.
3380
 */
3381
static void
3382
png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable,
3383
    unsigned int shift, png_fixed_point gamma_val)
3384
0
{
3385
   /* Various values derived from 'shift': */
3386
0
   unsigned int num = 1U << (8U - shift);
3387
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3388
   /* CSE the division and work round wacky GCC warnings (see the comments
3389
    * in png_gamma_8bit_correct for where these come from.)
3390
    */
3391
0
   double fmax = 1.0 / (((png_int_32)1 << (16U - shift)) - 1);
3392
0
#endif
3393
0
   unsigned int max = (1U << (16U - shift)) - 1U;
3394
0
   unsigned int max_by_2 = 1U << (15U - shift);
3395
0
   unsigned int i;
3396
3397
0
   png_uint_16pp table = *ptable =
3398
0
       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3399
3400
0
   for (i = 0; i < num; i++)
3401
0
   {
3402
0
      png_uint_16p sub_table = table[i] =
3403
0
          (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16)));
3404
3405
      /* The 'threshold' test is repeated here because it can arise for one of
3406
       * the 16-bit tables even if the others don't hit it.
3407
       */
3408
0
      if (png_gamma_significant(gamma_val) != 0)
3409
0
      {
3410
         /* The old code would overflow at the end and this would cause the
3411
          * 'pow' function to return a result >1, resulting in an
3412
          * arithmetic error.  This code follows the spec exactly; ig is
3413
          * the recovered input sample, it always has 8-16 bits.
3414
          *
3415
          * We want input * 65535/max, rounded, the arithmetic fits in 32
3416
          * bits (unsigned) so long as max <= 32767.
3417
          */
3418
0
         unsigned int j;
3419
0
         for (j = 0; j < 256; j++)
3420
0
         {
3421
0
            png_uint_32 ig = (j << (8-shift)) + i;
3422
0
#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3423
               /* Inline the 'max' scaling operation: */
3424
               /* See png_gamma_8bit_correct for why the cast to (int) is
3425
                * required here.
3426
                */
3427
0
               double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5);
3428
0
               sub_table[j] = (png_uint_16)d;
3429
#           else
3430
               if (shift != 0)
3431
                  ig = (ig * 65535U + max_by_2)/max;
3432
3433
               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
3434
#           endif
3435
0
         }
3436
0
      }
3437
0
      else
3438
0
      {
3439
         /* We must still build a table, but do it the fast way. */
3440
0
         unsigned int j;
3441
3442
0
         for (j = 0; j < 256; j++)
3443
0
         {
3444
0
            png_uint_32 ig = (j << (8-shift)) + i;
3445
3446
0
            if (shift != 0)
3447
0
               ig = (ig * 65535U + max_by_2)/max;
3448
3449
0
            sub_table[j] = (png_uint_16)ig;
3450
0
         }
3451
0
      }
3452
0
   }
3453
0
}
3454
3455
/* NOTE: this function expects the *inverse* of the overall gamma transformation
3456
 * required.
3457
 */
3458
static void
3459
png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable,
3460
    unsigned int shift, png_fixed_point gamma_val)
3461
0
{
3462
0
   unsigned int num = 1U << (8U - shift);
3463
0
   unsigned int max = (1U << (16U - shift))-1U;
3464
0
   unsigned int i;
3465
0
   png_uint_32 last;
3466
3467
0
   png_uint_16pp table = *ptable =
3468
0
       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3469
3470
   /* 'num' is the number of tables and also the number of low bits of low
3471
    * bits of the input 16-bit value used to select a table.  Each table is
3472
    * itself indexed by the high 8 bits of the value.
3473
    */
3474
0
   for (i = 0; i < num; i++)
3475
0
      table[i] = (png_uint_16p)png_malloc(png_ptr,
3476
0
          256 * (sizeof (png_uint_16)));
3477
3478
   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
3479
    * pow(out,g) is an *input* value.  'last' is the last input value set.
3480
    *
3481
    * In the loop 'i' is used to find output values.  Since the output is
3482
    * 8-bit there are only 256 possible values.  The tables are set up to
3483
    * select the closest possible output value for each input by finding
3484
    * the input value at the boundary between each pair of output values
3485
    * and filling the table up to that boundary with the lower output
3486
    * value.
3487
    *
3488
    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
3489
    * values the code below uses a 16-bit value in i; the values start at
3490
    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
3491
    * entries are filled with 255).  Start i at 128 and fill all 'last'
3492
    * table entries <= 'max'
3493
    */
3494
0
   last = 0;
3495
0
   for (i = 0; i < 255; ++i) /* 8-bit output value */
3496
0
   {
3497
      /* Find the corresponding maximum input value */
3498
0
      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
3499
3500
      /* Find the boundary value in 16 bits: */
3501
0
      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
3502
3503
      /* Adjust (round) to (16-shift) bits: */
3504
0
      bound = (bound * max + 32768U)/65535U + 1U;
3505
3506
0
      while (last < bound)
3507
0
      {
3508
0
         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
3509
0
         last++;
3510
0
      }
3511
0
   }
3512
3513
   /* And fill in the final entries. */
3514
0
   while (last < (num << 8))
3515
0
   {
3516
0
      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
3517
0
      last++;
3518
0
   }
3519
0
}
3520
#endif /* 16BIT */
3521
3522
/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
3523
 * typically much faster).  Note that libpng currently does no sBIT processing
3524
 * (apparently contrary to the spec) so a 256-entry table is always generated.
3525
 */
3526
static void
3527
png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable,
3528
    png_fixed_point gamma_val)
3529
0
{
3530
0
   unsigned int i;
3531
0
   png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
3532
3533
0
   if (png_gamma_significant(gamma_val) != 0)
3534
0
      for (i=0; i<256; i++)
3535
0
         table[i] = png_gamma_8bit_correct(i, gamma_val);
3536
3537
0
   else
3538
0
      for (i=0; i<256; ++i)
3539
0
         table[i] = (png_byte)(i & 0xff);
3540
0
}
3541
3542
/* Used from png_read_destroy and below to release the memory used by the gamma
3543
 * tables.
3544
 */
3545
void /* PRIVATE */
3546
png_destroy_gamma_table(png_structrp png_ptr)
3547
100k
{
3548
100k
   png_free(png_ptr, png_ptr->gamma_table);
3549
100k
   png_ptr->gamma_table = NULL;
3550
3551
100k
#ifdef PNG_16BIT_SUPPORTED
3552
100k
   if (png_ptr->gamma_16_table != NULL)
3553
0
   {
3554
0
      int i;
3555
0
      int istop = (1 << (8 - png_ptr->gamma_shift));
3556
0
      for (i = 0; i < istop; i++)
3557
0
      {
3558
0
         png_free(png_ptr, png_ptr->gamma_16_table[i]);
3559
0
      }
3560
0
   png_free(png_ptr, png_ptr->gamma_16_table);
3561
0
   png_ptr->gamma_16_table = NULL;
3562
0
   }
3563
100k
#endif /* 16BIT */
3564
3565
100k
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3566
100k
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3567
100k
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3568
100k
   png_free(png_ptr, png_ptr->gamma_from_1);
3569
100k
   png_ptr->gamma_from_1 = NULL;
3570
100k
   png_free(png_ptr, png_ptr->gamma_to_1);
3571
100k
   png_ptr->gamma_to_1 = NULL;
3572
3573
100k
#ifdef PNG_16BIT_SUPPORTED
3574
100k
   if (png_ptr->gamma_16_from_1 != NULL)
3575
0
   {
3576
0
      int i;
3577
0
      int istop = (1 << (8 - png_ptr->gamma_shift));
3578
0
      for (i = 0; i < istop; i++)
3579
0
      {
3580
0
         png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
3581
0
      }
3582
0
   png_free(png_ptr, png_ptr->gamma_16_from_1);
3583
0
   png_ptr->gamma_16_from_1 = NULL;
3584
0
   }
3585
100k
   if (png_ptr->gamma_16_to_1 != NULL)
3586
0
   {
3587
0
      int i;
3588
0
      int istop = (1 << (8 - png_ptr->gamma_shift));
3589
0
      for (i = 0; i < istop; i++)
3590
0
      {
3591
0
         png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
3592
0
      }
3593
0
   png_free(png_ptr, png_ptr->gamma_16_to_1);
3594
0
   png_ptr->gamma_16_to_1 = NULL;
3595
0
   }
3596
100k
#endif /* 16BIT */
3597
100k
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
3598
100k
}
3599
3600
/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
3601
 * tables, we don't make a full table if we are reducing to 8-bit in
3602
 * the future.  Note also how the gamma_16 tables are segmented so that
3603
 * we don't need to allocate > 64K chunks for a full 16-bit table.
3604
 *
3605
 * TODO: move this to pngrtran.c and make it static.  Better yet create
3606
 * pngcolor.c and put all the PNG_COLORSPACE stuff in there.
3607
 */
3608
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3609
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3610
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3611
#  define GAMMA_TRANSFORMS 1 /* #ifdef CSE */
3612
#else
3613
#  define GAMMA_TRANSFORMS 0
3614
#endif
3615
3616
void /* PRIVATE */
3617
png_build_gamma_table(png_structrp png_ptr, int bit_depth)
3618
0
{
3619
0
   png_fixed_point file_gamma, screen_gamma;
3620
0
   png_fixed_point correction;
3621
0
#  if GAMMA_TRANSFORMS
3622
0
      png_fixed_point file_to_linear, linear_to_screen;
3623
0
#  endif
3624
3625
0
   png_debug(1, "in png_build_gamma_table");
3626
3627
   /* Remove any existing table; this copes with multiple calls to
3628
    * png_read_update_info. The warning is because building the gamma tables
3629
    * multiple times is a performance hit - it's harmless but the ability to
3630
    * call png_read_update_info() multiple times is new in 1.5.6 so it seems
3631
    * sensible to warn if the app introduces such a hit.
3632
    */
3633
0
   if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
3634
0
   {
3635
0
      png_warning(png_ptr, "gamma table being rebuilt");
3636
0
      png_destroy_gamma_table(png_ptr);
3637
0
   }
3638
3639
   /* The following fields are set, finally, in png_init_read_transformations.
3640
    * If file_gamma is 0 (unset) nothing can be done otherwise if screen_gamma
3641
    * is 0 (unset) there is no gamma correction but to/from linear is possible.
3642
    */
3643
0
   file_gamma = png_ptr->file_gamma;
3644
0
   screen_gamma = png_ptr->screen_gamma;
3645
0
#  if GAMMA_TRANSFORMS
3646
0
      file_to_linear = png_reciprocal(file_gamma);
3647
0
#  endif
3648
3649
0
   if (screen_gamma > 0)
3650
0
   {
3651
0
#     if GAMMA_TRANSFORMS
3652
0
         linear_to_screen = png_reciprocal(screen_gamma);
3653
0
#     endif
3654
0
      correction = png_reciprocal2(screen_gamma, file_gamma);
3655
0
   }
3656
0
   else /* screen gamma unknown */
3657
0
   {
3658
0
#     if GAMMA_TRANSFORMS
3659
0
         linear_to_screen = file_gamma;
3660
0
#     endif
3661
0
      correction = PNG_FP_1;
3662
0
   }
3663
3664
0
   if (bit_depth <= 8)
3665
0
   {
3666
0
      png_build_8bit_table(png_ptr, &png_ptr->gamma_table, correction);
3667
3668
0
#if GAMMA_TRANSFORMS
3669
0
      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
3670
0
      {
3671
0
         png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, file_to_linear);
3672
3673
0
         png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
3674
0
            linear_to_screen);
3675
0
      }
3676
0
#endif /* GAMMA_TRANSFORMS */
3677
0
   }
3678
0
#ifdef PNG_16BIT_SUPPORTED
3679
0
   else
3680
0
   {
3681
0
      png_byte shift, sig_bit;
3682
3683
0
      if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
3684
0
      {
3685
0
         sig_bit = png_ptr->sig_bit.red;
3686
3687
0
         if (png_ptr->sig_bit.green > sig_bit)
3688
0
            sig_bit = png_ptr->sig_bit.green;
3689
3690
0
         if (png_ptr->sig_bit.blue > sig_bit)
3691
0
            sig_bit = png_ptr->sig_bit.blue;
3692
0
      }
3693
0
      else
3694
0
         sig_bit = png_ptr->sig_bit.gray;
3695
3696
      /* 16-bit gamma code uses this equation:
3697
       *
3698
       *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
3699
       *
3700
       * Where 'iv' is the input color value and 'ov' is the output value -
3701
       * pow(iv, gamma).
3702
       *
3703
       * Thus the gamma table consists of up to 256 256-entry tables.  The table
3704
       * is selected by the (8-gamma_shift) most significant of the low 8 bits
3705
       * of the color value then indexed by the upper 8 bits:
3706
       *
3707
       *   table[low bits][high 8 bits]
3708
       *
3709
       * So the table 'n' corresponds to all those 'iv' of:
3710
       *
3711
       *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
3712
       *
3713
       */
3714
0
      if (sig_bit > 0 && sig_bit < 16U)
3715
         /* shift == insignificant bits */
3716
0
         shift = (png_byte)((16U - sig_bit) & 0xff);
3717
3718
0
      else
3719
0
         shift = 0; /* keep all 16 bits */
3720
3721
0
      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
3722
0
      {
3723
         /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
3724
          * the significant bits in the *input* when the output will
3725
          * eventually be 8 bits.  By default it is 11.
3726
          */
3727
0
         if (shift < (16U - PNG_MAX_GAMMA_8))
3728
0
            shift = (16U - PNG_MAX_GAMMA_8);
3729
0
      }
3730
3731
0
      if (shift > 8U)
3732
0
         shift = 8U; /* Guarantees at least one table! */
3733
3734
0
      png_ptr->gamma_shift = shift;
3735
3736
      /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
3737
       * PNG_COMPOSE).  This effectively smashed the background calculation for
3738
       * 16-bit output because the 8-bit table assumes the result will be
3739
       * reduced to 8 bits.
3740
       */
3741
0
      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
3742
0
         png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
3743
0
            png_reciprocal(correction));
3744
0
      else
3745
0
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
3746
0
            correction);
3747
3748
0
#  if GAMMA_TRANSFORMS
3749
0
      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
3750
0
      {
3751
0
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
3752
0
            file_to_linear);
3753
3754
         /* Notice that the '16 from 1' table should be full precision, however
3755
          * the lookup on this table still uses gamma_shift, so it can't be.
3756
          * TODO: fix this.
3757
          */
3758
0
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
3759
0
            linear_to_screen);
3760
0
      }
3761
0
#endif /* GAMMA_TRANSFORMS */
3762
0
   }
3763
0
#endif /* 16BIT */
3764
0
}
3765
#endif /* READ_GAMMA */
3766
3767
/* HARDWARE OR SOFTWARE OPTION SUPPORT */
3768
#ifdef PNG_SET_OPTION_SUPPORTED
3769
int PNGAPI
3770
png_set_option(png_structrp png_ptr, int option, int onoff)
3771
0
{
3772
0
   if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT &&
3773
0
      (option & 1) == 0)
3774
0
   {
3775
0
      png_uint_32 mask = 3U << option;
3776
0
      png_uint_32 setting = (2U + (onoff != 0)) << option;
3777
0
      png_uint_32 current = png_ptr->options;
3778
3779
0
      png_ptr->options = (png_uint_32)((current & ~mask) | setting);
3780
3781
0
      return (int)(current & mask) >> option;
3782
0
   }
3783
3784
0
   return PNG_OPTION_INVALID;
3785
0
}
3786
#endif
3787
3788
/* sRGB support */
3789
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
3790
   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
3791
/* sRGB conversion tables; these are machine generated with the code in
3792
 * contrib/tools/makesRGB.c.  The actual sRGB transfer curve defined in the
3793
 * specification (see the article at https://en.wikipedia.org/wiki/SRGB)
3794
 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
3795
 * The sRGB to linear table is exact (to the nearest 16-bit linear fraction).
3796
 * The inverse (linear to sRGB) table has accuracies as follows:
3797
 *
3798
 * For all possible (255*65535+1) input values:
3799
 *
3800
 *    error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
3801
 *
3802
 * For the input values corresponding to the 65536 16-bit values:
3803
 *
3804
 *    error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
3805
 *
3806
 * In all cases the inexact readings are only off by one.
3807
 */
3808
3809
#ifdef PNG_SIMPLIFIED_READ_SUPPORTED
3810
/* The convert-to-sRGB table is only currently required for read. */
3811
const png_uint_16 png_sRGB_table[256] =
3812
{
3813
   0,20,40,60,80,99,119,139,
3814
   159,179,199,219,241,264,288,313,
3815
   340,367,396,427,458,491,526,562,
3816
   599,637,677,718,761,805,851,898,
3817
   947,997,1048,1101,1156,1212,1270,1330,
3818
   1391,1453,1517,1583,1651,1720,1790,1863,
3819
   1937,2013,2090,2170,2250,2333,2418,2504,
3820
   2592,2681,2773,2866,2961,3058,3157,3258,
3821
   3360,3464,3570,3678,3788,3900,4014,4129,
3822
   4247,4366,4488,4611,4736,4864,4993,5124,
3823
   5257,5392,5530,5669,5810,5953,6099,6246,
3824
   6395,6547,6700,6856,7014,7174,7335,7500,
3825
   7666,7834,8004,8177,8352,8528,8708,8889,
3826
   9072,9258,9445,9635,9828,10022,10219,10417,
3827
   10619,10822,11028,11235,11446,11658,11873,12090,
3828
   12309,12530,12754,12980,13209,13440,13673,13909,
3829
   14146,14387,14629,14874,15122,15371,15623,15878,
3830
   16135,16394,16656,16920,17187,17456,17727,18001,
3831
   18277,18556,18837,19121,19407,19696,19987,20281,
3832
   20577,20876,21177,21481,21787,22096,22407,22721,
3833
   23038,23357,23678,24002,24329,24658,24990,25325,
3834
   25662,26001,26344,26688,27036,27386,27739,28094,
3835
   28452,28813,29176,29542,29911,30282,30656,31033,
3836
   31412,31794,32179,32567,32957,33350,33745,34143,
3837
   34544,34948,35355,35764,36176,36591,37008,37429,
3838
   37852,38278,38706,39138,39572,40009,40449,40891,
3839
   41337,41785,42236,42690,43147,43606,44069,44534,
3840
   45002,45473,45947,46423,46903,47385,47871,48359,
3841
   48850,49344,49841,50341,50844,51349,51858,52369,
3842
   52884,53401,53921,54445,54971,55500,56032,56567,
3843
   57105,57646,58190,58737,59287,59840,60396,60955,
3844
   61517,62082,62650,63221,63795,64372,64952,65535
3845
};
3846
#endif /* SIMPLIFIED_READ */
3847
3848
/* The base/delta tables are required for both read and write (but currently
3849
 * only the simplified versions.)
3850
 */
3851
const png_uint_16 png_sRGB_base[512] =
3852
{
3853
   128,1782,3383,4644,5675,6564,7357,8074,
3854
   8732,9346,9921,10463,10977,11466,11935,12384,
3855
   12816,13233,13634,14024,14402,14769,15125,15473,
3856
   15812,16142,16466,16781,17090,17393,17690,17981,
3857
   18266,18546,18822,19093,19359,19621,19879,20133,
3858
   20383,20630,20873,21113,21349,21583,21813,22041,
3859
   22265,22487,22707,22923,23138,23350,23559,23767,
3860
   23972,24175,24376,24575,24772,24967,25160,25352,
3861
   25542,25730,25916,26101,26284,26465,26645,26823,
3862
   27000,27176,27350,27523,27695,27865,28034,28201,
3863
   28368,28533,28697,28860,29021,29182,29341,29500,
3864
   29657,29813,29969,30123,30276,30429,30580,30730,
3865
   30880,31028,31176,31323,31469,31614,31758,31902,
3866
   32045,32186,32327,32468,32607,32746,32884,33021,
3867
   33158,33294,33429,33564,33697,33831,33963,34095,
3868
   34226,34357,34486,34616,34744,34873,35000,35127,
3869
   35253,35379,35504,35629,35753,35876,35999,36122,
3870
   36244,36365,36486,36606,36726,36845,36964,37083,
3871
   37201,37318,37435,37551,37668,37783,37898,38013,
3872
   38127,38241,38354,38467,38580,38692,38803,38915,
3873
   39026,39136,39246,39356,39465,39574,39682,39790,
3874
   39898,40005,40112,40219,40325,40431,40537,40642,
3875
   40747,40851,40955,41059,41163,41266,41369,41471,
3876
   41573,41675,41777,41878,41979,42079,42179,42279,
3877
   42379,42478,42577,42676,42775,42873,42971,43068,
3878
   43165,43262,43359,43456,43552,43648,43743,43839,
3879
   43934,44028,44123,44217,44311,44405,44499,44592,
3880
   44685,44778,44870,44962,45054,45146,45238,45329,
3881
   45420,45511,45601,45692,45782,45872,45961,46051,
3882
   46140,46229,46318,46406,46494,46583,46670,46758,
3883
   46846,46933,47020,47107,47193,47280,47366,47452,
3884
   47538,47623,47709,47794,47879,47964,48048,48133,
3885
   48217,48301,48385,48468,48552,48635,48718,48801,
3886
   48884,48966,49048,49131,49213,49294,49376,49458,
3887
   49539,49620,49701,49782,49862,49943,50023,50103,
3888
   50183,50263,50342,50422,50501,50580,50659,50738,
3889
   50816,50895,50973,51051,51129,51207,51285,51362,
3890
   51439,51517,51594,51671,51747,51824,51900,51977,
3891
   52053,52129,52205,52280,52356,52432,52507,52582,
3892
   52657,52732,52807,52881,52956,53030,53104,53178,
3893
   53252,53326,53400,53473,53546,53620,53693,53766,
3894
   53839,53911,53984,54056,54129,54201,54273,54345,
3895
   54417,54489,54560,54632,54703,54774,54845,54916,
3896
   54987,55058,55129,55199,55269,55340,55410,55480,
3897
   55550,55620,55689,55759,55828,55898,55967,56036,
3898
   56105,56174,56243,56311,56380,56448,56517,56585,
3899
   56653,56721,56789,56857,56924,56992,57059,57127,
3900
   57194,57261,57328,57395,57462,57529,57595,57662,
3901
   57728,57795,57861,57927,57993,58059,58125,58191,
3902
   58256,58322,58387,58453,58518,58583,58648,58713,
3903
   58778,58843,58908,58972,59037,59101,59165,59230,
3904
   59294,59358,59422,59486,59549,59613,59677,59740,
3905
   59804,59867,59930,59993,60056,60119,60182,60245,
3906
   60308,60370,60433,60495,60558,60620,60682,60744,
3907
   60806,60868,60930,60992,61054,61115,61177,61238,
3908
   61300,61361,61422,61483,61544,61605,61666,61727,
3909
   61788,61848,61909,61969,62030,62090,62150,62211,
3910
   62271,62331,62391,62450,62510,62570,62630,62689,
3911
   62749,62808,62867,62927,62986,63045,63104,63163,
3912
   63222,63281,63340,63398,63457,63515,63574,63632,
3913
   63691,63749,63807,63865,63923,63981,64039,64097,
3914
   64155,64212,64270,64328,64385,64443,64500,64557,
3915
   64614,64672,64729,64786,64843,64900,64956,65013,
3916
   65070,65126,65183,65239,65296,65352,65409,65465
3917
};
3918
3919
const png_byte png_sRGB_delta[512] =
3920
{
3921
   207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,
3922
   52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,
3923
   35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,
3924
   28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,
3925
   23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,
3926
   21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,
3927
   19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,
3928
   17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,
3929
   16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,
3930
   15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,
3931
   14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,
3932
   13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,
3933
   12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
3934
   12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,
3935
   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
3936
   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
3937
   11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3938
   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3939
   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
3940
   10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3941
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3942
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3943
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
3944
   9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3945
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3946
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3947
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3948
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
3949
   8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,
3950
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
3951
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
3952
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
3953
};
3954
#endif /* SIMPLIFIED READ/WRITE sRGB support */
3955
3956
/* SIMPLIFIED READ/WRITE SUPPORT */
3957
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
3958
   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
3959
static int
3960
png_image_free_function(png_voidp argument)
3961
0
{
3962
0
   png_imagep image = png_voidcast(png_imagep, argument);
3963
0
   png_controlp cp = image->opaque;
3964
0
   png_control c;
3965
3966
   /* Double check that we have a png_ptr - it should be impossible to get here
3967
    * without one.
3968
    */
3969
0
   if (cp->png_ptr == NULL)
3970
0
      return 0;
3971
3972
   /* First free any data held in the control structure. */
3973
0
#  ifdef PNG_STDIO_SUPPORTED
3974
0
      if (cp->owned_file != 0)
3975
0
      {
3976
0
         FILE *fp = png_voidcast(FILE *, cp->png_ptr->io_ptr);
3977
0
         cp->owned_file = 0;
3978
3979
         /* Ignore errors here. */
3980
0
         if (fp != NULL)
3981
0
         {
3982
0
            cp->png_ptr->io_ptr = NULL;
3983
0
            (void)fclose(fp);
3984
0
         }
3985
0
      }
3986
0
#  endif
3987
3988
   /* Copy the control structure so that the original, allocated, version can be
3989
    * safely freed.  Notice that a png_error here stops the remainder of the
3990
    * cleanup, but this is probably fine because that would indicate bad memory
3991
    * problems anyway.
3992
    */
3993
0
   c = *cp;
3994
0
   image->opaque = &c;
3995
0
   png_free(c.png_ptr, cp);
3996
3997
   /* Then the structures, calling the correct API. */
3998
0
   if (c.for_write != 0)
3999
0
   {
4000
0
#     ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED
4001
0
         png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
4002
#     else
4003
         png_error(c.png_ptr, "simplified write not supported");
4004
#     endif
4005
0
   }
4006
0
   else
4007
0
   {
4008
0
#     ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4009
0
         png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
4010
#     else
4011
         png_error(c.png_ptr, "simplified read not supported");
4012
#     endif
4013
0
   }
4014
4015
   /* Success. */
4016
0
   return 1;
4017
0
}
4018
4019
void PNGAPI
4020
png_image_free(png_imagep image)
4021
0
{
4022
   /* Safely call the real function, but only if doing so is safe at this point
4023
    * (if not inside an error handling context).  Otherwise assume
4024
    * png_safe_execute will call this API after the return.
4025
    */
4026
0
   if (image != NULL && image->opaque != NULL &&
4027
0
      image->opaque->error_buf == NULL)
4028
0
   {
4029
0
      png_image_free_function(image);
4030
0
      image->opaque = NULL;
4031
0
   }
4032
0
}
4033
4034
int /* PRIVATE */
4035
png_image_error(png_imagep image, png_const_charp error_message)
4036
0
{
4037
   /* Utility to log an error. */
4038
0
   png_safecat(image->message, (sizeof image->message), 0, error_message);
4039
0
   image->warning_or_error |= PNG_IMAGE_ERROR;
4040
0
   png_image_free(image);
4041
0
   return 0;
4042
0
}
4043
4044
#endif /* SIMPLIFIED READ/WRITE */
4045
#endif /* READ || WRITE */